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Abstract: A highly efficient unbiased global optimization method called dynamic lattice searching (DLS) was
proposed. The method starts with a randomly generated local minimum, and finds better solution by a circulation of
construction and searching of the dynamic lattice (DL) until the better solution approaches the best solution. The DL
is constructed adaptively based on the starting local minimum by searching the possible location sites for an added atom,
and the DL searching is implemented by iteratively moving the atom located at the occupied lattice site with the highest
energy to the vacant lattice site with the lowest energy. Because the DL can greatly reduce the searching space and the
number of the time-consuming local minimization procedures, the proposed DLS method runs at a very high efficiency,
especially for the clusters of larger size. The performance of the DLS is investigated in the optimization of Lennard—
Jones (LJ) clusters up to 309 atoms, and the structure of the Ll is also predicted. Furthermore, the idea of dynamic
lattice can be easily adopted in the optimization of other molecular or atomic clusters. It may be a promising approach
to be universally used for structural optimizations in the chemistry field.
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Introduction

Global optimization is a challenging problem in many sciences and
engineering fields today.' In chemical fields, the applications of
global optimization include finding the lowest energy configura-
tion of a molecular system or finding the lowest energy confor-
mations of molecular or atomic clusters.””” These problems are
often nondeterministic polynomial-time (NP)-hard due to the large
quantity of parameters to be optimized and the fact that the number
of local minima grows exponentially with the problem size. There-
fore, establishing a highly efficient global optimization method is
a great challenge of computational chemistry.

Finding the global minimum of the Lennard—Jones (LJ) cluster
is one of these problems.'*° LJ clusters consist of identical atoms
interacting by an LJ potential:
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where N is the number of atoms and r;; represents the distance
between atoms i and j, which can be determined by the position of
each atom, and the generally used values of € and o are 1. It is not

only interesting as a model for heavy inert gases but also serves as
a popular benchmark system for global optimization algorithms. In
fact, despite the simplicity of the potential function, finding the
global minima of LJ clusters has been a challenging problem even
for a small N. Lots of methods have been developed for the
problem, such as basin-hopping and its variant,"'°~'* fast anneal-
ing evolutionary algorithm (FAEA),'>"'® random tunneling algo-
rithm (RTA),'”-'® genetic algorithm (GA),'*~?' simulated anneal-
ing (SA),>>* etc. Furthermore, modeling methods are also
proposed for making the problem easier.>>2°

The modeling method is the most powerful one for the LJ clusters.
For example, many global minima for N = 150 were found for the
first time by using lattices derived from icosahedron,? and a similar
strategy was used for N = 309.%° These methods are powerful for a
general case, but they cannot find the global minimum when the real
configuration is different from the model.

Correspondence to: X. Shao; e-mail: xshao@ustc.edu.cn

Contract/grant sponsor: Outstanding Youth Fund (from the National
Natural Scientific Foundation of China); contract/grant number:
20325517.

Contract/grant sponsor: Teaching and Research Award Program for
Outstanding Young Teachers (TRA POYT).

© 2004 Wiley Periodicals, Inc.



1694 Shao, Cheng, and Cai « Vol. 25, No. 14 « Journal of Computational Chemistry

Recently, there were a number of successful applications of
unbiased search methods for LJ clusters. One of the most powerful
methods is the basin-hoping method."'*'" Almost all global min-
ima listed in the Cambridge Cluster Database (CCD)?’ were re-
produced for N = 110. In ref. 12, a variant of the basin-hopping
method, called monotonic sequence basin-hopping (MSBH), was
applied for N = 110, and had a better performance than the
original version for some magic numbers (N = 75-77, 98,
102-104). More recently, a powerful evolutionary global optimi-
zation method, named conformational space annealing (CSA),®
was applied for N = 201, and obtained a very high successful rate
for most of N. It is a hybrid of Monte Carlo with minimization,*®
GA, and SA. Also, there are some other powerful unbiased meth-
ods for LJ clusters, such as the hierarchical greedy algorithm
(HGA),’® FAEA,'>'¢ and RTA.'”'8

Due to the large number of parameters to be optimized and the
continuity of the searching space, an efficient local minimization
(LM) method is necessary. The limited-memory quasi-Newton
method (L-BFGS)*' is widely adopted for LM of LJ clusters. How-
ever, LMs are very time-consuming when the atom number N is large.
For example, mean CPU time needed by one LM is about 0.5 s for
N = 300 using an Itanium2 processor (1.5 GHz). Most unbiased
global optimization methods are based on random mutations or ran-
dom moving atoms of the out layer, and LMs are necessary after those
operations. Therefore, the number of LMs is always very large before
convergence. For the fastest case, a number of LMs needed for
convergence is 1256 at N = 110 even if a simple greedy strategy is
adopted.'? Of course, the number will be much larger for population-
based evolutionary strategies. Therefore, the key for reducing com-
putational time is to reduce the number of LMs.

