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The problem of mobile context recognition targets the identification of semantic meaning of context in a
mobile environment. This plays an important role in understanding mobile user behaviors and thus provides
the opportunity for the development of better intelligent context-aware services. A key step of context
recognition is to model the personalized contextual information of mobile users. Although many studies have
been devoted to mobile context modeling, limited efforts have been made on the exploitation of the sequential
and dependency characteristics of mobile contextual information. Also, the latent semantics behind mobile
context are often ambiguous and poorly understood. Indeed, a promising direction is to incorporate some
domain knowledge of common contexts, such as “waiting for a bus” or “having dinner,” by modeling both
labeled and unlabeled context data from mobile users because there are often few labeled contexts available
in practice. To this end, in this article, we propose a sequence-based semisupervised approach to modeling
personalized context for mobile users. Specifically, we first exploit the Bayesian Hidden Markov Model (B-
HMM) for modeling context in the form of probabilistic distributions and transitions of raw context data.
Also, we propose a sequential model by extending B-HMM with the prior knowledge of contextual features
to model context more accurately. Then, to efficiently learn the parameters and initial values of the proposed
models, we develop a novel approach for parameter estimation by integrating the Dirichlet Process Mixture
(DPM) model and the Mixture Unigram (MU) model. Furthermore, by incorporating both user-labeled and
unlabeled data, we propose a semisupervised learning-based algorithm to identify and model the latent
semantics of context. Finally, experimental results on real-world data clearly validate both the efficiency and
effectiveness of the proposed approaches for recognizing personalized context of mobile users.
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1. INTRODUCTION

Advances in the sensing capabilities of smart mobile devices have enabled the accumu-
lation of rich contextual and interaction information from mobile users through device
logs. A distinct property of user interactions with mobile devices is that they are usually
associated with volatile contexts that always contain rich semantic meanings, such as
waiting for a bus, driving a car, or doing shopping. Therefore, recognizing the semantic
meanings of such contextual information plays an important role in understanding
user habits and thus opening a venue for the development of intelligent, context-aware
services such as context-aware recommendations and habit-based user segmentation
[Liampotis et al. 2012; Anagnostopoulos et al. 2007; Lemlouma and Layaı̈da 2004; Ma
et al. 2012]. Indeed, a key step for context recognition is modeling the context of the
raw data collected from mobile users. This is also a fundamental research problem in
leveraging the rich contextual information of mobile users.

In the literature, although there are some previous studies on mobile context model-
ing [Bao et al. 2012; Abowd et al. 1997; Schilit et al. 1994], few of them pay attention to
the sequential and dependency characteristics of mobile contextual information. How-
ever, we notice that mobile contexts are often mutually dependent, and the semantic
meaning of a context may be related to other adjacent contexts. For example, if we only
observe a context of Tom (e.g., {(Day Period: Evening), (Location: On the way to home)}),
it is hard to uncover its latent semantics. However, if we also observe another adjacent
context (e.g., {(Day Period: Evening), (Location: Work place)}), it can be inferred that
Tom is going home after work, which is the latent semantics behind these contexts.
Therefore, it is very useful (and also a crucial challenge in determining how) to take
the sequential and dependency characteristics into consideration during contextual
modeling. Moreover, the latent semantic meanings behind mobile contexts are often
ambiguous and poorly understood. Thus, it is appealing to incorporate some domain
knowledge of common contexts, such as waiting for a bus or having dinner into the
context modeling process. Actually, some of the semantic information can be obtained
through user interactions with mobile devices, such as the usage of life-logging soft-
ware and diary applications [Belimpasakis et al. 2009; Teraoka 2011; Rawassizadeh
et al. 2012]. These user-labeled contexts present an intuitive way to ease the process of
mobile context modeling. However, in practice, there are often few labeled but numer-
ous unlabeled context data. Therefore, how to model contextual information through
both labeled and unlabeled context data collected from mobile users is another crucial
challenge to deal with.

To fill this crucial void, in this article, we propose a sequence-based semisupervised
approach to modeling personalized context for mobile users. Specifically, we first ex-
ploit the Bayesian Hidden Markov Model (B-HMM) [Goldwater and Griffiths 2007] to
model context in the form of probabilistic distributions and transitions of raw context
data. Also, we propose a novel approach by extending B-HMM with the prior knowl-
edge of contextual features, namely HMMC, for modeling context more effectively.
Then, to efficiently learn the parameters and initial values of the proposed models,
we also develop a novel method for parameter estimation by integrating the Dirichlet
Process Mixture (DPM) model and the Mixture Unigram (MU) model. Moreover, to
incorporate both labeled and unlabeled contexts collected from mobile users into the
process of context modeling, we develop a semisupervised learning-based algorithm
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to identify and model the latent and ambiguous semantic meanings of context, which
are referred as Context Topics in this article. In particular, we developed a software
ActivityLogger for collecting rich contextual information and semantic labels from mo-
bile users. Finally, experimental results on the collected real-world datasets clearly
validate the effectiveness and efficiency of the proposed approaches for recognizing the
personalized contexts of mobile users. We summarize our contributions in this article as
follows:

• First, we propose two novel graphical models, B-HMM and HMMC, for context mod-
eling. Both of them can accurately model the personalized context of mobile users.
To the best of our knowledge, this article is the first attempt to model contextual
information of mobile users by taking the sequential and dependency characteristics
of contextual information into consideration.

• Second, we propose a novel approach to effectively estimate the number of latent
context topics of contexts by integrating the DPM model and the MU model. This
approach can also be used to accelerate the training process of our contextual models.

• Third, we develop a straightforward but efficient semisupervised learning-based
algorithm to identify and model the latent semantics of context. This algorithm
integrates both labeled and unlabeled contextual data from mobile users into the
process of context modeling.

• Finally, we develop a tool, ActivityLogger, to collect rich contextual information and
context topic labels from mobile users. Moreover, we perform extensive experiments
based on the collected real-world data for validating both the effectiveness and effi-
ciency of our contextual models.

Overview. The rest of this article is organized as follows. In Section 2, we intro-
duce related works. Section 3 shows the preliminaries of mobile context modeling.
In Section 4, we present our context modeling approaches by exploiting B-HMM.
Section 5 presents the semisupervised learning-based algorithm. In Section 6, we show
the experimental results. Finally, Section 7 concludes the work.

2. RELATED WORK

In general, the related works of this study can be grouped into four categories. The first
category includes research studies about context recognition. For example, Himberg
et al. [2001] studied the problem of context recognition in mobile scenarios based on
unsupervised segmentation of time series. They proposed two greedy dynamic algo-
rithms to find optimal k-segmentation for a given cost function. There are also some
works on context recognition based on audio and video data processing [Eronen et al.
2006; Chu 2008]. Specifically, Eronen et al. [2006] considered context recognition as
a task of automatic context classification by using only acoustic information, where
the context is just a location (e.g., a restaurant or a marketplace). In Korpipää et al.
[2003], authors applied Naive Bayesian networks to recognize the contexts of mo-
bile users with respect to their daily activities, where the context data are mainly
from audio sensors. However, most of these works only focused on specific contex-
tual information, such as places, activities, and the like. In fact, abundant contextual
information can be collected by smart mobile devices. Therefore, it motivates us to pro-
pose a more comprehensive and scalable approach for modeling the context of mobile
users.

In the second category, researchers focus on modeling mobile context. For
example, some researchers tried to model context from GPS data [Liao et al. 2007;
Zheng et al. 2008], accelerometer data [Ravi et al. 2005; Nham et al. 2008], or
multiple dimension context data [Bao et al. 2012; Cao et al. 2010]. Specifically,
Liao et al. [2007] attempted to infer an individual’s transportation routine given
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the user’s raw GPS data by leveraging a dynamic Bayesian network. Zheng et al.
[2008] exploited several supervised learning approaches for modeling users’ raw GPS
data. Eagle and Pentland [2009] proposed using the eigenvector of user behaviors
for modeling individual user’s context and inferring community affiliations within
the subject’s social network. Bao et al. [2012] extended two topic models (i.e., LDA
and MU models) to model personalized contexts for mobile users. Indeed, most of
the existing works use either supervised or unsupervised methods. Each has its
benefits and drawbacks: Although the supervised learning approach can provide
more flexibility, it depends on labeled training data that cannot be obtained easily
from the real lives of mobile users. By contrast, an unsupervised approach can model
contexts more flexibly because it does not need labeled data. However, unsupervised
approaches cannot explicitly reveal the semantic meanings of contexts. Meanwhile,
some of the context semantics can be labeled by users using life-logging software or
the diary applications found in smart devices. Intuitively, these user-labeled contexts
provide an intuitive way to ease the process of mobile context modeling. Thus, in this
article, we propose a semisupervised learning framework to model contexts for mobile
users.

