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Abstract—In this paper, we illustrate how to extract personal
context-aware preferences from the context-rich device logs
(i.e., context logs) for building novel personalized context-aware
recommender systems. A critical challenge along this line is
that the context log of each individual user may not contain
sufficient data for mining his/her context-aware preferences.
Therefore, we propose to first learn common context-aware
preferences from the context logs of many users. Then, the
preference of each user can be represented as a distribution
of these common context-aware preferences. Specifically, we
develop two approaches for mining common context-aware
preferences based on two different assumptions, namely, con-
text independent and context dependent assumptions, which
can fit into different application scenarios. Finally, extensive
experiments on a real-world data set show that both approaches
are effective and outperform baselines with respect to mining
personal context-aware preferences for mobile users.

Keywords-Personal Context-Aware Preferences, Context-
Aware Recommendation, Mobile Users.

I. INTRODUCTION

Recent years have witnessed the rapid growth of smart

mobile devices. These devices are usually equipped with

some context sensors, such as GPS sensors, and 3D ac-

celerometers which enable them to capture the rich con-

textual information of mobile users and thus produce a

wide range of context-aware services. In fact, the contextual

information and corresponding usage records (e.g., browsing

web sites and playing games) can be recorded into context-

rich device logs, or context logs for short, which can be

used for mining the personal context-aware preferences of

users. By considering both the context-aware preferences

and the current contexts of users, a personalized context-

aware recommender system can be built. Indeed, the per-

sonalized context-aware recommender systems can provide

better user experiences than traditional context-aware rec-

ommender systems which only takes consideration of the

contextual information but not different users’ preferences

under the same context.

In recent years, although many researchers studied

the problem of personalized context-aware recommenda-

tion [16], [15], [5], [12], [8] and proposed some approaches

for mining personal context-aware preferences, most of them

did not take into account context-rich information in their

approaches. Also, some of these studies are based on item

ratings generated by users under different contexts, which

are difficult to obtain in practice. In contrast, usage records

in context-rich device logs are a rich resource for mining

personalized context-aware user preferences. However, it

is still under-explored about how to mine context-aware

preferences from context-rich logs for developing context-

aware recommender systems.

To this end, in this paper, we propose a novel approach

to mining personal context-aware preferences from context

logs of mobile users. A critical challenge for mining personal

context-aware preferences is that the context log of each

individual user usually does not contain sufficient training

information. Therefore, we propose a novel crowd wisdom

based approach for mining the personal context-aware pref-

erences for mobile users, which can enable the building of

personalized context-aware mobile recommender systems.

The contributions of this paper are summarized as follows.

First, we propose a novel approach for mining the per-

sonal context-aware preferences for mobile users through the

analysis of context-rich device logs. Specifically, we propose

to first mine common context-aware preferences from the

context logs of many users and then represent the personal

context-aware preference of each user as a distribution of

common context-aware preferences.

Second, we design two effective methods for mining

common context-aware preferences based on two different

assumptions about context data dependency. If context data

are assumed to be conditionally independent, we propose

to mine common context-aware preferences through topic

models. Otherwise, if context data are assumed to be de-

pendent, we propose to exploit the constraint based Matrix

Factorization model for mining common context-aware pref-

erences and only consider those contexts which are relevant

to content usage for reducing the computation complexity.

Finally, we evaluate the proposed approach using a real-

world data set with context logs collected from 443 mobile

phone users. In total, there are more than 8.8 million context

records. The experimental results clearly demonstrate the

effectiveness of the proposed approach and indicate some

inspiring findings.

II. MINING PERSONAL CONTEXT-AWARE PREFERENCES

FROM CONTEXT LOGS

Smart devices can capture the historical context data and

the corresponding usage records of users through multiple

sensors and record them in context logs. Specifically, it

contains several context records, and each context record

consists of a timestamp, the most detailed context at that
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time, and the corresponding usage record. A context consists

of several contextual features (e.g., Day name, Time range,

and Location) and their corresponding values (e.g., Satur-

day, AM8:00-9:00, and Home), which can be annotated as

contextual feature-value pairs. Moreover, usage records can

be empty (denoted as “Null”) because a user do not always

use the mobile phone.