In our experiences, it was found that just specific positions
could be located at after LM when one atom is added to a fixed
cluster. Therefore, all the possible locations surrounding an un-
known local minimum can be found by LM. In this study, all these
locations are called the dynamic lattice (DL). With the established
DL, if we iteratively move the atom with high energy (called an
active atom) to the lattice site with lower energy, a new local
minimum with lower energy can be obtained, and by repetition of
the procedure, it will be possible to find out the globally minimized
configuration. Based on this strategy, a novel global optimization
method, called dynamic lattice searching (DLS), is proposed.
Because consumed time for establishing the DL is very short
compared to that for LMs, and the speed of DL searching is very
high, the proposed method has proven to be very fast in conver-
gence speed and very efficient in optimization ability. Further-
more, it should be noted that the DLS method is unbiased due to
the fact that it starts from a randomly generated local minimum
and the DL is constructed adaptively. Therefore, the DLS method
can be utilized as a universal method to solve the problems in
optimization of other molecular or atomic clusters.

Method

Dynamic Lattice Searching (DLS) Method

The basic idea of the DLS method consists of the fact that just
specific positions will be located after LM when one atom is added

to a fixed cluster. Therefore, the first step of the method is to
randomly generate a starting local minimum. Then, perform a
circulation of DL construction, DL searching, and LM. The DL
construction procedure will adaptively generate the DL around the
starting local minimum, the DL searching procedure will get some
low-energy candidates, and the LM procedure will obtain the
corresponding local minima of these candidates. If the best one of
the obtained local minima has lower potential energy than the
starting local minimum, it will be taken as the starting local
minimum of the next generation and repeat the above circulation.
Otherwise, the current starting local minimum is taken as the result
of this calculation. Detailed procedures of DL construction and DL
searching will be introduced in following sections.

Because only the low-energy candidates are minimized in each
generation and DLS utilizes the monotonic descent sequence strat-
egy, which is a kind of simple greedy strategy, DLS has a very
high convergence speed, and the number of LMs needed for
convergence is very small. However, DLS may converge at vari-
ous funnels of the potential surface due to the adoption of the
greedy strategy. We should not expect to find the global minima at
one run of DLS. Therefore, DLS will be restarted for N, times
from fresh randomly generated local minima in practical calcula-
tions. It is interesting that, when N, is reasonably big enough,
for example, N,,,, = 1000, the best solutions in different runs are
always distributed in the different funnels of the potential surface,
even for the steep funnels with vary narrow width. This may be the
reason to account for the efficiency of the DLS method.

DL Construction

To a given local minimum of an LJ cluster, at first, the coordinates
of each atom are rescaled to make all the atoms around the center
of the cluster, and obtain the maximum radius of the cluster
(R,,2x)- Then, N, primary lattice sites are generated with a uniform
distribution on the surface of a sphere with radius R, = R, +
7, where 7is a positive constant (7 = 0.2 in this study). All the N
sites compose the primary lattice (PL). Actually, the nth shell of
the Mackay icosahedral cluster was used to generate the PL in this
study, and the radius of the PL is rescaled to R,. Forn = 3,4, 5,
6, 7, and 8, the value of N, is 92, 162, 252, 362, 492, and 642,
respectively. It should be noted that the use of the Mackay icosa-
hedron is just to simulate a uniform distribution on the surface of
a sphere, and the topological information of the Mackay icosahe-
dron is not utilized. Therefore, this procedure is unbiased. Finally,
keeping the N atoms in the local minimum structure fixed, put an
atom into each site of the PL, and perform sub-LM on the single
atom to get a new position for the site. All the new sites form a set
of DL candidates. If the distance between a pair of DL candidates
is smaller than 8, where & is a positive constant (6 = 0.05 in this
study), the two sites are thought to be the same one. By such an
approach, the average size (N, ) of the constructed DL over 1000
runs is shown in Figure 1. It can be seen that the average size
increases lower than linearly with the number of atoms in the
cluster. This indicates that the searching space in the DL searching
procedure is greatly reduced.

