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ABSTRACT: Global optimization algorithms have been widely used in the field of chemistry
to search the global minimum structures of molecular and atomic clusters, which is a
nondeterministic polynomial problem with the increasing sizes of clusters. Considering that
the computational ability of a graphic processing unit (GPU) is much better than that of a
central processing unit (CPU), we developed a GPU-based genetic algorithm for structural
prediction of clusters and achieved a high acceleration ratio compared to a CPU. On the one-
dimensional (1D) operation of a GPU, taking (Al2O3)n clusters as test cases, the peak
acceleration ratio in the GPU is about 220 times that in a CPU in single precision and the
value is 103 for double precision in calculation of the analytical interatomic potential. The
peak acceleration ratio is about 240 and 107 on the block operation, and it is about 77 and 35
on the 2D operation compared to a CPU in single precision and double precision,
respectively. And the peak acceleration ratio of the whole genetic algorithm program is about
35 compared to CPU at double precision. Structures of (Al2O3)n clusters at n = 1−10
reported in previous works are successfully located, and their low-lying structures at n = 11−15 are predicted.

1. INTRODUCTION
In the fields of chemistry, due to the large number of local
minimum structures of molecular and atomic clusters, it is
usually difficult to locate the lowest energy conformation. The
global optimization algorithm1−14 has been widely used to solve
this problem. In the past years, various methods have been
developed for global structural prediction, such as the genetic
algorithm (GA),15,16 simulated annealing algorithm,17,18

particle swarm optimization,19,20 basin-hopping and its
variants,1,21,22 fast annealing evolutionary algorithm,23,24

random tunneling algorithm,25−27 potential deformation,28,29

simple linkage,30,31 modeling methods,32−34 and so on.
However, as structural prediction is a nondeterministic
polynomial (NP) problem, the computation is very time-
consuming at a large size in all global optimizations.
Graphic processing unit (GPU) computing may be more

suitable for structural optimization at a large size. Over the past
years, there has been a remarkable increasing in the
performance and capabilities of GPUs.35 The modern GPU is
not only a powerful graphics engine, but also a parallel
computation processor in scientific computing, in which the
peak arithmetic and memory bandwidth is much better than
that of the central processing unit (CPU). This means that it
has practical significance on adding cores rather than increasing
single-thread performance. These features promote a new area
which is called general-purpose computing on GPU (GPGPU)
in high-performance calculations. Nowadays, GPU computing
has been widely used in the fields of chemistry, such as for
molecular dynamics simulations,36,37 chemical reaction process
simulations,38 quantum chemistry,39,40 and so on. Many
molecular dynamics software tools have already achieved
impressive speedup using GPUs, such as AMBER,41−43

OpenMM,44 and so on. However, so far there is no report

on the structural global optimization of atomic and molecular
clusters based on GPUs, and we believe that GPU computing
would have a good performance on structural determination.
GPGPU may have a good performance in algorithms of

global optimization, such as GA, which is the most common
global optimization method for structural prediction of atomic/
molecular clusters. In this paper, using (Al2O3)n clusters as test
clusters, we developed a GPU-based GA method for structural
prediction and achieved high acceleration ratio compared to the
CPU-based GA method.

2. THEORY AND COMPUTATIONAL METHOD
A. Potential Energy Function. The potential energy

function of (Al2O3)n clusters is based on the rigid-ion model
(RM) in which we consider each aluminum ion as a point
charge of +3|e| and each oxygen ion as a point charge of −2|e|.
The analytical interatomic potential (IP) between aluminum
and oxygen ions45 is calculated using eq 1.
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The IP has four different energy terms. The first is the coulomb
contribution, where qi and qj represent the charge of ions i and
j, and rij represents the distance between two ions. The
following three terms are the Lennard-Jones terms and Born−
Mayer terms, respectively. The values of parameter A is 1.0 eV·
Å12 for like-charged species and 10.0 eV·Å12 for others. The
values of Buckingham interatomic pair potential parameters B,
C, and ρ are shown in Table 1.33,46
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We know that the IP needs to be calculated between each
pair of two atoms. It means we should calculate the IP for A5n

2

times and count the half sum of them, as shown in eq 2, to
completely describe an (Al2O3)n cluster.
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B. Gradient Optimization Based on GPU. The limited-
memory Broyden−Fletcher−Goldfarb−Shanno (LBFGS) algo-
rithm is a gradient optimization algorithm47,48 in the family of
quasi-Newton methods. It is particularly suitable for
optimization problems with a large number of variables, such
as searching local maximum or minimum energy of cluster. The
local minima of (Al2O3)n clusters can be obtained using this
method. Similar as original BFGS, LBFGS uses an approx-
imation to the inverse Hessian matrix to steer its search
through variable space, but it only maintains a history of the
past m updates of the position x and gradient ∇f(x), where
generally the history size m could be small. LBFGS is a
universal algorithm of gradient optimization; however, we
should define some given data that includes the original matrix
(Hk0) optimization function ( f(x)) and its gradient (∇f(x)). In
our test case of (Al2O3)n clusters, the original matrix is the
spatial coordinates of (Al2O3)n clusters, the optimization
function is the IP and the gradient is the change ratio of IP,
as shown in eq 3.
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Figure 1 plots the flowchart of LBFGS. LBFGS starts with a
given structure of cluster, equation of its IP, and the limit
memory size M:

(1) Calculate the IP and gradient of the original given
(Al2O3)n cluster.