In the third category, we introduce some previous works on mining the context
logs of mobile users. For example, some researchers have proposed leveraging con-
text logs for mobile app classification [Zhu et al. 2012a] and mining mobile users’ activ-
ities [Peng et al. 2012]. Yu et al. [2012] proposed a novel, personalized, context-aware
recommender system by analyzing mobile user’s context logs. The proposed approach
is based on the Latent Dirichlet Allocation topic model and is scalable for multiple
contextual features. Furthermore, Zhu et al. [2012b] proposed a uniform framework
for personalized context-aware recommendation that can integrate both context in-
dependency and dependency assumptions. The framework can mine user’s personal
context-aware preferences for mobile app recommendations from the context logs of
many mobile users. Li et al. [2012] proposed a learning- based approach for inferring
the status of high-energy-consuming sensors according to the outputs of software-based
sensors and the physical sensors that are necessary to work continuously to support
the basic functions of mobile devices. Moreover, some researchers also proposed mining
behavior patterns of mobile users from context logs [Cao et al. 2010; Ma et al. 2012],
which can be used to support context-aware services. However, most existing works on
mining context logs (including mobile context modeling) do not consider the sequen-
tial and dependency characteristics of the context records. Therefore, we propose a
novel sequential approach based on a Bayesian Hidden Markov model for modeling
the context of mobile users.

Finally, the last category concerns Hidden Markov Models (HMMs), which have
been successfully applied to problems in a variety of fields, such as signal processing
and speech recognition [Rabiner 1989; Juang and Rabiner 1991], biometrics [Fredkin
and Rice 1992; Leroux and Puterman 1992], genetics [Churchill 1989; Liu et al. 1999],
economics [Hamilton 1989; Albert and Chib 1993], and search log mining [Cao et al.
2009]. For much of their history, HMMs have been implemented by using recursive al-
gorithms developed for parameter estimation [Baum et al. 1970], which are viewed as
“black boxes” by many statisticians. In recent years, some researchers proposed using
Bayesian methods to simulate HMM parameters from posterior distribution, which can
provide a more scalable and stable process of parameter estimation for HMM. For ex-
ample, a novel B-HMM model has been proposed for part-of-speech tagging [Goldwater
and Griffiths 2007], and Guha et al. [2008] adopt B-HMM to model array Compar-
ative Genomic Hybridization (CGH) data. pievatolo et al. [2012] attempted to detect
imperfect debugging from the possible introduction of bugs during software debugging
through a B-HMM-based method. Compared with the traditional Maximum-Likelihood
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Table I. A Toy Context Log Collected by Mobile Devices

Timestamp Context record User Label

t1
{(Day name: Monday), (Is holiday: No), (Time range: AM6:00-7:00)),

Sleeping
(Profile: Silent), (Battery Level: Full), (Cell ID: id1, . . .}

t2
{(Day name: Monday), (Is holiday: No), (Time range: AM6:00-7:00)),

Sleeping
(Profile: Silent), (Battery Level: Full), (Cell ID: id1, . . .}

t3
{(Day name: Monday), (Is holiday: No), (Time range: AM6:00-7:00)),

Sleeping
(Profile: Silent), (Battery Level: Full), (Cell ID: id1, . . .}

· · · · · · · · · · · ·
t229

{(Day name: Monday), (Is holiday: No), (Time range: AM10:00-11:00),
Null

(Profile: General), (Battery Level: High), (Cell ID: id2, . . .}

t230
{(Day name: Monday), (Is holiday: No), (Time range: AM10:00-11:00),

Null
(Profile: General), (Battery Level: High), (Cell ID: id2, . . .}

· · · · · · · · · · · ·
t343

{(Day name: Monday), (Is holiday: No), (Time range: AM11:00-12:00),
Meeting

(Profile: Meeting), (Battery Level: High), (Cell ID: id2, . . .}

t344
{(Day name: Monday), (Is holiday: No), (Time range: AM11:00-12:00),

Meeting
(Profile: Meeting), (Battery Level: High), (Cell ID: id2, . . .}

Estimation (MLE)-based HMM learning solution, B-HMM can directly maximize the
probability of hidden variables given the observed data by integrating over all possible
parameter values rather than searching for an optimal set of parameter values. There-
fore, previous studies have clearly proved its robustness and scalability in modeling
sequential data that contain domain priori [Leggetter and Woodland 1995]. To this
end, we propose to leverage B-HMM for modeling context data.

3. PRELIMINARIES OF MODELING MOBILE CONTEXT

The context-collecting software of smart devices can capture the rich context data of
mobile users through multiple context sensors, and these data are recorded in con-
text logs. For example, Table I shows a toy context log that contains several context
records, and each context record consists of a timestamp and the detailed contextual
information recorded at that time. A context consists of several contextual features
(e.g., Day name, Time range) and their corresponding values (e.g., Saturday, AM8:00-
9:00), which can be annotated as contextual feature-value pairs. Indeed, the context
collection software predefines a set of contextual features whose values should be col-
lected; however, a context record may miss the values of some contextual features for
mainly two reasons. First, these values are not always available (e.g., GPS signal can-
not be received when the device is indoors or the corresponding sensor has been closed).
Second, users have no related operations (e.g., there are no Event values when users
do not use their mobile devices). Thus, only the contextual feature-value pairs whose
values are not missing are recorded in context logs.

We can discover some latent semantic meanings (i.e., context topics) from the con-
text records in the context logs of mobile users. For example, suppose Table I shows a
part of Bob’s context log, where the real cell IDs are replaced by id1 and id2 for privacy
concerns. From this table, we can see that during time AM6:00-AM7:00, the mobile
phone is in charging and the profile type is Silent, which might imply the semantic
meaning “Bob was sleeping.” Similarly, during the time AM11:00-AM12:00, the profile
was Meeting; thus, considering that the cell ID represents a business place, the context
might indicate that “Bob was having a meeting.” Moreover, we observe that the latent
context topics of a context may depend on previous contexts. For example, in Table I,
the context topic of the context record at t2 (i.e., rt2 ) may depend on the context record at

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 2, Article 10, Publication date: September 2014.



10:6 B. Huai et al.

Fig. 1. The framework overview of our novel context modeling approaches.

t1 (i.e., rt1). Thus, if we only observe the context record rt2 , it is hard to decide whether
Bob was “Sleeping” or “Working” since both activities can happen in such a context.
However, if we also observe and know that the context topic of the context record rt1 is
“Sleeping,” it is more likely that Bob is “Sleeping” in the context of rt2 .

Therefore, if we can uncover these latent topics of contexts, we can provide some
context-aware services for mobile users. For example, if Bob is in a context that repre-
sents “Go shopping,” an intelligent application may recommend to him some popular
stores and discounts. Indeed, users can also manually label their contexts when using
some life-logging software or diary applications [Belimpasakis et al. 2009; Teraoka
2011; Rawassizadeh et al. 2012], and these labels can be recorded in their context logs.
Intuitively, these semantic labels of contexts can describe user habits quite accurately
and thus are very helpful for modeling the context of mobile users. However, users
will not manually label all their contexts in practice; thus many of the context records
may not contain semantic labels (e.g., “Null” in Table I). To solve this problem, in we
propose a semisupervised learning algorithm to model contexts for mobile users by
incorporating both labeled and unlabeled data.

Figure 1 shows the framework overview of our novel context modeling approaches.
Specifically, we first collect many labeled and unlabeled context data through the con-
text collection software. Then we propose two sequential models (i.e., B-HMM and
HMMC) for modeling the context of mobile users. Particularly, to guarantee better
modeling performance, we propose a novel parameter estimation approach based on
the DPM and MU models. Finally, we integrate all the labeled and unlabeled data into
a semisupervised algorithm for improving the performance of context recognition.

4. MODELING PERSONALIZED CONTEXT FOR MOBILE USERS

In this section, we first present how to utilize the B-HMM [Goldwater and Griffiths
2007] to model mobile context, and then we propose a novel context modeling approach
(i.e., HMMC model) by extending B-HMM with the prior knowledge of contextual
features. Before that, we first introduce several basic notations used in this article.

The context records of a mobile user can be represented by a set of sequential records
R = {r1, r2, . . . , rt, . . .}, where rt denotes the context record with timestamp t. Indeed,
one context record rt ∈ R can be represented by a set of contextual feature-value pairs
rt = {pt,1, pt,2, . . .}, where each pt, j is the j-th contextual feature-value pair in context
record rt. Specifically, the contextual feature-value pair pt, j = ( f : v) (e.g., Battery
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Fig. 2. The graphical representation of the B-HMM for modeling context.

Level: High), where f is the corresponding contextual feature (i.e., Battery Level), v is
the value of f (i.e., High). Moreover, in this article, we assume that each user may have
K latent context topics (e.g., “Working”) and use ct to denote the topic of the context
record rt. Therefore, the objective of context modeling is to identify the latent context
topics from the context logs of mobile users.

4.1. Bayesian Hidden Markov Model for Context Modeling

B-HMM is a variation of the classic HMM [Rabiner 1989], which was originally pro-
posed for part-of-speech tagging. Previous studies have clearly proved its robustness
and scalability in modeling sequential data with various domain knowledge [Goldwater
and Griffiths 2007; Guha et al. 2008]. To this end, we propose to leverage B-HMM for
modeling context data by considering the sequential and dependency characteristics of
mobile contextual information.

Specifically, B-HMM has the structure of a standard bi-gram hidden Markov model
that contains symmetric Dirichlet priors over the transition and emission distributions
for modeling the sequential context records. Therefore, the dependency relationships
of B-HMM in our problem can be represented as follows:

ct|ct−1,� ∼ Mult(θct−1 )
pt, j |ct,� ∼ Mult(φct )

θct−1 |α ∼ Dirichlet(α)
φct |β ∼ Dirichlet(β)

where ct|ct−1,� ∼ Mult(θct−1 ) means ct follows Mult(θct−1 ) based on given ct−1 and � [Teh
et al. 2006; Blei and Lafferty 2006]. ct indicates the topic of the context record with
timestamp t (i.e., rt), and pt, j is the j-th contextual feature-value pair of the context
record rt. θct−1 is the topic transition distribution of context record rt when the topic of
the previous context record is ct−1, and φct is the output emission distribution of the
contextual feature-value pairs of the context ct. Particularly, both � and � follow the
Dirichlet distribution with parameters α and β. Based on these settings, B-HMM can
be treated as a generative model, and Figure 2 shows its graphical representation.