Obviously, the number of parameters to be optimized in the
sub-LM is only three, and the evaluation and gradient function of
the sub-LM is about 2/(N — 1) complexity to that of the LM on
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Figure 1. Average size of DL as a function of cluster size.

an N-atom cluster. Therefore, sub-LM is much faster than the
generally used LM on all the atoms of a cluster. For example, CPU
time needed by one sub-LM is about 1/500 of that needed by one
LM at N = 100.

DL Searching

The aim of the DL searching procedure is to find some low-energy
solutions (low-energy configuration of an LJ cluster) by searching
the current DL. At first, the starting local minimum is searched to
find N,,,, atoms with the highest subenergy, and merge them into
the DL constructed above. The total size of the DL becomes N
= Npp. + N,y and the atom number of the remaining cluster
becomes N' = N — N,... Then calculate the following subenergy
items:
Potential energy of the remaining cluster:

N'—1 N o\ 12 o\°
remae 3 3\(7) - ()] @
i=1 j>i Y Y
Potential energy between the site i (i = 1, 2, ..., Np;) of the

DL and the remaining cluster:
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Potential energy between sites i and j (i, j = 1,2, ..., Np.)

of the DL:
o\ 12 o\
EDL(i’j) = 48[(7) - <7) :| “4)

In this way, DL searching becomes a combinational optimiza-
tion problem with the searching space Cy;. A possible solution is
to select N, sites from the DL, and the total potential energy of
the solution can be given by the evaluation function:

Nmov Nmov—=1 Nmov
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When N, and N, are small, it is not difficult to search the
DL even using an exhaust searching method. According to Figure
1, exhaust searching is available at about N = 110 and N, = 6.
But the consumed time will be unacceptable for larger N or N .-
On the other hand, if a small value is used for the number of active
atoms (N,,.,), the number of movable atoms will also be small,
and thus the optimization ability will be very limited.

Therefore, in this study, the principle of the simple greedy
method (SGM) is utilized to search the DL. Steps in a single SGM
search procedure can be summarized as follows:

1. Select N, sites randomly from the DL to generate a starting
solution S,. The energy of the solution can be obtained with
eq. (5).

2. With the current solution S, (k = 0, 1, 2, - --), calculate the
energy of each site in S;. Then, move the atom located at the
occupied site with highest energy to the vacant site with lowest
energy in the DL to generate a new solution S.

3. If E(S}) < E(S,), take S} as the starting solution of the next
generation (S, ;) and return to step 2. Otherwise, terminate the
iteration with the current solution S, as the best solution of this
SGM search.

The SGM search procedure is very fast due to the greedy
strategy. However, it should be noted that the best solution of an
SGM search is obtained only by iteratively moving an atom at a
worse site to a better site. It may converge at solutions in various
funnels of the potential surface. Therefore, to find the funnel
containing the better solution, the SGM procedure will be repeated
for N, times from different random starting solution S,,. On the
other hand, because the best solution of an SGM search is obtained
without LM, there is generally a small gap from the solution to the
bottom of the potential funnel after LM, and the gap may be
different for the best solutions of the N,,, times the SGM search.
This will result in a problem that the best solution obtained in an
SGM search with lower potential energy is not always lower after
LM. Therefore, during the N,,, times calculation, Ny, solutions
with lower potential energy, instead of only one best solution with
lowest potential energy, will be recorded for further LM. The
solution with the lowest potential energy after LM will be selected
as the final solution of this DL searching procedure.

Results and Discussion

Searching Procedure of DLS

In the methods based on the greedy strategy, the search procedure
from a starting local minimum to a final result will produce a
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Figure 2. The searching procedure of DLS in the optimization of Llyg
with parameters N, = 5 and N, = 20. The squares enclosed by dot
circles denote the local minima within the monotonic descent se-
quence.

sequence of local minima with lower and lower potential energy.
This sequence is generally called the monotonic descent sequence,
and the number of the local minima in the sequence is called
sequence length.