(2) According to the values of gradient, determine the search
direction and step-size along the gradient descent
direction. If the exit criteria is met, terminate the
program. Otherwise, if the working space wkm reaches the
limitation, delete the first value of wkm and then go to
step 3; else, go to step 3 directly. The exit criteria is that
the root-mean-square of gradient is close to zero (10−4)
or the IP and gradient have been computed more than
200 000 times.

(3) Adjust the structure of the (Al2O3)n cluster and store the
new spatial coordinates in wkm according to the search
direction and step size. The working space wkm stores not
only the adjusted structure, but also the information on
gradient, search direction, and step size.

(4) Calculate the IP and gradient of (Al2O3)n cluster which is
given by wkm.

(5) If the value of IP of step 4 is lower than that of step 1,
update original coordinates using wkm and then go to step
1. Otherwise, adjust the wkm slightly and recalculate the
IP and gradient within 5 attempts until the step 1
condition is satisfied. If this fails after 5 attempts, increase
the flag of failure by one, change the search direction,
reset the original coordinates using wkm, and go to step 1.
If the flag of failure reaches 20, terminate the program.

Obviously, with the increasing cluster size, the amount of
calculation for IP and gradient increase more rapidly. By
counting the running time of each part in CPU-version LBFGS,
it is proved that the calculation of IP and gradient occupies the
most part of time. When the cluster sizes are 1, 2, 4, 8, 16, 32,
64, and 128, these parts occupy 35.48%, 63.64%, 88.83%,
96.80%, 99.12%, 99.49%, 99.72%, and 99.91% of the total CPU
time, respectively,. The occupied proportion in calculating the
IP and gradient is nearly 100% while the cluster sizes is up to
128. It means that reducing the time of this part plays the key
role to accelerate all the calculation.
GPU is designed for a particular class of applications with the

following characteristics:35 (a) Computational complexities are
large. (b) Parallelism is substantial. (c) Throughput is more
important than latency. Obviously, both the IP and gradient
need massive calculation, they occupy the most time in LBFGS.
When computing the IP and gradient, the same formulas (eqs
1−3) are used in addition to the parameters. This meets the
demands of GPU parallel computing, and we try to calculate
the IP and gradient with a GPU using CUDA.
In November 2006, NVIDIA introduced CUDA (Compute

Unified Device Architecture), which is a general purpose
parallel computing platform and programming model that
leverages the parallel compute engine in NVIDIA GPUs to
solve many complex computational problems in a more
efficient way than on a CPU.49 In the CUDA programming

Table 1. Buckingham Interatomic Pair Potential Parameters
for Al2O3

pair potential parameters A (eV Å12) ρ (Å) B (eV) C (eV Å6)

Al3+-Al3+ 1.0 0.0 0.00
Al3+-O2− 10.0 0.2649 2409.505 0.00
O2−-O2− 1.0 0.1490 22764.000 27.88

Figure 1. Flowchart of LBFGS. Highlighted parts can be executed by
GPU.
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model, the smallest executable unit is a thread. A number of
threads can compose a block and a number of blocks can
compose a grid. Each thread has its own local memory, and
threads per block have a same shared memory. There is a
limitation for the number of threads per block, and for GPUs
after 2010, a block may contain up to 1024 threads.
CUDA is an extension of the C language, called CUDA C,

where the function is executed for N times in parallel by N
different CUDA threads. The GPU is treated as device, and the
CPU, as host. The kernels execute on a GPU, and the rest of
the C codes execute on a CPU. In this work, we try to design a
GPU-based LBFGS using CUDA C. The calculation of IP and
gradient are using the GPU memory, and the rest of the codes

are using the CPU memory. The calculation of IP and gradient
in LBFGS is regarded as the kernel, and the rest can be
executed on a CPU, as a tagging in Figure 1. There are three
patterns in our GPU-based LBFGS, named as one-dimensional
(1D), block, and two-dimensional (2D) operations. Figure 2
gives the sketch map of the three operations of the kernel.
In the test cases for (Al2O3)n clusters, there are N atoms.

First, we design a traditional one-dimensional (1D) operation.
It is a linear operation. We use one block with N threads, and
each thread computes the IP and gradient of one atom with all
other atoms. It should be noted that, there is a thread number
limitation in one block. When N is greater than the limitation
(1024 in this work), multiple blocks should be used.