According to Figure 2, the B-HMM assumes that a contextual feature-value pair
pt,i of a context record rt is generated as follows. First, a prior transition distribution
of context topics (i.e., θ ) is generated from a prior Dirichlet distribution α. Second, a
prior output distribution of contextual feature-value pairs (i.e., φ) is generated from
a prior Dirichlet distribution β. Third, a context topic ct is generated from θct−1 with
respect to the previous context topic ct−1. Finally, a contextual feature-value pair pt,i is
generated from the distribution φct . Note that, according to the definition of Dirichlet
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distribution, both α and β can be represented by parameter vectors α ∈ R
K
+ and β ∈ R

J
+,

respectively, where K is the number of latent context topics and J is the number of
unique contextual feature-value pairs.

Given the hyperparameters α and β in this generative model, we can calculate the
joint distribution of all observations and hidden variables in B-HMM by the following
equation:

P(rt, ct,�,�|ct−1, α, β) = P(�|α)P(�|β)P(ct|ct−1,�)

(
Nt∏

i=1

P(pt,i|ct,�)

)
, (1)

where Nt is the number of contextual feature-value pairs in context record rt, and

P(ct|ct−1,�) = P(ct|ct−1, θct−1 ), (2)

P(pt,i|ct,�) = P(pt,i|ct, φct ). (3)
Therefore, the likelihood of a set of context records R can be calculated as follows:

L(R) =
∫ K∏

k=1

P(θk|α)
|R|∏
t=1

P(ct|ct−1, θct−1 )d�

∫ K∏
k=1

P(φk|β)
|R|∏
t=1

Nt∏
i=1

P(pt,i|ct, φct )d�. (4)

The process of training B-HMM is to learn the proper latent variables � and � to
maximize the likelihood in Equation (4). However, the likelihood representation is so
complex that it may be not feasible to calculate the corresponding parameters directly.
Alternatively, according to some previous studies [Bao et al. 2012], here, we propose
to use a popular iterative approach, namely Gibbs sampling [Heinrich 2005; Resnik
and Hardisty 2010], for approximately estimating the parameters. Specifically, Gibbs
sampling is a widely applicable Markov chain Monte Carlo algorithm that can be seen
as a special case of the Metropolis-Hastings algorithm. In our problem, the algorithm
begins with a random assignment of context topics to context records with predefined
parameters α and β for initializing the state of the Markov chain. In each iteration
of the chain, the method will re-estimate the conditional probability by assigning a
context topic to each context record, which is conditioned on the assignment of all other
records except the current one. Then, according to those conditional probabilities, a
new assignment of records to context topics will be scored as a new state of the Markov
chain. Finally, after enough rounds of iteration, the assignment will converge, which
means that every context record is assigned stable context topics.

From the joint distribution in Equation (1), we can derive the full conditional dis-
tribution for each context record rt (i.e., the updating equation from which the Gibbs
sampler draws the context topic to ct). As shown in Appendix A.1, we have

P(ct|c¬rt, R) ∝ P(rt|ct, c¬rt,�¬rt)P(ct|c¬rt)P(ct+1|c¬(rt,rt+1)), (5)

where ¬rt means removing context record rt from R, c¬rt denotes the context topics of
all context records except rt, � is the set of all contextual feature-value pairs in R, and
�¬rt denotes all contextual feature-value pairs in R except those in rt.

Furthermore, according to the Gibbs sampling rules, we can estimate each multiplier
in Equation (5) by

P(rt|ct, c¬rt,�¬rt) =
∏J

j=1
∏Nt, j

i=1(n¬rt,k, j + β j + i)∏Nt
i=1

( ∑J
j=1 n¬rt,k, j + β j + i

) , (6)

P(ct = k|c¬rt) = n¬rt,(ct−1,k) + αk

n¬rt,(ct−1,∗) + ∑K
k′=1 αk′

, (7)
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P(ct+1|c¬(rt,rt+1)) = n¬(rt,rt+1),(k,ct+1) + I(ct−1 = k = ct+1) + αk

n¬(rt,rt+1),k + I(ct−1 = k) + ∑K
k′=1 αk′

, (8)

where Nt, j is the number of times the j-th context feature-value pair of � appears
in rt, n¬rt,k, j is the number of times the j-th context feature-value pair of � appears
in the context record that is assigned to context topic k across all context records
except for rt, n¬rt,(ct−1,k) is the number of times context records are assigned to context
topic k when the former record (i.e., rt−1) is assigned to context ct−1 except for rt, and
n¬rt,(ct−1,∗) = ∑K

k′=1 n¬rt,(ct−1,k′). n¬(rt,rt+1),k indicates the number of times context records
are assigned to context topic k, except rt and rt+1. Moreover, I(x) is an indicator function
whose value equals to 1 when x is true and 0 otherwise. In particular, we present the
derivation in Appendix A.3 and A.4. After enough rounds of iteration, the assignment
will converge; thus, we can estimate the parameters � and � by

θct−1,k = nct−1,k + αk∑
k′ nct−1,k′ + αk′

, φct,pt, j = nct,pt, j + βpt, j∑
p′ nct,p′ + βp′

, (9)

where θct−1,k = P(ct|ct−1, θct−1 ) is the probability that current context record rt is assigned
to topic k (i.e, ct = k) when the topic of the previous context record is ct−1, and φct,pt, j =
P(pt, j |ct, φct ) is the probability that contextual feature-value pair pt, j will appear in the
current context record with topic ct.

4.1.1. Context Topic Inference by B-HMM. After learning the B-HMM for context model-
ing, another task is inferring the context topic ct for a given new context record rt.
Specifically, the problem is to calculate the probability P(ct = k|ct−1, rt,�,�) for each
context topic k ∈ 1 : K and find the context topic k∗ that satisfies

k∗ = arg max
k

P(ct = k|ct−1, rt,�,�). (10)

To solve this problem, we propose the context topic inference as follows:

P(ct = k|ct−1, rt,�,�) ∝ P(ct, rt|ct−1,�,�)
∝ P(ct|ct−1,�)P(rt|ct,�)

∝ P(ct|ct−1,�) ×
Nt∏

i=1

P(pt,i|ct,�), (11)

where P(ct|ct−1,�) = θct−1,k, and P(pt,i|ct,�) = φct,pi . Particularly, for the context record
rt that does not have previous record rt−1, we set θct−1,k to 1

K .

4.2. Bayesian Hidden Markov Model with Prior Knowledge of Contextual Features

Although B-HMM can model the context data in an intuitive way, from some real-world
observations we find the generation of contextual feature-value pairs is determined not
only by latent context topics, but also by their internal contextual features. For example,
contextual information can only be obtained when users open corresponding sensors,
and GPS information often cannot be obtained due to the lack of signal (e.g., when users
are in underground subways). To solve such problems, we propose a novel approach
to model context data by extending the B-HMM with prior knowledge of contextual
features, namely HMMC.

The graphical representation of HMMC is shown in Figure 3, and it assumes that
the generation of context records not only depends on prior context topic distribution,
but also on contextual feature distribution. According to the graphical model of the
HMMC, a context record rt is generated as follows. First, a prior transition distribution
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Fig. 3. The graphical representation of the HMMC for modeling context.

of context topics (i.e., θ ) is generated from a prior Dirichlet distribution α. Second,
a global prior distribution of contextual features (i.e., π ) is generated from a prior
Dirichlet distribution γ . Third, a prior output distribution of contextual feature-value
pairs (i.e., φ) is generated from a Dirichlet distribution β. Fourth, a context topic ct is
generated from θct−1 with respect to the previous context topic ct−1. Finally, a contextual
feature ft,i is generated from π, and the value of ft,i, denoted as vt,i, is generated from
the distribution φct, ft,i .