Note that, raw locations in context data, such as GPS

coordinates or cell IDs, have been transformed into semantic

locations such as “Home” and “Work Place” by some

location mining approaches (e.g., [4]). The basic idea of

these approaches is to find the clusters of user locations

and recognize their semantic meaning by a time pattern

analysis. Moreover, we also map the raw usage records to

the usage records of particular categories of contents. In this

way, the context data and usage records in context logs are

normalized and the data sparseness problem is somewhat

alleviated. The above helps the task of personal context-

aware preference mining.

Intuitively, context logs contain rich information about

content usage given particular contexts and can be used

for mining the personal context-aware preferences of users.

However, the context log of each individual user is usually

too sparse for this task. This is also demonstrated by the

experiments on a real-world data set in the experimental

section. The main reason is that, while the context logs of

individual users may contain many context records, only

a small proportion of them have non-empty usage records

which can be used as meaningful mining source. To that end,

we propose a novel approach for mining personal context-

aware preferences as follows.

The basic idea is first mining common context-aware

preferences from the context logs of many users and then

represent each user’s context-aware preference by a distri-

bution of common context-aware preferences. Let us denote

the variable of common context-aware preference as z, the

conditional probability that a user u prefers the content cat-

egory c given a context C can be represented as P (c|C, u),
which satisfies P (c|C, u) ∝ P (c, C|u), thus we have

P (c|C, u) ∝
∑

z

P (c, C, z|u) ∝
∑

z

P (c, C|z)P (z|u),

where we assume a user’s preference given a context only

relies on the common context-aware preferences followed by

many users, i.e., P (c, C|z), and his (her) personal context-

aware preference expressed by a distribution of common

context-aware preferences, i.e., P (z|u). Then the task is

converted to learning P (c, C|z) and P (z|u) from many

users’ context logs.

After mining the personal context-aware preference of

each mobile user, we predict which category of contents will

be preferred for a given user according to the corresponding

context. Specially, we first rank content categories according

to the probability P (c|C, u) of each content category c, then

we can recommend corresponding contents. For example,

if we infer the user would like “action games”, we will

recommend some popular action games to the user.

We observe that modeling and mining common context-

aware preferences rely on the assumption about context

data dependency. Basically, we can have two different as-

sumptions about context data dependency as follows. The

first assumption is that different types of context data

are conditionally independent given a particular common

context-aware preference, which is relatively strong but

simplifies the problem. For example, under such an as-

sumption, given a context “{(Time range: PM10:00-11:00),

(Location: Home)}” and a user u, if we can infer the

latent common context-aware preference distribution of u,

we only need to consider which content category u may

prefer under the context (Time range: PM10:00-11:00) and

the context (Location: Home) given each common context-

aware preference.

The second assumption is that different types of context

data are mutually dependent, which is relatively weak and

may be more proper in practice. However, such an assump-

tion makes it more difficult for modeling context-aware

preferences. For example, under such an assumption, given

the above context, we have to consider the co-occurrence of

(Time range: PM10:00-11:00) and (Location: Home) when

making a preference prediction. Obviously, the correspond-

ing models may be more complex than the ones based on the

first assumption. In this paper, we propose two approaches

based on the above two assumptions and conduct extensive

experiments to evaluate them. The details of two approaches

are presented in the following two sections, respectively.

III. CONTEXT-AWARE PREFERENCE MINING BASED ON

CONTEXT CONDITIONAL INDEPENDENCY ASSUMPTION

We first propose a method based on the assumption that

different types of context data are conditional independent

given a particular common context-aware preference. Under

such an assumption, given a context C = {p} where p
denotes an atomic context, i.e., a contextual feature-value

pair, the probability that a user u prefers content category c
can be represented as

P (c|C, u) ∝
∑

z

∏

p∈C
P (c, p|z)P (z|u)

Therefore, the problem is further converted to learn

P (c, p|z) and P (z|u) from many users’ context logs, which

can be solved by widely used topic models. In this section,

we present how to utilize topic models for mining com-

mon context-aware preferences by estimating P (c, p|z) and

P (z|u). For simplicity, we refer to the co-occurrence of a

usage of a content in category c and the corresponding con-

textual feature-value pair p, i.e., (c, p), as an Atomic Context-
aware Preference feature, and ACP-feature for short.
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A. Mining Common Context-Aware Preferences through
Topic Models

Topic models are generative models that are successfully

used for document modeling. They assume that there exist

several topics for a corpus D and a document di in D can

be taken as a bag of words {wi,j} which are generated by

these topics. Intuitively, if we take ACP-features as words,

take context logs as bags of ACP-features to correspond

documents, and take common context-aware preferences as

topics, we can leverage topic models to learn common

context-aware preferences from many users’ context logs.

