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Abstract. The recent advancements in online social networks and mobile
devices have provided valuable data sources to track users’ smartphone
adoption, i.e., the usage of smartphones over time. An incisive understand-
ing of users’ smartphone adoption can benefit many useful applications,
ranging from user behavior understanding to targeted marketing. This
paper studies smartphone adoption prediction in social networks by lever-
aging the wisdom of an online world. A critical challenge along this line is
to identify the key factors that underline people’s adoption behaviors and
distinguish the relative contribution of each factor. Specifically, we model
the final smartphone status of each user as a result of three influencing
factors: the social influence factor, the homophily factor, and the personal
factor. We further develop a supervised model that takes all three factors
for smartphone adoption and at the same time learns the relative contri-
bution of each factor from the data. Experimental results on a large real
world dataset demonstrate the effectiveness of our proposed model.

Keywords: Smartphone adoption · Social network · Social influence ·
Homophily

1 Introduction

Smartphones (e.g., iPhone and Android based mobile phones) are now ubiquitous
in our daily lives. There were 1.82 billion smartphones being used worldwide at the
end of 2013. Furthermore, according to a forecast by International Data Corpora-
tion, the smartphone market is expected to increase to 70.5% in 2017 in terms of all
smart devices, including desktop PCs, portable PCs, tablets and smartphones [1].

With the expanding opportunities in the smartphone market, an incisive
understanding of smartphone adoption among users has significant applications
ranging from user behavior understanding in scientific disciplines [4,19] to tar-
geted advertising for marketing strategies [7,10]. Thus, acceptance or adoption
of smartphones has long been studied in the past from a variety of angles, such as
cultural factors [23], technology needs [22] and perceived usefulness [18]. Nearly
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all these studies were based on traditional survey based approaches, e.g., by sur-
veying hundreds of people. With both the time and money costs of collecting
data, few researchers have attempted to investigate the smartphone adoption
within a large-scale social network.

Luckily, with the recent advancements of online social networks and smart-
phones, an increasing number of people are sharing their daily lives with friends
on these platforms through smartphones. Due to the mobile nature of the login
devices, these mobilized social networks record the smartphone footprints of
users. To illustrate this, we provide the following example. Weibo (weibo.com)
is the leading microblog service in China. When a user posts a message in
Weibo, the platform forwards an enriched message to all of the user’s follow-
ers as shown in Fig. 1, which includes the post message, the timestamp and the
sending device (iPhone). This device information creates valuable data sources
to track smartphone adoption within a large-scale social network.

Fig. 1. A sample post from Weibo

As a matter of fact, even with the mobilized social network data, accurately
understanding a user’s smartphone adoption is still technically challenging from
at least two aspects. On the one hand, there are various factors that underline
person’s decision-making process. How can we leverage them in a unified frame-
work? Researchers have long identified three key factors for this process: the
social influence factor that argues users are influenced by their social neighbors
to make decisions [11,25]; the homophily factor refers to linked users perform-
ing similar decisions [15]; and the personal factor states users have their own
personalized preferences [29,30]. On the other hand, though all these key fac-
tors help predict users’ adoption behaviors, they lead to significantly different
results [2,14]. Accurately understanding and distinguishing the relative contri-
bution of each factor is critically important to guiding the firm’s marketing
strategy. E.g., if the social influence is responsible for users’ decisions, then it is
effective for the firm to incentivize several seed customers to trigger a cascade
of information diffusion [11]. If the homophily factor dominates, then the firm
can identify new potential customers based on each user’s neighbors’ decisions.
If the final adoption behavior is driven by the personal factor, a better idea is to
select the targeted customers based on their historical preferences for marketing.
Nevertheless, few previous methods have incorporated all these principal factors
together for product adoption prediction. Therefore, how to leverage all these
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key factors and distinguish them at the same time for smartphone adoption
prediction remains pretty much open.