Given parameters α, β, γ and the context topic of the previous record ct−1 in the
HMMC, we can calculate the joint probability P(rt, ct, π,�,�|ct−1, α, β, γ ) by

P(rt, ct, π,�,�|ct−1, α, β, γ ) = P(�|α)P(�|β)P(π |γ )

× P(ct|ct−1,�)

(
Nt∏

i=1

P(vt,i|ct, ft,i,�)P( ft,i|π )

)
, (12)

where we have

P(vt,i|ct, ft,i,�) = P(vt,i|ct, ft,i, φct, ft,i ) = P(vt,i|φct, ft,i ). (13)

Therefore, the likelihood of all context records R can be represented by

L(R) =
∫ F∏

j=1

P(π j |γ )dπ ×
∫ K∏

k=1

P(θk|α)
|R|∏
t=1

P(ct|ct−1, θct−1 )d�

×
∫ K∏

k=1

F∏
j=1

P(φk, j |β)
|R|∏
t=1

Nt∏
i=1

P(vt,i|ct, ft,i, φct, ft,i )P( ft,i|π )d�, (14)

where F indicates the number of unique contextual features. The process of training
HMMC is to learn the proper latent variables �, π, and � to maximize the likelihood in
Equation (14). Similar to B-HMM, we also propose to utilize Gibbs sampling to estimate
the parameters for HMMC. Specifically, as shown in Appendix A.2, the corresponding
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Gibbs sampler of ct is given as follows:

P(ct|c¬rt, R) ∝ P(vt|ct, c¬rt, F, V¬rt)P(ct|c¬rt)P(ct+1|c¬(rt,rt+1)), (15)

where P(ct|c¬rt) and P(ct+1|c¬(rt,rt+1)) can be estimated similarly to Equation (7) and
Equation (8). P(vt|ct, c¬rt, F, V¬rt) can be computed by

P(vt|ct = k, c¬rt, F, V¬rt) =
∏

v∈vt

∏Nt,v

j=1(n¬rt,k, f,v + βv + j)∏Nt
i=1

∑
v′∈V fi

(n¬rt,k, fi ,v′ + βv′ + i)
, (16)

where V fi is the set of contextual values of feature fi, Nt,v is the number of times value
v occurs in rt, Nt is the number of contextual feature-value pairs in rt, and n¬rt,k, f,v
is the number of times the contextual feature-value pair ( f : v) is assigned to context
topic k. After sufficient rounds of iteration, the assignment will converge; thus, the
parameter � can be estimated in the same way as in Equation (9). Particularly, the
parameters � and π can be calculated by:

φct, f,v = nct, f,v + β f,v∑
v′∈V f

nct, f,v′ + β f,v′
, π f = nf + γ f∑

f ′ (nf ′ + γ f ′)
, (17)

where nf is the number of times that contextual feature f appears in all context records
R.

4.2.1. Context Topic Inference by HMMC. After learning the HMMC for context modeling,
another task is to infer the context topic ct for a given new context record rt. Specifically,
the problem is to calculate the probability P(ct = k|ct−1, rt,�,�, π ) for each context
topic k ∈ 1 : K and find the topic semantic k∗ that satisfies

k∗ = arg max
k

P(ct = k|ct−1, rt,�,�, π ). (18)

To solve this problem, we propose the context topic inference as follows:

P(ct = k|ct−1, rt,�,�, π ) ∝ P(ct, rt|ct−1,�,�, π )
∝ P(ct|ct−1,�)P(rt|ct,�, π )

∝ P(ct|ct−1,�) ×
Nt∏

i=1

P(vt,i| ft,i, ct,�)P( ft,i|π ), (19)

where P(ct|ct−1,�) = θct−1,k, P(v| f, ct,�) = φct, f,v, and P( f |π ) = π f . Similar to B-HMM,
in HMMC, for the context record rt that does not have previous record rt−1, we have
θct−1,k = 1

K .

4.3. Estimating the Number of Context Topics

Both B-HMM and HMMC need a predefined parameter K to determine the number
of context topics. A commonly used approach for estimating K in context modeling
is leveraging perplexity [Azzopardi et al. 2003; Blei et al. 2003]. In this approach, we
should first predefine a number range K = [Kmin, Kmax] and then calculate the perplexity
of the dataset for each K ∈ K until we obtain the best K with the lowest perplexity.
However, it is not a trivial work to decide an accurate parameter range K; thus, this
perplexity based approach usually needs to try different K many times before getting
the best one, which is very inefficient in practice. To solve this problem, in this article,
we propose to extend the DPM model for estimating the best number of context topics
by integrating the MU model [Nigam et al. 2000] and the Mixture Unigram on Context
(MUC) model [Bao et al. 2012]. DPM is a mixture model with an infinite number of
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mixture components [Teh et al. 2006]; it has been well studied in previous literatures
for determining the number of clusters [Antoniak 1974; Ishwaran and James 2001;
Neal 2000; Huang et al. 2012]. Specifically, given a randomly selected initial number
of clusters, DPM can automatically learn the best number of clusters. Thus, DPM is
an efficient method to be used for parameter estimating. Indeed, we can understand
DPM through a metaphor called the Chinese Restaurant Process (CRP) [Teh et al.
2006].

The hierarchical Bayesian specification of the DPM in our problem is given as follows:

G|α, G0 ∼ DP(α, G0)
θct |G ∼ G, t = 1, 2, . . . . . . , N
ct|θct ∼ F(ct|θct ), t = 1, 2, . . . , N,

where each latent context topic of context record ct is drawn from one of the K multi-
nomial distributions. Let θct be the parameter of distribution from which the latent
topic ct is generated. Because the number of context topics is unknown, to guarantee
that the number of context topics can grow with data, we assume that ct follows a
general mixture model in which θct is generated from a distribution G. The DP(α, G0)
is a Dirichlet Process (DP) with a base distribution G0 and a positive scaling param-
eter. Intuitively, α can be seen as the inverse variance, and G0 is the mean of the
DP.

The MU model is a single-topic-based topic model that can be used to model mobile
contexts. Specifically, MU assumes that a context record rt is generated as follows.
Given K context topics and � contextual feature-value pairs, to generate the feature-
value pair pt,i in rt, a context topic ct is first generated from a prior topic distribution
for the context records R. Then, pair pt,i is generated from the prior record distribution
for ct. Its extension (i.e., the MUC model) assumes that a context record is generated by
a prior contextual feature distribution and a prior context topic distribution together.
Specifically, given K context topics and F contextual features, a context record rt is
generated as follows. A global prior context topic distribution θ is generated from a
prior Dirichlet distribution α first, and then a prior contextual feature distribution π
is generated from a prior Dirichlet distribution γ . Then, a context topic ct is generated
from θ . Last, a contextual feature ft,i is generated from π, and the value of ft,i (i.e.,
vt,i), is generated from the distribution φct, ft,i .

Moreover, both the prior context topic distribution and the prior context record dis-
tribution in the MU and MUC models follow the Dirichlet distribution. In addition,
context topic distributions (i.e., θ ) in MU and MUC are not similar to those of B-HMM
and HMMC proposed in our article, whereas θ in B-HMM/HMMC is the context topic
transition distribution. Indeed, MU and B-HMM have a similar parameter �, whereas
MUC and HMMC have a similar parameter �.

Therefore, the key issue is calculating the probability of choosing an existing context
topic and the probability of generating a new context topic for the current context
record. To calculate these probabilities and decide the best number of context topics,
we propose two novel Gibbs sampling-based approaches. Specifically, one is DPMU,
arrived at by combining both DPM and MU model for B-HMM, and the other is DPMUC,
arrived at by combining both DPM and MUC models for HMMC.

Specifically, the approach starts with a random assignment of K0 context topics
to context records, where K0 is the initial number of context topics. In each of the
following iterations, we first count the number of unique context topics in all context
records (i.e., K) and then calculate the two probabilities according to the Gibbs rules to
assign context topics for each context record. Particularly, for the B-HMM model, we
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have a DPMU model as follows:

P(ct|c¬rt, R) ∝ P(ct, c¬rt, R) = P(ct, c¬rt, V )
= P(�|ct, c¬rt)P(ct|c¬rt)
∝ P(rt|ct, c¬rt,�¬rt)P(ct|c¬rt); (20)

then, the conditional distributions of rt and ct are as follows:

P(rt|ct, c¬rt, V¬rt) =

⎧⎪⎪⎨
⎪⎪⎩

∏J
j=1

∏Nt, j
i=1 (n¬rt,k, j+β j+i)∏Nt

i=1(
∑J

j=1 n¬rt,k, j+β j+i)
, i f ct ≤ K

∏J
j=1

∏Nt, j
i=1 (β j+i)∏Nt

i=1
∑J

j=1(β j+i)
, i f ct = K + 1

, (21)

P(ct|c¬rt) =
{

k, k ≤ K, with probability n¬rt,k

N−1+α

new context topic K + 1, with probability α
N−1+α

. (22)

For the HMMC model, the Gibbs sampler of the DPMUC model is given as follows:

P(ct|c¬rt, R) ∝ P(ct, c¬rt, R)
= P(ct, c¬rt, V, F)
= P(V |ct, c¬rt, F)P(cr|c¬rt)P(F)
∝ P(vt|ct, c¬rt, F, V¬rt)P(cr|c¬rt), (23)

where the calculation of P(ct|c¬rt) is the same as Equation (22), and P(vt|ct, c¬rt, F, V¬rt)
can be computed by

P(vt|ct, c¬rt, F, V¬rt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∏
v∈vt

∏Nt,v
j=1 (n¬rt,k, f,v+βv+ j)∏Nt

i=1
∑

v∈V fi
(n¬rt,k, fi ,v+βv+i)

, if ct ≤ K

∏
v∈vt

∏Nt,v
j=1 (βv+ j)∏Nt

i=1
∑

v∈� fi
(βv+i)

, if ct = K + 1
. (24)

Finally, after several rounds of Gibbs sampling, the number of context topics will be
stable; thus, we can get the best parameter K∗ for context modeling. In practice, we
can first randomly choose the value of K0 to initiate the Gibbs sampling and finish the
sampling if the difference of model likelihoods between two iterations is less than 1%.

Last, but not least, after obtaining the best number of context topics by
DPMU/DPMUC, we can reuse the sampling results in the last round of implement-
ing DPMU/DPMUC to initiate the training process of B-HMM/HMMC. Experimental
results show that reusing the results of DPMU/DPMUC can not only dramatically ac-
celerate the training process of B-HMM/HMMC, but also can improve the performance
(e.g., likelihood) of context modeling in B-HMM/HMMC.