Since raw context logs are not naturally in the form of

bags of ACP-features, we need to extract bags of ACP-

features from them as training data. Specially, we first

remove all context records without any usage record and

then extract ACP-feature from the remaining ones. Given a

context record < Tid, C, c > where Tid denotes a times-

tamp, C = {p1, p2, ..., pl} denotes a context and c denotes

the category of the used content in the usage record, we can

extract l ACP-features, namely, (c, p1),(c, p2),...,(c, pl). For

simplicity, we refer the bag of ACP-features extracted from

user u’s context log as the ACP-feature bag of u.

Among several existing topic models, in this paper, we

leverage the widely used Latent Dirichlet Allocation model

(LDA) [2]. According to LDA, the ACP-feature bag of

user ui denoted as di is generated as follows. First, before

generating any ACP-feature bag, K prior ACP-feature con-

ditional distributions given context-aware preferences {φz}
are generated from a prior Dirichlet distribution β. Secondly,

a prior common context-aware preference distribution θi is

generated from a prior Dirichlet distribution α for each user

ui. Then, for generating the j-th ACP-feature in di denoted

as wi,j , the model firstly generates a common context-aware

preference z from θi and then generates wi,j from φz .

The process of LDA model training is to learn the proper

latent variables θ and φ to maximize the posterior distribu-

tion of the observed ACP-feature bags, i.e., P (u|α, β, θ, φ).
In this paper, we take advantage of a Markov chain Monte

Carlo method named Gibbs sampling [6] for training LDA

models. This method begins with a random assignment

of common context-aware preferences to ACP-features for

initializing the state of Markov chain. In each of the follow-

ing iterations, the method will re-estimate the conditional

probability of assigning a common context-aware preference

to each ACP-feature, which is conditional on the assignment

of all other ACP-features. Then a new assignment of com-

mon context-aware preferences to ACP-features according

to those latest calculated conditional probabilities will be

scored as a new state of Markov chain. Finally, after rounds

of iterations, the assignment will converge, which means

each ACP-feature is assigned a stable and final common

context-aware preference and we can obtain the estimation

of P (c, p|z) and P (z|u).

IV. CONTEXT-AWARE PREFERENCE MINING BASED ON

CONTEXT DEPENDENCY ASSUMPTION

Since it may be relatively strong to assume that different

types of context data are conditionally independent, we

also propose a method for mining common context-aware

preferences based on the assumption that different types

of context data are mutually dependent. Under such an

assumption, a major challenge is that we cannot learn all

conditional distributions P (c, C|z) for all C simply because

the number of unique C is exponential to the number of

unique contextual feature-value pairs and we will suffer

the assemble explosion problem if we learn all of them.

Fortunately, we observe that usually not all parts of a context

are relevant to content usage and thus the corresponding

preferences of content categories. To this end, an intuitive

idea is to only consider the content-relevant parts of con-

texts for predicting personalized context-aware preferences

of content categories. These content-relevant parts can be

referred to as content-relevant contexts for simplicity. Along

this line, we only need to learn the conditional distributions

P (c, Cr|z) and P (z|u), where Cr denotes a content-relevant

context. Moreover, given a context C, it can be divided into

two situations to calculate P (c, C|z).
First, if C contains some content-relevant contexts, we

can calculate P (c, C|z) directly by its maximal sub-contexts

which are also content-relevant contexts as follows.

P (c, C|z) = 1

|Cr
max|

∑

Cr
max

P (c, Cr
max|z),

where Cr
max denotes a maximal content-relevant sub-context

contained by C, and |Cr
max| indicates the number of Cr

max.

Second, if C does not contain any content-relevant con-

text, we can estimate P (c, C|z) by normalizing the proba-

bilistic space of the joint distribution of c and C conditional

on z. However, we do not need to calculate P (c, C|z) in

this case because it is the same with varying c and cannot

help to make a recommendation decision. In practice, we do

not recommend any content in this case.

Therefore, the original problem is divided into two sub-

problems, namely, how to discover those content-relevant
contexts? and how to learn common context-aware prefer-
ences and user personal distributions of common context-
aware preferences, i.e., P (c, Cr|z) and P (z|u)? The solu-

tions for the two sub-problems are presented in the following

sections in detail, respectively.