In order to solve both the data barrier and technical challenges mentioned
above, in this paper, we propose a supervised machine learning model for smart-
phone adoption prediction. As a preliminary, we leverage a mobilized online
social network to discover the smartphone usage patterns of a large group of net-
worked users. Then, by borrowing the traditional user segmentation concept, we
identify two groups of users based on their current smartphone status, i.e., poten-
tial first-time smartphone adopters and potential brand changers, respectively.
After that, we develop a Supervised H omophily-Influence-Personality (SHIP)
model for smartphone adoption prediction, in which the key factors that under-
line people’s adoption are explicitly integrated. In fact, the proposed model can
easily be extended to other product adoption tasks. Finally, the experimental
results on 200K active mobile users show the effectiveness of our proposed model.
To the best of our knowledge, this is the first comprehensive attempt to predict
smartphone adoption from a social perspective with large-scale real world data.

2 Data Description and Problem Definition

Given a snapshot of a social network as a directed graph G = < U, F,T >, where
the node set U = {1, 2, ..., N} is the users and F represents the relationships
of users. T = [tji]N∗N is an edge strength matrix, where tji represents the tie
strength from user j to user i. Specifically, if user i follows user j, then (i, j) ∈ F

and tji >0, otherwise tji =0. Since we mainly focus on the smartphone adoption
of users, for ease of later explanation, a mobile post is defined as a post that
is sent from a smartphone, rather than a PC client or a tablet. If a user sends
more than τ mobile posts in a time period, we regard him/her as a mobile user.

Data Collection and Description. During the data crawling process, we
collected the post streams of nearly 235 thousand users from January 2013 to
July 2013 from Weibo. For data cleaning, we only selected mobile users (i.e.,
τ = 10 empirically) and their associated relations. After pruning, we still had
nearly 200 thousand users, 15 million edges, and 45 million post streams. Now
we introduce how to infer each user’s smartphone status from the continuous
post streams. Similar to many smartphone marketing research [1], we treat each
quarter as a time slice and further split each user’s device streams into two time
slices, i.e., the first quarter (2013Q1) and the second quarter (2013Q2) of 2013.
Then we take the most popular device brand as the smartphone status of the
user at that time. Note that a user may use several smartphones during a time
slot, however, it is reasonable to discard the infrequent uses of other smartphone
brands since users prefer those phones that they use the most frequently. Table 1
shows an example of the inferred smartphone status of two typical users.

Problem Definition. Generally, our goal is to predict the smartphone adoption
status of users in time t based on the available data in the previous time t−1. In
marketing research, a common practice is to first divide a broad target market
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Table 1. Examples of two typical users’ post device streams in Weibo

Alice Bob
Time slice Timestamp Sent device Device status Time slice Timestamp Sent device Device status

2013Q1

20130211 Web Weibo

=⇒ Desktop 2013Q1

20130211 Nokia 5230

=⇒ Nokia
20130212 Web Weibo 20130220 Nokia 5230
... ... ... ...
20130331 Web Weibo 20130331 Nokia 5230

2013Q2

... ...

=⇒ Samsung 2013Q2

... ...

=⇒ iPhone
20130421 Web Weibo 20130419 Nokia 5230
20130425 Samsung Galaxy S2 20130422 iPhone
20130428 Samsung Galaxy S2 20130423 iPhone
... ... ...

into subsets of consumers and then design strategies to target each group of
consumers. Following this approach, we divided users into two groups based
on their smartphone status in t−1: potential first-time smartphone buyers and
potential brand changers. The potential brand changers are those who have
already used a smartphone in t−1 and their next action is deciding whether
to change brands in t. E.g., as illustrated in Table 1, Bob is a potential brand
changer as he had the Nokia smartphone in 2013Q1 (i.e., time t−1). We regard
those who do not use any smartphone in t−1 as potential first-time smartphone
buyers. This assumption may not be accurate when applied to each person, but
the overall trend is well supported by the high penetration of mobilized social
networks in our everyday life. Alice is a potential first-time buyer as shown in
Table 1. After segmenting users into these two groups, we set the target for each
group as follows:
Task 1: First-time Buying Prediction. If a user is a potential first-time
buyer in t−1, we predict whether she/he will buy a particular brand b in time t
or not.
Task 2: Brand Change Prediction. If a user is a potential brand changer in
time t−1, we predict whether this user will change to another brand in the next
time period t.