5. SEMISUPERVISED LEARNING FOR CONTEXT MODELING

Indeed, learning in B-HMM, HMMC, and DPMU/DPMUC models can be treated as
an unsupervised process. However, the latent context topics behind mobile contexts
are often ambiguous and are poorly understood during context recognition [Bao et al.
2012]. Fortunately, in practice, some context records can be manually labeled by mobile
users through their interactions, such as when using life-logging software and diary
applications. Intuitively, if we can incorporate such semantic labels into the process of
context modeling, the learning and recognition results will be dramatically improved.
To this end, we propose a semisupervised learning approach by extending the Gibbs
sampling algorithm for modeling context.
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ALGORITHM 1: Semisupervised Learning Approach
Input: a sequence of context records R, a set of record-topic tuples R′, hyperparameters α, β, γ ,
the number of context topics K
Global data: count statistics {CS}, assignment index A
Output: model �, �, π

Initialization step:
1: zero all count statistics {CS};
2: for each rt ∈ R do
3: if rt ∈ R′ then
4: the context topic assignment k = ct acc. to < rt, ct >∈ R′;
5: else
6: sample context topic assignment k ∼ Mult(1/K);
7: increment statistics of {CS}k;
8: At = k;
9: end for

Gibbs sampling step:
1: while not finished do
2: for each rt ∈ R do
3: the current assignment k = At;
4: decrement statistics of {CS}k;
5: if rt ∈ R′ then
6: k̂ = k; //unchanged
7: else
8: //multinomial sampling acc. to Eq. 5, 15 (B-HMM/HMMC),
9: //Eq. 20, 23 (DPMU/DPMUC);
10: sample context topic assignment k̂ ∼ p(ct|c¬rt, R);
11: increment statistics of {CS}k̂;
12: At = k̂;
13: end for

14: //check convergence and read out parameters
15: if converged or L sampling iterations then
16: � is computed acc. to Eq. 9 (B-HMM/HMMC);
17: � is computed acc. to Eq. 9 (B-HMM), Eq. 17 (HMMC);
18: π is computed acc. to Eq. 17 (HMMC);
19: return �, �, π ;

20: end while

Specifically, given a set of labeled context records R′ = {<r1, c1>,<r2, c2>, . . . ,
<rt, ct>, . . .}, where <rt, ct> is a record-topic tuple, rt ∈ R, and ct ∈ C, we denote
the K′ as the number of unique context topics in R′. We will introduce the details of
collecting such labeled data in Section 6.1.1. Then, the objective of our semisupervised
learning approach is to integrate R′ into the context modeling process and guarantee
that the topic assigned to each context record r should be as similar to the tuples in R′
as possible. Therefore, an intuitive way is ∀r ∈ R′, where we assign a context topic c to
r and guarantee <r, c> ∈ R′. To this end, we propose a semisupervised Gibbs sampling
algorithm, and the pseudo-code is shown in Algorithm 1. Specifically, we use {CS} to
denote the statistics of count (e.g., n¬rt,k, j) used in the Gibbs sampling process, and A
denotes the assignments of all context records.

In the Initialization step of the algorithm, for each context record r, we judge whether
r has been labeled. If r has its true label (i.e., r ∈ R′), we directly assign a context topic
to r according to <r, c> ∈ R′. Otherwise, we sample a context topic to r from a multi-
nomial distribution Mult(1/K). We then check whether current context record r has a
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predefined topic label with each iteration of the Gibbs sampling step in R′. If r ∈ R′,
we do not assign a context topic to it because we have assigned the context topic in
initialization already. Otherwise, as shown in line 9, we assign a context topic to
r according to the posterior probability P(ct = k|c¬rt, R), which can be computed
refer to Equation (5) (B-HMM), Equation (15) (HMMC), and Equations (20)–(23)
(DPMU/DPMUC).

When using this semisupervised algorithm to train DPMU/DPMUC models, in the
sampling step (i.e., Step 9), a new context topic can be drawn according to Equation (22).
Finally, the parameters are returned after the sampling converges. Particularly for
DPMU/DPMUC, the number of unique context topics in A is the final number of
context topics K∗. In addition, since the learning process of DPMU/DPMUC is based
on the predefined K′ context topics, K∗ always satisfies that K∗ ≥ K′.

The inference of proposed models (i.e., B-HMM, HMMC, DPMU, and DPMUC) in this
article is derived by the Gibbs sampling method, thus the time complexity is O(NKT ),
where N is the number of context records, K is the number of context topics, and T is
the number of iterations.

6. EXPERIMENTAL RESULTS

In this section, we first introduce the real-world datasets used in our experiments,
then we evaluate the efficiency and effectiveness of the proposed approaches for mobile
context modeling through extensive experiments. All the experiments are conducted
on a 3.10GHz×2 Core CPU, 4GB RAM PC.

6.1. Datasets and Preprocess

Here, we introduce how to collect and preprocess our real-world datasets.

6.1.1. Data Collection. Actually, many mobile apps can help users manage their lives,
such as aTimeLogger,1 which allows mobile users to log the time cost of many predefined
activities. Illuminated by these Apps, we developed a software named ActivityLogger
to collect rich context logs from mobile users. ActivityLogger provides some predefined
activities (e.g., “Sleep”) for users, and they can define some activities by themselves.
With this software, users can log how long they spend on these activities, thus they
can manage their lives more efficiently. Figure 4 shows the screen shots of our soft-
ware, which mainly has two functions for different tasks, namely Context Function
and Activity Function, respectively. The main task of Context Function is to collect
rich contextual information from different mobile sensors, such as the system clock,
GPS sensor, 3D accelerometers, and the like. Table II illustrates the detailed contex-
tual features collected by our software. Note that the software will automatically start
when the mobile device is powered on, and the collection frequency is set to 1 minute.
Particularly, users can manually turn off the software if they do not want the current
contextual information to be collected due to privacy concerns.

Another function of ActivityLogger is the Activity Function, which is used to record
the starting and ending time of user activities (e.g., when to start and finish working).
Table III shows an example of an activity log collected from a mobile user. In our
software, there are several predefined activity labels, such as “Sleep,” “Study,” and
“Entertainment.” Thus, users can choose one label to record their corresponding activ-
ities. Particularly, users can also define some new activities by themselves. Intuitively,
these activity labels clearly reveal the latent topics of the context records generated
by corresponding activities. Each context record rt contains a timestamp t, and each
activity ai contains a start timestamp ti,1 and a end timestamp ti,2. Therefore, for each

1http://www.atimelogger.com.
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Fig. 4. The screen shots of our data collection software ActivityLogger.

Table II. The Collected Contextual Features

Data type
Contextual

feature Value range

Day Name {Mon., Tues., Wed., Thur., Fri., Sat., Sun.}
Holiday {Yes, No}

Time Info {Morning(AM7:00-AM11:00), Noon(AM11:00-PM14:00),
Day Period Afternoon(PM14:00-PM18:00),Evening(PM18:00-PM21:00),

Night(PM21:00-Next day AM7:00)}
Time Range {AM0:00-AM1:00,AM1:00-AM2:00,. . .,PM23:00-PM24:00}
Profile Type {General, Silent, Meeting, Outdoor, Pager, Offline}
Battery Level {Low(<35%), Middle(35%-65%), High(65%-85%), Full(>85%)}

System Info Inactive Time {Short(< 10 minutes), Middle(10-30 minutes), Long(> 30 minutes)}
Ring Type {General, Ascending, Ring once, Beep, Silent}.
Ring Level {Low(<35%), Middle(35%-75%), High(>75%)}.

GSM Info
Cell ID Integers.
Area ID Integers.
Speed {Low(< 5km/h), Middle(5–20km/h), High(> 20km/h)}

GPS Info Movement {Yes, No}
Coordinate Pair of longitude and latitude.

Event Applications {Call, Message, Game, Web browser, Music, Camera, etc.}

context record rt that satisfies ti,1 ≤ t ≤ ti,2, we label its semantic meaning ct as ai.
Thus, given a sequence of context records R = {r1, r2, . . . , rt, . . .} and a set of activity
records A = {a1, a2, . . . , ai, . . .}, we can easily get a set of labeled data; that is, a set of
record-topic tuples R′ = {<rt, ct>}.

To collect these context logs, we invited some volunteers with the help of a ma-
jor mobile device manufacturer and had them install the software ActivityLogger on
their smartphones. Specifically, we requested all the volunteers to use this software
frequently every day and guarantee the authenticity of corresponding activities.