A. Discovering the Content-Relevant Context

An intuitive way of discovering the context relevant to

some content categories is mining association rules between

them with predefined minimum supports and minimum

confidences. Therefore, given a content-relevant context Cr

and a content category c, P (c|Cr, u) ∝ P (c, Cr|u) can

be calculated as P (c, Cr|u) = P (c|Cr, u)P (Cr|u), where
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P (c|Cr, u) can be estimated by the corresponding confi-

dence of the association “Cr −→ c” and P (Cr|u) can

be estimated by
Support(Cr)

Nr
, where Nr indicates the total

number of context records in the context log of user u.

However, as pointed out by Cao et al. [3], the amounts of

context data and user usage records are usually extremely

unbalanced, which makes it difficult to mine such association

rules by traditional association rule mining approaches. To

that end, they proposed a novel algorithm called GCPM

(Generating Candidates for behavior Pattern Mining) for

mining such association rules, which are referred as behavior

patterns in their work, by utilizing different ways of calcu-

lating supports and confidences.

In this paper, we take advantage of GCPM for mining

association rules between contexts and content categories,

and then take the contexts which appear in any of such

associations as content-relevant contexts. It is worth noting

that the mining is performed on individual users’ context

logs because merging all context logs may normalize the

associations between contexts and content categories.

B. Mining Common Context-Aware Preferences through
Constraint based Bayesian Matrix Factorization

After finding content-relevant contexts, the remaining

task is to learn common context-aware preferences and

user personal distributions of common context-aware pref-

erences, i.e., P (c, Cr|z) and P (z|u). By building a matrix

of P (c, Cr|u), where each column denotes a probabilistic

distribution of different (c, Cr) pairs for a given user u,

we can convert this task into a classic noise based matrix

factorization problem as follows.

ΩN×M = ΦN×KΘK×M +NN×M ,

where N indicates the number of unique (c, Cr) pairs, M
indicates the number of users and K indicates the number

of common context-aware preferences. To be specific, Ω
denotes the observed matrix of P (c, Cr|u), φik ∈ Φ(1 ≤
i ≤ N, 1 ≤ k ≤ K) denotes the probability P (c, Cr|zk),
θkj ∈ Θ(1 ≤ k ≤ K, 1 ≤ j ≤ M) denotes the probability

P (zk|uj), and the matrix N denotes the residual noise

information. Moreover, the matrix factorization task has two

additional constraints for possible solutions as follows: 1) all

elements in matrix Φ and Θ should be non-negative values,

2) ∀j:1≤j≤M

∑K
k=1 θkj = 1 and ∀k:1≤k≤K

∑N
i=1 φik = 1,

which are both obvious since each column of Φ and Θ
denotes a probabilistic distribution.

According to the problem statement and constraints above,

the objective of our matrix factorization task is to find a

possible solution for matrix Φ, Θ and N. In this paper,

we propose to leverage a constraint based Bayesian Matrix

Factorization model [13] for resolving this problem. In this

model, we can perform matrix factorization with multiple

inequality and equality constraints. Specifically, we aim to

infer the posterior probabilistic distributions of Φ and Θ

Table I
THE TYPES OF CONTEXTUAL INFORMATION IN OUR DATA SET.

Context Value range

Week {Monday, Tuesday,... , Sunday}
Is a holiday? {Yes, No}
Day period

{Morning(7:00-11:00), Noon(11:00-14:00),
Afternoon(14:00-18:00), Evening(18:00-21:00),
Night(21:00-Next day 7:00)}

Time range {0:00-1:00, 1:00-2:00, ... , 23:00-24:00}
Profile type {General, Silent, Meeting, Outdoor, Pager, Offline}
Battery Level {Level 1, Level 2, ... , Level 7}
Charging State {Charging, Complete, Not Connected}
Social location {Home, Work Place, On the way}.