To illustrate the searching procedure and the performance of
DLS, the monotonic descent sequence in finding the global min-
imum of L]yg with parameter N, = 20 and N, = 5 was shown
in Figure 2. In the figure, the first square enclosed by a dot circle
above 0 generation is the starting local minimum. With the con-
structed DL from the local minimum, 5 (V,.) best solutions are
found within 300 (N,,,) trials of DL searching, which are labeled
with “+” above 0—1 generation in the figure, and the number of
the moved atoms is recorded simultaneously as shown by the solid
circles connected with the solid line. With LMs, the solutions will
be minimized to their local minima labeled with the squares, and
the best one (enclosed by a dot circle) will be chosen as the starting
point for the next generation of DL construction and DL searching.
The last square enclosed by a dot circle is the final solution of this
run of DLS. From Figure 3, it can be seen that, in this run, the
global minimum was found within only five generations, and the
number of LMs is 22. Because the speed of the DL construction
and the DL searching is very fast, the total consumed time of this
run is only around 1 s. On the other hand, from the number of the
actually moved atoms in each DL searching process, it can be
found that, generally, simultaneously movement of more than four
atoms are needed for finding a better solution. This operation is too
difficult for the conventional optimization methods such as GA
and SA.

Computational Results and Performance of DLS

At first, with the parameters listed in Table 1, DLS was run for the
optimization of the LJ clusters with 13 = N = 309. The aim of
setting N, more than 1000 is to guarantee more than 10 hits of
the global minima in most cases, especially for the cases of N =
250. It was found that all the known putative global minima for
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Figure 3. Average sequence lengths as a function of cluster size.

these clusters given in ref. 27 were reproduced with a very high
efficiency.

The average sequence length and the average number of LMs
per sequence in DLS calculations are given in Figure 3 as a
function of cluster size. Clearly, both the average length and the
average number of LMs (including the initial one) increase in a
trend lower than linearly with N. However, from Figure 3, there
are several obvious jump points in the curve of the average number
of LMs. With Table 1, it is easy to find that these points are caused
by the change of the parameters N, and N, because the
searching space increases with N, . and the number of LMs
equals to (or, sometimes, less than) the product of N, and the
sequence length. This result indicates that DLS can greatly reduce
the searching space and the number of the time-consuming LMs,
and furthermore, the reduction can be controlled by the parameters
N ooy and Ny. For example, the number of LMs in MSBH'? is
1256 in the optimization of the LJ,,, cluster, but the average
number of LMs per sequence in DLS for the cluster is only 26.5.
Therefore, DLS is a method with a very fast convergence speed,
even compared with MSBH.

Table 1. Parameters Used in DLS.

N Nmov Np Nlry Nbest Nruns
13-49 10 92 100 4 1000
50-79 15 162 200 4 1000
80-119 15 252 300 5 1000
120-149 20 362 350 5 1000
150-169 20 492 400 5 1000
170-189 20 492 450 8 2000
190-199 20 492 500 10 2000
200-229 20 492 550 10 2000
230-251 20 642 550 10 2000
252-309 25 642 700 10 2000
500 40 812 1000 10 10,000
“For the magic numbers (38, 75-77, 98, 102-104) N, = 10,000.
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Figure 4. Plot of the hit rates in the optimizations of the LJ clusters
with 13 = N = 309.

The successful rate or hit rate, that is, the number of runs hitting
the global minimum over the total number of runs, is another key
factor to evaluate an unbiased optimization method. Figure 4
shows the observed fractional hit rate as a function of cluster size
N in the calculations with the parameters listed in Table 1. Clearly,
the fractional hit rates for the clusters with N = 29 are very high
due to the simplicity of their potential surface, and then it has a
quick drop. After the drop, the hit rate goes down slowly with the
increase of the cluster size N, but the descending curve is full of
jumps in different magnitudes. The big jumps are found corre-
sponding to those clusters with different configurations from their
neighbors. Furthermore, there are four obvious downwards peaks
in the curve within N = 250. The first one is LJ;g, with face-
centered cubic (fcc) packing and the others are LJ;5 57, LI, 05 ;04»
L) g5 192, and LJ,5¢ 535 With decahedral packing, which are dif-
ficult cases for unbiased optimization methods. However, it is very
surprising that the hit rate for Llog with the Leary tetrahedral''
configuration, which is generally known as the most difficult case
for optimization, is just a similar value with its neighbors. Regard-
less of the exceptions, from the curve after N = 150, especially
after N = 280, it can be found that the descending trend of the hit
rates with the cluster size becomes very slow. This indicates that
the configuration of a cluster is the key factor affecting the hit rate,
that is, the difficulty of the optimization. On the other hand, this
also indicates that DLS method may be a promising tool for
clusters with large size.