We next assigned a label to each user based on the group information and
the smartphone adoption status in t. E.g., Alice is a member of Task 1 and
buys a Samsung in t, so she is a positively labeled user if we focus on predicting
whether she will buy a Samsung. Bob is a positively labeled user in Task 2 as
he changed from Samsung to iPhone in t. In summary, after user segmentation
and label assignment for each task, these two tasks can be summarized in a
unified prediction problem: Given a snapshot of a directed social network G =

< U, F,T > with a positively labeled user set UP and a negatively labeled user
set UN in time t, our goal is to predict the labels of all unknown users at time t
as accurate as possible. In the next section, we focus on the model.

3 The Proposed SHIP Model

Researchers have long converged on the idea that there are three principal fac-
tors that drive people’s adoption decisions: the social influence factor and the



476 L. Wu et al.

homophily factor that lead to correlated user behaviors among linked users and
the personal factor that states users’ unique preferences [15,25,29]. Obviously,
each of these three factors can exploit a specific part of users’ decisions. In
addition, as illustrated before, different factors result in significantly different
marketing strategies [2,14]. Thus, simply aggregating all these factors for pre-
diction will not be the best choice. A better idea is to distinguish the relative
effect of each factor in the decision making process. In the following, we propose
a Supervised H omophily-Influence-Personlity (SHIP) model that can automat-
ically learn the contribution of each factor for users’ smartphone adoption. Next
we describe how to construct the SHIP model step by step.

Overview of Smartphone Adoption Function. For each user i, we explicitly
model the smartphone adoption status pi as a combination of the three key
factors:

pi = (1 − α)
∑

j∈Fi

tji[(1 − β)pj + βuji] + αbi, (1)

where pi is the predicted smartphone adoption probability that ranges from 0
to 1. Fi are the users that i follows in this network. tji represents the strength
between i and j. If i follows j, then tji = 1

|Fi| , otherwise tji =0. We have two parts
in this equation, the first part captures the social network effect (including social
influence and homophily) and the second part (bi) mimics the personal bias.
Specifically, for user i and any user j that i links (j ∈ Fi), i’s adoption probability
pi is balanced by the influence of j’s adoption status pj (social influence) and
the homophily effect uji, where β controls the relative contribution of these
two factors in social networks. α (0 ≤ α ≤ 1) is a parameter that controls the
relative effect of the social network and personal bias. The larger the α, the more
personal preference plays a role in the task.

Since for each pair of linked users, we have a vector eji that captures the var-
ious features between them, we model the homophily, i.e., the similarity between
each pair of linked users as:

uji = s(w · (eji)) = s(
∑

k

wk × ejik), (2)

where ejik is the k-th element of eji. Similarly, for each user i, we have xi, which
captures her various characteristics. Then the personal bias can be defined as:

bi = s(v · xi) = s(
∑

k

vk × xik). (3)

In the above two equations, s(l) can be set as any monotonically increasing
function. As ∀i ∈ U, 0 ≤ pi ≤ 1, for fair comparison of the different effects, these
values are better ranges in [0, 1]. Thus, a natural idea is to set s(l) as a logistic
function s(x) = 1

1+e(−x) .
Note that the proposed smartphone adoption probability function (Eq.(1))

has close relationship with the recent progress in supervised random walk based
models. These models incorporated the node and edge features to supervise
the random walk process for node classification tasks [3,28]. E.g., the works of
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[3] utilized the social influence factor and [28] further extended this work by
incorporating the personal bias. Nevertheless, the homophily factor is neglected
by all these previous works in the modeling process, while we explicitly depict the
homophily factor between each pair of linked users. In other words, the previous
works for node classification can be seen as special cases of our models, e.g.,
our work is reduced to the models proposed by Zeng et al. when excluding the
homophily factor [28].