6.1.2. Data Preprocess. To use the activity data for semisupervised context modeling,
we need to do some preprocess work to filter out the noise records. Specifically, we first
removed those activity records with a duration of less than a threshold ζl (we empiri-
cally set ζl to 5 minutes in our experiments), which may imply that the corresponding
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Table III. An Example of an Activity Log

Starting timestamp Ending timestamp Activity

2012-12-13-23-21 2012-12-14-08-10 Sleep
2012-12-14-09-10 2012-12-14-11-25 Work
2012-12-14-11-26 2012-12-14-12-00 Eat
2012-12-14-12-01 2012-12-14-13-30 Sleep
2012-12-14-14-00 2012-12-14-15-10 Work

· · · · · · · · · · · ·
2012-12-14-23-50 2012-12-15-09-30 Sleep
2012-12-15-10-21 2012-12-15-11-40 Shopping
2012-12-15-11-41 2012-12-15-13-12 Eat

· · · · · · · · · · · ·
2012-12-22-14-30 2012-12-22-16-00 Work
2012-12-22-16-01 2012-12-22-16-30 Driving
2012-12-22-16-31 2012-12-22-18-00 Gym
2012-12-22-18-21 2012-12-22-19-05 Eat

Table IV. The Details of the 10 Datasets

Data set N NL P Np NF #LPercentage

A 115,682 16,215 463 11,232,154 14 14.02%
B 129,021 7,360 702 19,256,150 14 5.70%
C 129,705 3,583 947 24,576,034 16 2.76%
D 129,909 8,652 1,161 33,321,870 16 6.66%
E 129,923 2,488 1,202 36,257,489 16 1.91%
F 129,952 6,459 1,301 42,252,576 16 4.97%
G 130,060 7,968 1,475 51,679,099 16 6.13%
H 130,682 3,329 1,730 66,170,870 16 2.55%
I 131,027 4,654 1,900 79,767,522 16 3.55%
J 131,027 4,264 2,087 88,570,014 16 3.25%

activity record is generated by the wrong operation or just to test the software. Sec-
ond, we combined some user-defined activities that have similar meanings, such as
“Supermarket” and “Shopping.” Third, some users may start an activity but forget to
end it, which may result in a long duration of activity. Thus, to guarantee the accuracy
of context labels, we further defined some upper bound thresholds {ζ a} for each activity.
For example, we set ζ Eat to 2 hours, which means that user may not eat something for
over 2 hours. Last, the activity records with a frequency of less than 5 are also filtered
to guarantee the effectiveness of user labels.

As introduced earlier, in our experiment, we selected the datasets from 10 volunteers
spanning 3 months, which are denoted as {A, B, . . . , J}. Table IV demonstrates the
details of the 10 datasets, where N denotes the number of context records, NL denotes
the number of context records labeled by users through software ActivityLogger, P
denotes the number of unique contextual feature-value pairs, Np denotes the occurrence
number of all contextual feature-value pairs, NF denotes the number of contextual
features, and #LPercentage denotes the proportion of labeled data. Moreover, Figure 5
shows the distributions of the labeled context topics of different datasets (here, we only
show A and D for conciseness). For each dataset, we use the data from last month as
test data and use the remaining data as training data.

6.2. The Performance of Parameter Estimation by DPMU/DPMUC

In this subsection, we validate the parameter estimation approaches DPMU/DPMUC
by evaluating their effectiveness and efficiency.
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Fig. 5. The distributions of labeled context topics in datasets A and D.

Fig. 6. The results of DPMU and DPMUC with different initial values of K.

6.2.1. Effectiveness of the DPMU/DPMUC. To estimate the number of context topics, we
propose the DPMU/DPMUC approaches for automatically learning the best number
of topics when given only an initial value. Here, we validate the effectiveness of
DPMU/DPMUC. First, we evaluate whether DPMU/DPMUC can get a stable result
when given different initial values. Specifically, we set the initial values of the num-
ber of context topics from K = {25, 35, 45, 55, 65, 75}, and for each Ki ∈ K, we run
DPMU/DPMUC 10 times. Figure 6 shows the box chart of the experimental results
(since the results of the 10 datasets have similar trends, we only show the results
of the first 5 datasets {A, . . . , E}). Note that the convergence of the Gibbs sampling
processes of DPMU/DPMUC are measured by the log likelihood of the training data,
and the parameters α and β are empirically set to 100 and 10, respectively. From this
figure, we can observe that DPMU/DPMUC can obtain stable results with different
initial values.

Second, we check whether the number K obtained by DPMU/DPMUC is reasonable.
To this end, we first choose the commonly used perplexity-based approach [Bao et al.
2012] to estimate the number of latent context topics for B-HMM and HMMC models as
a benchmark. Then, we compare the difference between the results from the perplexity-
based approach and our DPMU/DPMUC model. Figure 7 shows the number of context
topics learned by the perplexity-based approach and DPMU/DPMUC for B-HMM and
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Fig. 7. Spherical comparison in terms of the number of context topics.

Fig. 8. The comparison in terms of the likelihood curves of dataset A.

HMMC on the 10 datasets. From the results, we can observe that the number K learned
from the DPMU/DPMUC model is very close to that learned from the perplexity-based
approach, which validates the effectiveness of our DPMU/DPMUC approaches. Note
that here the value K learned by DPMU/DPMUC is the average value of results shown
in Figure 6.

6.2.2. Efficiency of the DPMU/DPMUC. As discussed in Section 4.3, the training results
of DPMU/DPMUC can be used to train B-HMM and HMMC models. Indeed, the basic
Gibbs sampling method is based on the random assignment of initial values, which
may result in the high computational cost (i.e., iterations), and local optimal values.
At the same time, after the Gibbs sampling of DPMU/DUPMC, we can get a set of
the topic assignments for context records. Therefore, we can use these assignments as
the initial values for training B-HMM and HMMC models. Figure 8 shows the conver-
gence curves of Gibbs sampling for B-HMM and HMMC models with different initial
value assignment by measuring their log likelihood for the dataset A (the convergence
curves for other training datasets follow the similar trend). Note that the left end of the
dotted line in Figure 8 is the curve of the likelihood of training DPMU and DPMUC. B-
HMM(D)/HMMC(D) denotes using initial value assignment through DPMU/DPMUC
models, and B-HMM(R)/HMMC(R) denotes using random initial value assignment.
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Fig. 9. The comparison of the label Accuracy between different approaches.

From this figure, we can observe that assigning initial values through DPMU/DPMUC
model can accelerate the training processes of both B-HMM and HMMC models. More-
over, we also find that the B-HMM and HMMC models with initial value assignment
by DPMU/DPMUC can achieve higher optimal points, which indicates the higher like-
lihood of model training.

6.3. The Performance of B-HMM and HMMC Models

In this subsection, we validate our B-HMM and HMMC models by evaluating their
performance on context recognition.

6.3.1. The Performance of Labeling Context Topics. Many user activity labels can be used
for semisupervised learning in B-HMM and HMMC models. Here, we first evaluate
whether B-HMM and HMMC models can be used to label context topics (user activity
labels) in test datasets. To the best of our knowledge, there is no existing semisupervised
approach for modeling context. Thus, we extend two state-of-the-art unsupervised
approaches, LDAC and MUC [Bao et al. 2012], as baselines to evaluate our approaches.
To be specific, we use the semisupervised Gibbs sampling approach introduced in
Algorithm 1 to extend LDAC and MUC to label context topics. Moveover, we also
develop a sequence approach, Sequence-based Naive Bayes on Context (SNBC), for
evaluating our approaches, which can label context records by

P(ct = k|rt) ∝ P(rt|ct = k)P(ct|ct−1)

∝ P(ct = k|ct−1)
Nt∏

i=1

P(rt,i|ct = k),

where P(ct = k|ct−1) = 1
K for the context record rt without previous record rt−1.

In our experiments, we use the user activity labels in test dataset as ground truth,
and we test the Accuracy of context labels predicted by each approach. Specifically, we
denote NT as the number of times that a context record is labeled with right topic,
while NF is the number of times that a context record is labeled with wrong topic;
thus, the accuracy is calculated by Accuracy = NT

NT +NF
. Figure 9 shows the results of the

comparison of label accuracy between different approaches in 10 datasets. From this
figure, we can observe that LDAC and MUC have competitive performance in label
accuracy, and our B-HMM and HMMC models have the best label accuracy.

Furthermore, to validate the performance of context recognition with respect to
different context topics, we also compute the overall Precision, Recall, and F1 score for
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Table V. The Comparison of the Label Precision between Different Approaches

Model A B C D E F G H I J

HMMC 0.900 0.873 0.862 0.821 0.702 0.921 0.831 0.729 0.782 0.721
B-HMM 0.862 0.832 0.843 0.785 0.681 0.879 0.828 0.713 0.746 0.702
LDAC 0.821 0.817 0.832 0.776 0.682 0.829 0.822 0.695 0.767 0.688
MUC 0.793 0.738 0.765 0.732 0.650 0.811 0.782 0.679 0.731 0.671
SNBC 0.721 0.582 0.413 0.520 0.343 0.619 0.668 0.516 0.329 0.392

Table VI. The Comparison of the Label Recall between Different Approaches

Model A B C D E F G H I J

HMMC 0.821 0.796 0.736 0.791 0.679 0.911 0.723 0.701 0.751 0.656
B-HMM 0.813 0.782 0.719 0.772 0.662 0.855 0.712 0.698 0.733 0.622
LDAC 0.705 0.721 0.688 0.718 0.602 0.812 0.658 0.667 0.678 0.602
MUC 0.691 0.703 0.671 0.719 0.592 0.789 0.669 0.651 0.682 0.611
SNBC 0.530 0.411 0.422 0.451 0.302 0.618 0.490 0.529 0.450 0.412

Table VII. The Comparison of the Label F1 Score between Different Approaches

Model A B C D E F G H I J

HMMC 0.859 0.833 0.794 0.806 0.690 0.916 0.773 0.715 0.766 0.687
B-HMM 0.837 0.806 0.776 0.778 0.671 0.867 0.766 0.705 0.739 0.660
LDAC 0.759 0.766 0.753 0.746 0.640 0.820 0.731 0.681 0.720 0.642
MUC 0.738 0.720 0.715 0.725 0.620 0.800 0.721 0.665 0.706 0.640
SNBC 0.611 0.482 0.417 0.483 0.321 0.618 0.565 0.522 0.380 0.402

each approach in our datasets. Specifically, we first compute the Precision, Recall, and
F1 score for each context topic in the dataset, and then get the average value across
all context topics as the overall performance. If we denote Nc

T as the number of times
that a context record is labeled as c correctly, Nc

F as the number of times that a context
record is labeled as c incorrectly, and Nc as the number of context records with label
c truly, we can compute the Precision, Recall, and F1 score of a given context topic c
by Pc = Nc

T
Nc

T +Nc
F
, Rc = Nc

T
Nc , and F1 = 2∗Pc∗Rc

Pc+RC
. Tables V, VI, and VII show the results of

the performance of different approaches with respect to different evaluation metrics.
From these tables, we can observe that our approaches consistently outperform other
baselines with respect to all metrics.