From the results above, the hit rates of DLS are not higher than
the conventional methods. The lowest hit rate is only 0.15%.
However, the high convergence speed can compensate for its hit
rate, and makes it a very fast unbiased optimization method. At
first, the average number of LMs needed by one hit in the optimi-
zation of some selected clusters is compared with the MCM
basin-hoping algorithm,'® MSBH,'? and HGA*® in Table 2. It can
be seen that, for the clusters with N = 60, the number is in the
same level. However, for the clusters with N = 70, the numbers

Table 2. Mean LMs per Hit of Global Minima for Selected N by DLS
and Other Unbiased Global Optimization Method.

N MCM MSBH HGA DLS
20 35 34 8.3
30 1140 739 435
38* 2674 2875 3240
40 208 279 152.6
50 251 460 270
60 384 388 143
70 1527 1526 137
75* ~107 152,000 9259 2586
77" 13,158 2551
80 2540 2009 110
90 3024 4699 501
98* >10° 180,000 5660 597

100 7610 9128 610
102* >10° 36,028 7733
110 11,362 40,420 663
150 1398
188 12,234

200 4494

236" 30,875

250 11,347

300 14,875

“Nonicosahedral global minima.
Results of MCM and MSBH are from ref. 12, and results of HGA are from
ref. 30.

are significantly improved, especially for the clusters with noni-
cosahedral configurations.

Figure 5 shows the average number of LMs per hit of global
minima for the clusters with 13 = N = 309, the average CPU
time per hit is also shown in the figure. The computations were
carried out on an HP cluster with Intel Itanium2 Madsion proces-
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Figure 5. Average CPU time (seconds) and average number of LMs
per hit of global minima for clusters with 13 = N = 3009.
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sors (1.5 GHz). The program is written in C language, and the
compiler is Intel(R) C++ Compiler for Linux IA-64 7.1. The
same LM method was used as in CSA,?® but, compared with
|G|/V3W = 1.0 X 1073 used in CSA, a more precise stop
criterion |G|/V3N = 1.0 X 10~ was used in this work, where
G is the gradient of the LJ potential function. By comparison of the
average CPU time in Figure 5 with that in Figure 2 of ref. 28
(obtained with a processor Athlon 1.667 GHz), it can be found that
DLS is a much faster method than CSA. For example, the CPU
time for one hit of the global minima of LJ,5, Llog, and LJ,,, in
ref. 28 is nearly 10%, 10*, and 10° s, respectively. However, in this
work, the corresponding time is only 75.6, 29.3, and 935 s,
respectively.

On the other hand, the principle and the methodology of the
DLS are very simple. The CPU time consumed by DL construction
and DL searching is no more than 30% of the total time for most
cases, for example, 25% for N = 100, 18% for N = 200 and,
15% for N = 300, when parameters given in Table 1 are used in
the calculations.

To further investigate the performance of DLS with a larger N,
it is applied to the global optimization of L], using the param-
eters given in Table 1. The obtained structure with lowest energy
is found to be icosahedral packing with potential energy E =
—3382.693487, which is the same structure with the result re-
ported in ref. 30. The hitting rate of the lowest energy structure is
17/10,000, and the number of LM per hit is around 70,000, which
is slightly bigger than that of the HGA. This indicates that DLS
may be a promising tool for finding the global minima of LJ
clusters with larger N.

Conclusion

A highly efficient unbiased method, called dynamic lattice search-
ing (DLS), is proposed applied to the optimization of LJ clusters.
In DLS, the global minimum of a cluster is found by iteratively
finding a better solution from the randomly generated starting local
minimum with a simple greedy strategy (SGM) operation on the
adaptively constructed dynamic lattices (DLs). By using the DL,
both the searching space and the number of the time-consuming
local minimization procedures can be greatly reduced. With the
successful optimization of the LJ clusters with 13 = N = 3009, it
was proven that the DLS method runs in a very high efficiency,
especially for the large-size clusters. On the other hand, the idea of
dynamic lattice construction can be adopted in optimization of
other molecular or atomic clusters. It may be a useful approach to
reduce the searching space for global optimization problems and
universally used for structural optimizations in chemistry field.
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