Optimization Function Construction. Based on Eq. (1) , in order to get
the final label preference pi for each user i, we have to learn four parameters
θ = [α, β,w,v] in the training process. As we have a set of users’ labels in the
training data at time t, an intuitive idea is to train a supervised model that
automatically learns the parameters θ such that all labeled positive users in the
training data have larger probabilities than the labeled negative ones. Next, we
model the objective learning function as:

min
θ

L =
∑

i∈UP

∑

j∈UN

h(pj − pi) + λ[w′w + v′v], (4)

where the first term models the goodness for fitting the data and the second term
controls model complexity. Since j is a negatively labeled user and i a positively
one, the larger the pi the better and the smaller the pj the better. Based on the
above, we empirically set h(x) as:

h(x) =

{
0 if x < 0

1
1+e−cx if x ≥ 0.

(5)

Thus if pj−pi >0, the loss value is about 1. Otherwise, it approximates to zero.

Model Learning. We apply the power iteration method to solve the opti-
mization problem in Eq.(4) [17]. Specifically, we write the derivatives of each
parameter of θ as:

∂L

∂α
=

∑

i,j

∂h(δij)

∂δij
(
∂pj

∂α
− ∂pi

∂α
),

∂L

∂w
=

∑

i,j

∂h(δij)

∂δij
(
∂pj

∂w
− ∂pi

∂w
) + 2λw,

∂L

∂β
=

∑

i,j

∂h(δij)

∂δij
(
∂pj

∂β
− ∂pi

∂β
),

∂L

∂v
=

∑

i,j

∂h(δij)

∂δij
(
∂pj

∂v
− ∂pi

∂v
) + 2λv. (6)

According to Eq. (1) of the predicted adoption rate, we have:

∂pi

∂α
=−

∑

j∈Fi

tji[(1 − β)pj + βuji] + (1 − α)
∑

j∈Fi

tji(1 − β)
∂pj

∂α
+ bi,

∂pi

∂β
=(1 − α)[

∑

j∈Fi

tji[−pj + (1 − β)
∂pj

∂β
+ uji]],

∂pi

∂w
=(1 − α)[

∑

j∈Fi

tji[(1 − β)
∂pj

∂w
+ β

∂uji

∂w
]],

∂pi

∂v
=(1 − α)

∑

j∈Fi

tji[(1 − β)
∂pj

∂v
] + α

∂ui

∂v
. (7)

Now it is easy to determine the remaining derivative of ∂uji

∂w and ∂bi
∂v :
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Algorithm 1. Parameter Learning Process for the Proposed SHIP Model

Initialize α0 = β0 = 0.5, w, v and p0 with small positive values;
for k = 1; k ≤ K; k + + do

//Part 1:Given θ(k−1) =[α(k−1), β(k−1),w(k−1),v(k−1)], calculate pk;

while not converged for pk do
for each user i ∈ U do

Calculate pk
i based on Eq.(1);

//Part 2: Given pk, calculate the following equations;
while not converged do

for each user i ∈U do
compute the equations in (7);

//Part 3: Given pk, calculate θk based on Eq.(6) ;

αk = α(k−1) − step size ∗ ∂kL
∂α

, wk = w(k−1) − step size ∗ ∂kL
∂w

;

βk = β(k−1) − step size ∗ ∂kL
∂β

, vk = v(k−1) − step size ∗ ∂kL
∂v

;

Return pK , θK = [αK , βK ,wK ,vK ] ;

∂uji

∂w
=

∂s(w · eji)

∂eji

eji,
∂bi

∂v
=

∂s(w · xi)

∂(w · xi)
xi (8)

Convergence Analysis. Algorithm 1 shows the entire optimization process of
our proposed model. There are two power iterations as shown in Part 1 (Eq. (1))
and Part 2 (Eq. (7)) of the algorithm. For all of these equations, they could
be rewritten as a unified form as zi = (1 − d)

∑
k∈Fi

tkizk + dy. This unified
representation defines a linear system problem and its closed form is Z = α(I −
(1 − α)T)−1Y. This closed form satisfies the convergence condition of Gauss-
Seidel iterative method [16]. In conclusion, all of the iterations can be solved in
linear time with a convergence guarantee.