under a set of model assumptions, which are specified by the

likelihood function P (Ω|Φ,Θ,N). The likelihood function

denotes the probability of the observed data matrix Ω given

priors P (Φ,Θ) and P (N). According to [13], to perform

efficient inference based on Gibbs sampling, we select priors

as follows. First, we select an i.i.d. zero mean Gaussian noise

model asP (nij) = N(nij |0, νij) = 1√
2πνij

exp(− n2
ij

2νij
),

where parameter νij satisfies conjugate inverse-gamma prior

that P (νij) = IG(νij |α, β) = βα

Γ(α)ν
−(α+1)
ij exp(−β

νij
). Then,

we select a Gaussian prior over Φ and Θ subject to

inequality constraints Q and equality constraints R as

P (
−→
φ ,
−→
θ ) ∝⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
N

⎛
⎜⎜⎜⎝
[ −→

φ−→
θ

]
|
[

μφ

μθ

]
︸ ︷︷ ︸

μ

,

[
Σφ Σφθ

ΣT
φθ Σs

]
︸ ︷︷ ︸

Σ

⎞
⎟⎟⎟⎠ ,

if Q(
−→
φ ,
−→
θ ) ≤ 0,

R(
−→
φ ,
−→
θ ) = 0,

0, otherwise,

where
−→
φ = (φ11, φ12, ..., φNK)T and

−→
θ =

(θ11, θ12, ..., θKM )T.

With above definitions, we can utilize Gibss sampling

methods to estimate the posterior distributions as follows.

In the first round of sampling, we randomly assign values

for
−→
φ and

−→
θ according to the two constraints to initialize

the state of Markov chain. Then, we calculate the density of

noise variance P (νij |−→φ ,
−→
θ ) by inverse-gamma distribution

due to the choice of conjugate prior. Next, we can estimate

P (
−→
φ |Ω,

−→
θ ,N) and P (

−→
θ |Ω,

−→
φ ,N) from the constraint

Gaussian density. Finally, we re-generate values for
−→
φ and−→

θ according to the new posterior probabilities to score a

new state of Markov chain. After many rounds of iterations,

the results of matrixes Φ and Θ will converge.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performances of the

two implementations of the proposed approach for pre-

dicting user preferences of content categories, namely,

CIAP (Context conditional Independency Assumption based

Prediction) and CDAP (Context Dependency Assumption

based Prediction), with several baseline methods on a real-

world data set.
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A. Experimental Data

The data set used in the experiments is collected from

many volunteers by a major manufacturer of smart mobile

devices. The data set consists of 8,852,187 context records

which contain rich contextual information and usage records

of 443 smart phone users spanning for from several weeks

to several months. Table I shows the concrete types of

context data the data set contains. In the experiments, we

manually classified the 665 unique contents appearing in

raw usage records into 12 content categories based on the

taxonomy of Ovi store (www.ovi.com), which are Call,
Web, Multimedia, Management, Game, System, Navigation,

Business, Reference, Social Network Service (SNS), Utility
and Others. In our experiments, we do not utilize the

categories Call and others because they is not useful for gen-

erating corresponding recommendations. Instead, we only

utilize other 10 content categories which contain 618 unique

contents appearing in total 408,299 usage records.

B. Benchmark Methods

First, we select a state-of-the-arts personalized context-

aware recommendation approach based on individual users’

context logs as a baseline (i.e., CASVM). Then, to validate

the performance of leveraging many users’ context logs

for mining personal context-aware preferences, we also

select two state-of-the-arts collaborative filtering (CF) based

approaches as baselines (i.e., CACF and CATF).

• CASVM stands for personalized Context-Aware prefer-

ence prediction by Ranking SVM, which is a learning-to-

rank based approach introduced in [9].

• CACF stands for Context-Aware preference mining by

disjunction CF, which is a memory-based CF approach

introduced in [11].

• CATF stands for Context-Aware preference mining by

Tensor Factorization, which is a model-based CF approach

introduced in [10].

C. Evaluation Metrics

In the experiments, we utilize a five-fold cross validation

to evaluate each test approach. In the test process, we only

take into account the context records with non-empty usage

records, and use the contexts and the category of the content

indicated by the usage record as context inputs and ground

truth, respectively. Moreover, to evaluate the ranking of

content categories generated by each approach, we leverage

two metrics as follows.

• MAP@K stands for Mean Average Precision at top

K recommendation results. To be specific, MAP@K =
∑

AP (u)@K
|U | , where AP (u)@K can be computed by

1
Nu

∑
i

∑K
r=1(Pi(r)×reli(r)), where Nu denotes the num-

ber of test cases for user u, r denotes a given cut-off rank,

Pi(r) denotes the precision on the i-th test case of u at a

given cut-off rank r, and reli() is the binary function on the

relevance of a given rank.