From these experimental results, we come to several conclusions. First, sequence
dependence is an important characteristic of contextual information, and considering
sequence dependence when context modeling can enhance the performance of context
recognition. Second, only using the characteristic of sequence dependence for context
recognition is not enough (e.g., SNBC has the worst recognition performance) since it
cannot capture the latent semantics of contextual information. Last, the prior knowl-
edge of contextual features can be used for modeling contextual information more
accurately (i.e., HMMC outperforms B-HMM slightly).

6.3.2. Human Judgement-based Evaluation. To evaluate the quality of learned context
topics, in the experiments, we also asked the 10 volunteers in our datasets to manually
judge the context topics learned from their own context logs. Specifically, for each
learned context topic ck, we chose the contextual feature-value pairs p with P(p|ck) >
0.01 to represent the context ck and showed them to corresponding volunteers for
judgment.

Similar to the user study introduced in Bao et al. [2012], we also prepared three
remarks for volunteers use in judging the quality of each learned context:
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Fig. 10. Spherical comparison in terms of human evaluation.

—P: Perfect. This remark indicates that the learned context topic reflects one of the
volunteer’s typical contexts well. No irrelevant context information is included, and
no relevant context information is missing.

—G: Good. This remark indicates that the learned context topic partially reflects one
of the volunteer’s typical contexts but contains some irrelevant context information
or misses some relevant information.

—B: Bad. This remark indicates that it is hard to state the learned context that reflects
the typical context topics of a volunteer.

We denote the cases with perfect or good remarks as positive cases. Figure 10 shows
the results of human judgement for each approach. From this figure, we can observe
that both B-HMM and HMMC models outperform two unsupervised models (i.e., LDAC
and MUC), which indicates that the context topics learned by our models are more
reasonable because our models can integrate both sequential characteristics and user
labels of mobile contexts into the learning process.

6.4. Case Studies for Evaluating B-HMM and HMMC Models

Here, we study two cases for evaluating our B-HMM and HMMC models.

6.4.1. Case Study 1. To evaluate the quality of learned context topics more intuitively,
we studied some typical context topics learned by each approach. Specifically, we first
contacted one volunteer from dataset A; we knew he is a postgraduate with a typical
personalized habit of “usually exercising at gym on Friday and Saturday afternoon
(16:00-18:00).” Then, we manually checked the latent context topics learned by MUC,
LDAC, B-HMM, and HMMC and interestingly found that all of these approaches can
discover a context topic that is relevant to this typical habit. Tables VIII–XI show
the related context topics learned by MUC, LDAC, B-HMM, and HMMC, respectively,
which are denoted as cm, cl, cb, and ch for simplicity. In addition, the contextual feature
Location has been manually translated to meaningful locations to help Understanding.

From these figures, we find that most of the contextual feature-value pairs in cm
and cl are reasonable, such as (Day Name: Saturday), (Location:gym) and (Day Period:
Afternoon). However, there are also some irrelevant contextual feature-values pairs
in cm and cl, which are shown in bold. Moreover, both of the two context topics miss
the important contextual feature-value pair (Day Name: Friday). By contrast, we find
most of the contextual feature-value pairs in cb and ch are reasonable, except for two
irrelevant pairs in cb. As a result, both cm and cl are labeled as “Bad,” cb is labeled as
“Good,” and ch is labeled as “Perfect.”
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Table VIII. Context cm Learned by MUC

(Profile Type: General)
(Day Name: Saturday)
(Area ID: 21885)
(Cell ID: id1)
(Location: gym)
(Day Period: Noon)
(Day Period: Afternoon)
(Time Range: PM11:00-12:00)
(Time Range: PM12:00-13:00)
(Time Range: PM16:00-17:00)
(Movement: No)
(Battery Level: High(65%-85%))
(Inactive Time: Long(>30 minutes))

Table IX. Context cl Learned by LDAC

(Profile Type: General)
(Day Name: Saturday)
(Area ID: 21885)
(Cell ID: id1)
(Location: gym)
(Day Period: Noon)
(Day Period: Afternoon)
(Time Range: PM12:00-13:00)
(Time Range: PM16:00-17:00)
(Time Range: PM17:00-18:00)
(Movement: No)
(Battery Level: Middle(35%-65%))
(Inactive Time: Long(>30 minutes))

Table X. Context cb Learned by B-HMM

(Profile Type: General)
(Day Name: Saturday)
(Day Name: Friday)
(Area ID: 21885)
(Cell ID: id1)
(Location: gym)
(Day Period: Noon)
(Day Period: Afternoon)
(Time Range: PM12:00-13:00)
(Time Range: PM16:00-17:00)
(Time Range: PM17:00-18:00)
(Movement: No)
(Battery Level: High(65%-85%))
(Battery Level: Middle(35%-65%))

Table XI. Context ch Learned by HMMC

(Profile Type: General)
(Day Name: Saturday)
(Day Name: Friday)
(Area ID: 21885)
(Cell ID: id1)
(Location: gym)
(Time Range: PM16:00-17:00)
(Time Range: PM17:00-18:00)
(Movement: No)
(Battery Level: High(65%-85%))
(Battery Level: Middle(35%-65%))
(Inactive Time: Long(>30 minutes))

6.4.2. Case Study 2. Our B-HMM and HMMC models can consider the sequence de-
pendence of context records. Therefore, to further check the characteristics of sequence
dependence, we illustrate part of the context topic transitions based on � learned by
the B-HMM model in dataset A and by the HMMC model in dataset D.

For the conciseness, here we only show five typical context topics and the top five
context topics with the highest transition probability from them in Tables XIII and XII.
Note that some of the context topics in the tables are labeled by volunteers from the
datasets, and others are labeled manually by ourselves. From these tables, we find that
all these transitions are reasonable and easy to understand. For example, the volunteer
from dataset A is a postgraduate student; thus, he has some typical context transition
patterns like “Way to Lab −→ Lab −→ Experiments.’ Also, the volunteer from dataset
D is a white-collar worker in a software company; thus, he has some typical context
transition patterns like “Work −→ Driving −→ Eat.” Moreover, we find that for each
context topic ci, the next context topic with highest transition probabilities is ci itself.
This is reasonable because the activities of mobile users usually last for a while; thus,
the probability that the next context topic is similar to the current context is high.
Indeed, in our B-HMM and HMMC models, the context topic for each context record is
not only decided by the transition probability �, but also by the emission probability
� and contextual feature distribution π .
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Table XII. Context Topic Transitions Learned by B-HMM from Dataset A

top1 top2 top3 top4 top5

Dormitory Dormitory Sleep Way to lab Way to lunch Classroom
Study Study Way to lunch Way to dinner Way to dormitory Break
Way to Lab Way to Lab Lab Experiment Study Break
Sleep Sleep Dormitory Way to breakfast Way to lunch Break
Meeting Meeting Way to dinner Way to dormitory Study Break

Table XIII. Context Topic Transitions Learned by HMMC from Dataset D

top1 top2 top3 top4 top5

Work Work Driving Eat Sport Meeting
Sleep Sleep Home Eat Self-studying TV
Gym Gym Eat Break Shopping Driving
Shopping Shopping Eat Driving Home Break
Eat Eat Home Work Break Shopping

7. CONCLUDING REMARKS

In this article, we provided a semisupervised approach to modeling the context of mobile
users. Specifically, we first exploited the B-HMM for modeling user contexts in the form
of probabilistic distributions and transitions of raw context data. Also, we developed a
sequential model by extending B-HMM with the prior knowledge of contextual features.
In this way, we are able to model context more accurately. Next, to efficiently learn the
parameters and initial values of the proposed models, we developed a novel approach
for parameter estimation by integrating the DPM and MU model. Furthermore, by
incorporating both user-labeled and unlabeled data, we proposed a straightforward
but efficient semisupervised learning-based framework to model and discover context
topics. Finally, experimental results on real-world datasets clearly validated both the
efficiency and effectiveness of the proposed approaches on recognizing the personalized
context of mobile users.

In the future, we would like to investigate whether and how other types of infor-
mation, such as user demographics, can help to improve the performance of context
modeling. Furthermore, it will also be interesting to investigate how to protect the
privacy of mobile users during context modeling.

APPENDIX A. INFERENCE AND PARAMETER ESTIMATION

In this appendix, we introduce the Gibbs sampling derivation of the equations used in
this paper. To make it simple for understanding, we just show the derivation of some
typical equations.