4 Experiments

4.1 Experimental Settings

We conduct experiments on the collected Weibo data as described in Section 2.
We focus on predicting smartphone adoption in 2013Q2 (time t) based on the
smartphone status in 2013Q1 (time t−1). Given a snapshot of the social network,
for each task, we randomly split users into five equal parts and each time we
select 80% of the users as labeled users for training and the remaining 20%
users are used for prediction. We conduct five-fold cross validation and report
the average results. In fact, we only choose the leading four brands (i.e., iPhone,
Samsung, Nokia and Xiaomi) in Task 1 for prediction as the remaining brands
take less than 1% market share. The detailed data statistics can be found in
Table 2. As shown in this table, the data is very unbalanced, for most tasks, the
number of negative records is much larger than that of the positive records.
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Table 2. Dataset statistics of the two tasks. #P: the number of labeled positive users,
#N: the number of labeled negative users (#P+#N=#users). P ratio = #P

#P+#N
.

Task Users Edges Brand #P #N P ratio

Task 1 12,306 125,876

iPhone 5,152 7,154 41.9%
Samsung 854 11,452 6.94%
Xiaomi 458 11,848 3.72%
Nokia 313 11,993 2.54%

Task 2 144,567 15,829,075 / 22,192 122,374 15.35%

For the evaluation, we first use the AUC (i.e., Area Under the ROC Curve)
measure, which is especially useful for evaluating the performance of an unbal-
anced dataset [27]. A random guess would result in an AUC value around 0.5 and
the larger the value the better the performance. In addition, as we focus on the
most likely positive users of the test data, which can be used for marketing. We
measure the relative gain of the precision as Rel gain@N = Pre@N

P ratio
−1= #hits

N∗P ratio
-1.

This measure evaluates how the proposed models improve the precision com-
pared to random guess. A random guess will lead to a Rel gain@N result of 0.0
and the larger the value the better the performance.

Table 3. Summarization of different kinds of features

Type Feature Description Type Feature Description

Social

# of followers that have positive labels in t − 1

Profile

gender, location
is this user a verified account

# of followers that have negative labels in t − 1 #followers, #followees, #friends
# of friends that have positive labels in t − 1 #posts that the user sent in t − 1
# of friends that have negative labels in t − 1 #posts that the user sent in t − 1

Edge

whether they are friends

Brand
the brand the user used in
t − 1 (only available in Task
2)

# of co-followers that have positive labels in t − 1
# of co-friends that have positive labels in t − 1
# of co-followers that have negative labels in t − 1
# of co-friends that have negative labels in t − 1

Baselines. To the best of our knowledge, few researchers have tried to explore
the smartphone adoption problem with real world collected data. However, we
can borrow several classic models that are widely used for the binary class pre-
diction task in a social network: the first category builds classifiers using the
extracted graph information as features, and the second category directly prop-
agates the existing labels via random walks in this graph [5]. In the first kind, we
choose the logistic regression (LR) model. Specifically, we implemented the LRS

baseline that purely relies on Social network features and the LRSP baseline
which uses both Social network features and the user Profiles. For the second
kind, we choose label propagation (LP), which performs node class prediction
based on partially labeled data in a graph [31]. Specifically, LP can be seen
as an unsupervised version of our model that only utilizes the graph structure
information, i.e., the social influence factor in our model.
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Fig. 2. Comparison of the AUC results of different models for Task 1
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Fig. 3. Comparison of the Rel gain@100 results of different models for Task 1

Also, to demonstrate the fitness of the three proposed factors in our model,
we compare the proposed SHIP with three related models: SHI (Supervised
Homophily-Influence), SHP (Supervised Homophily-Personlity) and SIP (Super-
vised Influence-Personality). Please note that the simplified SIP model can be
seen as a superior version of the work proposed in [28], which can automatically
learn the relative importance parameter α between influence and personality. In
both LR and our proposed models, we have the regularization parameter λ. As
the dataset is very large, choosing λ in a reasonable range (e.g., [0.01, 100]) has
little impact on the final prediction results. For the remaining experiments, we
empirically set λ = 10. We summarize the profile, edge, and social features we
used in this paper in Table 3.