(a) (b)

Figure 1. The (a) average MAP@K and (b) average MAR@K of each
prediction approach in the five-fold cross validation.

(a) (b)

Figure 2. The (a) MAP@5 and (b) MAP@10 of CIAP and CDAP with
respect to varying number of common context-aware preferences.

• MAR@K stands for Mean Average Recall at top K

prediction results. To be specific, MAR@K =
∑

AR(u)@K
|U | ,

where AR(u)@K can be computed by 1
Nu

∑
i

∑K
r=1 reli(r).

D. Overall Results

For selecting a proper number of common context-aware

preferences for both CIAP and CDAP, we leverage the

perplexity estimation approach introduced in [1] and Chib’s

method introduced in [14], respectively. Accordingly, the

number of common context-aware preferences for both LDA

and NMF training denoted as K is empirically set to be

15. For the LDA training, the two parameters α and β
are empirically set to be 50/K and 0.2 according to [7].

For the Bayesian Matrix Factorization training, according

to [13], we use an isotropic noise model and choose a

decoupled prior for Φ and Θ with zero mean μ = 0, and

an unit diagonal covariance matrix Σ = I. The maximum

iterations of Gibbs sampling are set to be 2000 in our

experiments. Moreover, the behavior patterns are mined by

GCPM algorithms introduced in [3]. Both our approaches

and the baselines are implemented by standard C++ and the

experiments are conducted on a 3GHZ×4 quad-core CPU,

3G main memory desktop PC.

From the training process we observe that the Gibbs

sampling of both implementations converge quickly. The

convergence curves for other test rounds follow the similar

trend. Moreover, each iteration of Gibbs sampling averagely

costs 89 milliseconds for CIAP and 423 milliseconds for

CDAP, respectively. It is because that the NMF training is

more complex than LDA and the number of associations be-

tween context and content category for matrix factorization

is greater than the ACP-features in LDA model.
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We first test the MAP@K and MAR@K performance

of each test approach with respect to varying K and the

average results in the five-fold cross validation are shown in

Figure 1 (a) and (b). From the results we can observe that

CDAP and CIAP consistently outperforms other baselines

with varying K. We also find that two CF based approaches

CACF and CATF outperform CASVM, which indicates

leveraging many users’ context logs other than individual

users’ context logs can improve the recommendation perfor-

mance. Moreover, we can see that CDAP outperforms CIAP

slightly with varying K. From the results we can observe

that our approaches consistently outperform other baselines

in all five test rounds. Specially, we conduct a series of

paired T-tests with 0.95 confidence level in each K. The

test results show that the improvements of CIAP and CDAP

on MAP@K and MAR@K compared with other baselines

are statistically significant.

Both CIAP and CDAP need a parameter to determine

the number of common context-aware preferences. Figure 2

(a) and (b) show the MAP@5 and MAP@10 of CIAP

and CDAP with respect to varying settings of the number.

From these figures we can observe that both MAP@5
and MAP@10 of CDAP are relatively not sensitive to the

parameter. In contrast, the robustness of CIAP is not good

with small numbers of common context-aware preferences

but becomes stable when the setting of the number increases.

It may be because that CDAP leverages associations between

contexts and user content categories for extracting common

context-aware preferences and such associations have been

filtered from noisy data. Thus, the quality of mined common

context-aware preferences is always relatively good with dif-

ferent parameters since the mining are on the basis of pruned

training data. In contrast, CIAP leverages ACP-features for

extracting common context-aware preferences, where ACP-

features usually contain more noisy information and thus

make the mining results more sensitive to parameters.

VI. CONCLUDING REMARKS

In this paper, we proposed to exploit user context logs

for mining the personal context-aware preferences of mobile

users. First, we identified common context-aware prefer-

ences from the context logs of many users. Then, the

personal context-aware preference of an individual user

can be represented as a distribution of common context-

aware preferences. Moreover, we designed two methods

for mining common context-aware preferences based on

two different assumptions about context data dependency.

Finally, the experimental results on a real-world data set

clearly showed that the proposed approach could achieve

better performances than benchmark methods for mining

personal context-aware preferences, and the one implemen-

tation based on the independent assumption of context data

slightly outperforms another one but has relatively higher

computational cost.
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