A.1. Inference P(ct|c¬rt, R) of B-HMM

P(ct|c¬rt, R) ∝ P(ct, c¬rt, R)
= P(R|ct, c¬rt)P(ct|c¬rt)P(c¬rt)
= P(R|ct, c¬rt)P(ct|c¬rt)P(ct+1, c¬(rt,rt+1))
= P(R|ct, c¬rt)P(ct|c¬rt)P(ct+1|c¬(rt,rt+1))P(c¬(rt,rt+1))
∝ P(R|ct, c¬rt)P(ct|c¬rt)P(ct+1|c¬(rt,rt+1))
= P(rt|ct, c¬rt,�¬rt)P(�¬rt|ct, c¬rt)P(ct|c¬rt)P(ct+1|c¬(rt,rt+1))
= P(rt|ct, c¬rt,�¬rt)P(�¬rt|c¬rt)P(ct|c¬rt)P(ct+1|c¬(rt,rt+1))
∝ P(rt|ct, c¬rt,�¬rt)P(ct|c¬rt)P(ct+1|c¬(rt,rt+1)). (25)
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In Appendix A.3 and A.4, we will show the detailed Gibbs sampling derivation of
P( pt|ct, c¬ pt,�¬ pt) and P(ct|c¬ pt).

A.2. Inference P(ct|c¬rt, R) of HMMC

P(ct|c¬rt, R) ∝ P(ct, c¬rt, R)
∝ P(ct, c¬rt, V, F)
∝ P(V |ct, c¬rt, F)P(ct|c¬rt)P(c¬rt)P(F)
∝ P(vt|ct, c¬rt, F, V¬rt)P(ct|c¬rt)P(ct+1|c¬(rt,rt+1)). (26)

A.3. Inference P(rt|ct, c¬rt,�¬rt)

P(rt|ct, c¬rt,�¬rt) ∝ P(rt, c|β) (27)

=
∫

P(rt|c,�)P(�|β)d�. (28)

To compute this value by integrating out the multinomial parameter � from the prob-
ability, we have

=
∫ K∏

k=1

P(φk|β)
|R|∏
t=1

Nt∏
i=1

P(pt,i|ct, φct )dφ. (29)

Then, we distribute the integral over the probability per context topic k,

=
K∏

k=1

∫
P(φk|β)

|R|∏
t=1

Nt∏
i=1

P(pt,i|ct, φct )dφk. (30)

Next, we expand the probability formula based on its density (i.e., Dirichlet and Multi-
nomial),

=
K∏

k=1

∫
�

(∑J
j=1 β j

)
∏J

j=1 �(β j)

J∏
j=1

φ
β j−1
k, j

|R|∏
t=1

Nt∏
i=1

φct,pt,i dφk, (31)

where, J is the number of unique contextual feature-value pairs, |R| is the number of
all context records, Nt is the number of contextual feature-value pairs in the context
record (i.e., rt) whose timestamp is t, and pt,i is the i-th contextual feature-value pair
in record rt. Based on the equality relationship

∏|R|
t=1

∏Nt
i=1 φct,pt,i = ∏J

j=1 φ
nk, j
k, j , we have,

=
K∏

k=1

∫
�

( ∑J
j=1 β j

)
∏J

j=1 �(β j)

J∏
j=1

φ
β j−1
k, j

J∏
j=1

φ
nk, j
k, j dφk. (32)

Since xaxb = xa+b,

=
K∏

k=1

∫
�

( ∑J
j=1 β j

)
∏J

j=1 �(β j)

J∏
j=1

φ
nk, j+β j−1
k, j dφk. (33)

Then, we multiply by 1 expressed in the following convenient from and distribute
through the integral,

=
K∏

k=1

�
(∑J

j=1 β j
)

∏J
j=1 �(β j)

∏J
j=1 �(nk, j + β j)

�
( ∑J

j=1 nk, j + β j
) ∫

�
( ∑J

j=1 nk, j + β j
)

∏J
j=1 �(nk, j + β j)

J∏
j=1

φ
nk, j+β j−1
k, j dφk. (34)
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Because the remaining integral is of the Dirichlet density over its complete support
(thus the value is equal to 1), we can drop out of the product. Also, we can remove the
constant terms.

∝
K∏

k=1

∏J
j=1 �(nk, j + β j)

�
( ∑J

j=1 nk, j + β j
) . (35)

Now we can pull apart the equation based on whether the context topic k is the assign-
ment ct to the current context record rt,

=
∏
k�=ct

∏J
j=1 �

(
n¬rt,k, j + β j

)
�

( ∑J
j=1 n¬rt,k, j + β j

) ×
∏J

j=1 �
(
n¬rt,k, j + Nt, j + β j

)
�

( ∑J
j=1 n¬rt,k, j + Nt, j + β j

) . (36)

Based on the expansion �(x + 1) = x × �(x), we can expand out the increment term,

=
∏
k�=ct

∏J
j=1 �(n¬rt,k, j + β j)

�(
∑J

j=1 n¬rt,k, j + β j)
×

∏J
j=1(�(n¬rt,ct, j + β j) × ∏Nt, j

i=1(n¬rt,ct, j + β j + i))

�(
∑J

j=1 n¬rt,ct, j + β j) × ∏Nt
i=1(

∑J
j=1 n¬rt,ct, j + β j + i)

. (37)

Then, we refold the residual �-function terms back into their products,

=
K∏

k=1

∏J
j=1 �(n¬rt,k, j + β j)

�
( ∑J

j=1 n¬rt,k, j + β j
) ×

∏J
j=1

∏Nt, j

i=1(n¬rt,ct, j + β j + i)∏Nt
i=1

( ∑J
j=1 n¬rt,ct, j + β j + i

) . (38)

Finally, we eliminate the terms which do not depend on ct,

=
∏J

j=1
∏Nt, j

i=1(n¬rt,ct, j + β j + i)∏Nt
i=1(

∑J
j=1 n¬rt,ct, j + β j + i)

. (39)

A.4. Inference P(ct|c¬rt)
It should be noted that, � is the context topic transition distribution (a K × K matrix),

P(ct|c¬rt) ∝
∫ K∏

k=1

P(θk|α)
|R|∏
t=1

P(ct|θk)dθ (40)

=
K∏

k=1

∫
P(θk|α)

|R|∏
t=1

P(ct|θk)dθk. (41)

Expand the probability formula based on the corresponding density,

=
K∏

k=1

∫
�

(∑K
k′=1 αk′

)
∏K

k′=1 �(αk′)

K∏
k′=1

θ
αk′−1
k,k′

K∏
k′=1

θ
nk,k′
k,k′ dθk, (42)

where nk,k′ denotes the number of context records assigned by k′ and the previous record
is assigned by k. Based on xaxb = xa+b, we get,

=
K∏

k=1

∫
�

(∑K
k′=1 αk′

)
∏K

k′=1 �(αk′)

K∏
k′=1

θ
nk,k′+αk′ −1
k,k′ dθk. (43)

Similar to A.3, we try to add some formulas to construct a convenient form,

=
K∏

k=1

�
(∑K

k′=1 αk′
)

∏K
k′=1 �(αk′)

∏K
k′=1 �(nk,k′ + αk′)

�
( ∑K

k′=1 nk,k′ + αk′
) ∫

�
( ∑K

k′=1 nk,k′ + ααk′
)

∏K
k′=1 �(nk,k′ + αk′)

K∏
k′=1

θ
nk,k′+αk′ −1
k,k′ dθk. (44)
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Remove all the constant terms and that do not depend on the current context topic ct,

∝
K∏

k=1

∏K
k′=1 �(nk,k′ + αk′)

�
(∑K

k′=1 nk,k′ + ααk′
) . (45)

Then it is time to pull apart the products based on whether the context topic k is the
assignment ct to rt with timestamp t. Note that, one context record only assigned once
in each iteration, thus the value is only need plus 1 count, then we get,

=
K∏

k=1

∏
k′ �=ct

�(n¬rt,(k,k′) + αk′)

�
(
1 + ∑K

k′=1 n¬rt,(k,k′) + αk′
)�(n¬rt,(k,ct) + αct + 1), (46)

Recall that k in the equation denotes the context topic of the previous context record.
In our problem, the previous context topic of rt is given, and denoted as ct−1. Thus, we
can remove

∏K
k=1 and replace k by ct−1,

=
∏

k′ �=ct
�(n¬rt,(ct−1,k′) + αk′)

�
(
1 + ∑K

k′=1 n¬rt,(ct−1,k′) + αk′
)�(n¬rt,(ct−1,ct) + αct ) × (n¬rt,(ct−1,ct) + αct ). (47)

Refold the residual �-function terms back into the general products,

=
∏K

k′=1 �(n¬rt,(ct−1,k′) + αk′)

�
(
1 + ∑K

k′=1 n¬rt,(ct−1,k′) + αk′
) × (n¬rt,(ct−1,ct) + αct ). (48)

Transform the denominator based on �(x + 1) = x × �(x),

=
∏K

k′=1 �(n¬rt,(ct−1,k′) + αk′)

�
( ∑K

k′=1 n¬rt,(ct−1,k′) + αk′
) × ( ∑K

k′=1 n¬rt,(ct−1,k′) + αk′
) × (n¬rt,(ct−1,ct) + αct ) (49)

∝ n¬rt,(ct−1,ct) + αct∑K
k′=1 n¬rt,(ct−1,k′) + αk′

(50)

= n¬rt,(ct−1,ct) + αct

n¬rt,(ct−1,∗) + ∑K
k′=1 αk′

. (51)
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