4.2 Experimental Results

Overall Performance. Task 1 focuses on predicting whether a user will buy a
particular brand as first-time buying behavior. Fig. 2 reports the AUC results of
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different models, where each brand’s prediction result is shown in the sub figure
and the detailed AUC value is followed by each method in the legend. First,
we observe that all models have better performance than a random guess.(i.e.,
an AUC value of 0.5) Among them, our proposed SHIP model is better than all
baselines with regard to all brands, followed by the three related models (i.e., SIP,
SHI and SHP), indicating the superiority of our proposed model and the impor-
tance of combining the three key factors together for predicting smartphone
adoption. Although the overall trend is the same, the detailed AUC results vary.
Among all brands, “whether to choose a Samsung for a first-time buying” is the
hardest to predict and the best AUC result is only 0.605. One possible reason is
that Samsung has too many device types, ranging from high-end smartphones
that compete with the iPhone to entry-level smartphones. The reasons why peo-
ple buy Samsung smartphones vary and are harder to predict. For the other
brands, the AUC reaches about 0.7 for SHIP. The average improvement is 3%
to 10% over LRSP and 15% to 30% for the remaining baselines. Similar trend
can be found for the Rel gain@100 comparison as shown in Fig. 3. Based on the
above analysis, we conclude that the proposed SHIP can help better capture the
decision process for first-time buying behavior, thus generating better results
than other baselines and related models for Task 1.
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Fig. 4. Overall comparison of Task 2: brand change prediction

In Task 2, we predict whether users will change brand in the next time period.
Fig. 4 reports both the AUC and the Rel gain@100 for different models in Task 2.
The overall trends are the same as Task 1. For both metrics, SHIP performs the
best, followed by our two related models (i.e., SIP and SHP) and LRSP baseline.
However, the related SHI model and the LRS baseline, which do not consider
the user preference factor, perform badly. In other words, after adding the user
preference factor (i.e., the user profile features as shown in Table 3 and the brand
feature), the performance improvement is very significant. E.g., the improvement
of LRSP over LRS is 20.66% for AUC and 100% for Rel gain@100, the improvement
of SHIP over SHI is 35% for AUC and more than 100% for Rel gain@100. Why is
the improvement so significant after adding the user preference factor? We leave
the explanations for the next section.
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Table 4. The learned relative weight of each factor

Factor Weight Representation
Task 1

Task 2
iPhone Samsung Xiaomi Nokia

Influence (1 − α) × (1 − β) 0.822 0.644 0.540 0.692 0.157

Homphily (1 − α) × β 0.081 0.138 0.181 0.219 0.42

Personality α 0.097 0.218 0.278 0.089 0.423

Impacts of the Parameters. As shown in Eq. (1), α and β are two important
parameters that control the relative effects of the three key factors for decision-
making. We summarize the learned relative weight of each factor of the two tasks
in Table 4. As shown in this table, in Task 1, the personality effect (α) and the
homophily effect (i.e., (1−α)∗β) for all brands are very small while the relative
contribution of social influence for all brands is larger than 50%. That is to say,
users are easily influenced by social neighbors for first-time buying behavior. In
contrast to this, the social influence effect is very small in Task 2 (i.e., 15.7%)
while there is a high impact of the personality factor and the homophily effect
for brand change behavior. In other words, users are not easily influenced by
social neighbors for changing brand. Their brand change behavior is more liked
caused by the homophily effect and their own preferences.

Table 5. Part of v in Task 2: the weight of the feature “the brand the user used in
t−1”

Brand iPhone Samsung Xiaomi Nokia

Weight -0.555∗ -0.269∗ -0.222∗ 0.266∗
∗Pass the T test at the confidence level of 0.005.

For brand manufactures, they would like to explore the inherent reasons
that may prevent customer loss, i.e., the brand change behavior in Task 2.
As explained before, after adding the user preference factor, the performance
improvement is prominent in Task 2. Also, the user personality effect contributes
more than 40% to brand change behavior. So we will focus on the user person-
ality effect of Task 2 in this section. Specifically, each dimension of parameter v
controls the importance of the corresponding user related feature for smartphone
adoption (Eq.(3)). The larger the absolute value of this dimension, the greater
the corresponding feature weights for smartphone adoption. In Task 2, we have
two kinds of user personality features: user profile features and the brand fea-
ture, which describes the brand a user used in t−1. To our surprise, all profile
features’ weights are around 0 and the weight of the brand feature dominates.
Next, we try to use this brand feature only in the logistic regression model and
the AUC reaches 0.7229, while LRSP’s result is 0.7300. The improvement is less
than 1% when adding so many user profiles and social features, which also indi-
cates social neighbors’ smartphone adoption status does not have a large impact
on users’ choices of changing smartphones. Thus, we argue, the most prominent



Predicting Smartphone Adoption in Social Networks 483

factor that determines whether a user will change brands later is the current
brand she/he uses. A user’s decision on whether to change brands follows the
overall brand loyalty. If most people that uses a particular brand in the current
time period are likely to change brand in the next time, then this user is also
likely to change without a discussion. Table 5 shows the learned weights of the
brand feature in Task 2. Among all the listed brands, iPhone users are most
loyal. They do not like to change to another brand in the next time period,
followed by Samsung and Xiaomi.

5 Related Work

Smartphone usage mining has attracted considerable attentions due to the rapid
growth of the smartphone market in recent years. Some researchers revealed
the correlation between mobile phone usage and user profiles [12,20,21]. Oth-
ers attempted to consider the factors that affect people’s choices when adopt-
ing a mobile device from various perspectives, such as culture [23], technology
needs [22] and perceived usefulness [18]. Among them, Harsha et al. found com-
pelling evidence of social influence in the purchase of mobile phones by sam-
ple surveys from Asian countries [8]. However, nearly all these works relied on
small-scale questionnaires without considering the smartphone adoptions in a
large-scale social network.

Our work is closely related to the problem of production adoption prediction
in social networks. Generally, some models purely utilized user’s profiles in social
networks for product adoption prediction [29,30]. Others further incorporated
the aggregated features extracted from social networks to boost product adoption
performance [6,9]. However, the global product diffusion process among linked
users is rarely analyzed, not to mention distinguishing the relative contributions
of each factor. While the importance of distinguishing various factors underlining
people’s correlated decisions in social networks has been well recognized, the
related work mainly focused on the homophily factor and the social influence
factor that lead to correlated user behaviors [2,14]. The proposed solutions either
estimated the upper bound of each factor or needed additional group information
of users. On the contrary, our proposed model explicitly balances the correlated
user behaviors and each user’s own preference. Also, the relative performance of
each factor can be learned automatically in the training process.

Our proposed model is also related to the node classification task, i.e., predict
the classes of unlabeled nodes with partially labeled nodes in this graph [5,13,26].
A basic assumption of these models is the label correlations in the network, thus
we can propagate the labels with respect to the intrinsic graph structure [24,31].
To leverage both the social network structure and the edge features, in recent
years, [3] first proposed a supervised random walk algorithm that guides label
propagation, where the social influence factor is explicitly modeled. Zeng et
al. [28] further extended the supervised random walk model for user affiliation
prediction by incorporating both the social influence and the user bias factors.
Nevertheless, the homophily effect between linked users was neglected by all
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these works. Thus our model can be seen as generalizing the recent advances of
these related methods in node classification tasks. Moreover, in contrast to these
previous approaches, our proposed model can automatically learn the relative
effect of each factor while others needed to tune the parameters manually.

6 Conclusion

In this paper, we have proposed a SHIP model for predicting smartphone adop-
tion in a social network. Our model identified the three key factors in the
decision-making process and can automatically distinguish the relative contri-
butions of each factor. Experimental results on a large-scale dataset showed the
strong prediction power of our model. An incisive conclusion is that the potential
first-time smartphone buyers are largely influenced by social neighbors’ choices
while a user’s decision on whether to change to another brand follows overall
brand loyalty. In fact, the proposed model is also generally applicable to other
node classification tasks. In the future, we plan to apply our model to other
smartphone markets, and we will study the adoption in a finer granularity of
time periods.
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