Figure 2. Sketch map of the GPU-based LBFGS.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.5b00069
J. Chem. Inf. Model. 2015, 55, 1012−1020

1014

http://dx.doi.org/10.1021/acs.jcim.5b00069
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jcim.5b00069&iName=master.img-002.jpg&w=344&h=520


There is a shortcoming of traditional 1D operation. At a large
cluster size, there is too much computations in one thread, and
at the same time the thread number is too limited. To solve this
problem, Walker et al.41 developed a block operation. The N ×
N matrix of IP and gradient is divided into m2 blocks (m = N/
32), and the width of the block is 32 (32 threads can reach the
idealized maximum acceleration ratio). Only on-diagonal and
half off-diagonal titles need to be calculated, and the real block
number is [m(m + 1)]/2. There are 32 threads in one block,
and one thread calculates only 32 pairs of IP and gradient. The
total number of threads is N(m + 1)/2, which is (m + 1)/2
times of that in 1D operation.
At a small cluster size, the degree of parallelism in both 1D

and block operations are not sufficient due to the limited
number of threads. Thus, we design a 2D operation for the
calculation of small size. In 2D operation, there are N blocks,
and each block contains N threads. The total number of threads
is N2, and the N × N matrix of IP and gradient is calculated at
the same time in parallel.
It should be noted that, the concepts of 1D, block, and 2D

mean the patterns in computing the 2D matrix of IP and
gradient. The 2D operation here is different to the operation
with a 2D thread index. In 1D, block, and 2D operations, all
threads use the same formula but different parameters.
Different tasks are assigned for different threads to calculate
the IP and gradient between atoms in parallel by their thread
identifications.
C. Computational Process. In our test-case, we choose

GA for structural determination of (Al2O3)n clusters. GA
15,16 is

one of the most common methods for global optimization. It
belongs to the larger class of evolutionary algorithms (EA),
which generate solutions to optimization problems using
techniques inspired by natural evolution, such as inheritance,
mutation, selection, and crossover. The flowchart of GA is
shown in Figure 3, which has five steps.

(1) Define the parameters of GA such as cluster size,
population size, genetic algebra, proportion of genetic
manipulation, and so on, and then, stochastically produce
a population of (Al2O3)n clusters according to these
parameters and each individual has a different structure.

(2) Optimize each cluster in the population by the GPU-
based LBFGS.

(3) Evaluate the population. If the iteration number reaches
the preset maximum genetic algebra, exit. Otherwise, else
go to the next step.

(4) According to the parameters of GA, use genetic
manipulation for some clusters, which include crossover,
mutation, and select.

(5) Replace the worst cluster by a newly generated one in the
population, perform GPU-based LBFGS to optimize the
new cluster, and then go to step 3.

In CPU-version GA, LBFGS occupies most of the calculation
time. When the cluster sizes are 1, 2, 4, 8, 16, 32, 64, and 128,
LBFGS occupies 76.17%, 94.94%, 99.06%, 99.81%, 99.95%,
99.99%, 99.99%, and 99.99% of the total time, respectively.
This means that using GPU-based LBFGS is the key role to
improve the acceleration ratio of GA.

D. Development Platform. Our development platform is
the CentOS release 5.5 (Final) which is one of the Linux
release version. The compilers are gcc-4.1.2 for C codes and
nvcc-5.0 for the kernels. The CPU is Intel Xeon E5620, and the
GPU is NVIDIA Tesla C2050, where the compute capability40

of the Tesla C2050 is 2.1.

3. RESULTS AND DISCUSSION
A. Acceleration Ratio. In ideal conditions, the GPU

computing in parallel consumes only one time step. However,
considering the data transmission between devices and hosts, it
needs more time steps in actual calculation, and the
acceleration ratio cannot reach the ideal number.
GPU occupancy number is an important factor for

acceleration ratio. According to the NVIDIA CUDA C
programming guide,49 Tesla C2050 consists of 14 stream
multiprocessors (SMs). Each SM has 48 warps and each warp
has 32 threads. Thus, as shown in Figure 4, in order to reach

the idealized maximum acceleration ratio, at least 32 threads is
needed in one block and the thread number should exceed
21504 (14 × 48 × 32). Thus, in block operation the minimum
width of a block is 32 for the ideal acceleration ratio.
First, we only compute the IP and gradient in GPU and CPU

codes to compare the acceleration ratio. The computational
Figure 3. Flowchart of genetic algorithms. Highlighted parts can be
executed by GPU.

Figure 4. GPU occupancy per block with the increasing sizes of atom
numbers.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.5b00069
J. Chem. Inf. Model. 2015, 55, 1012−1020

1015

http://dx.doi.org/10.1021/acs.jcim.5b00069
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jcim.5b00069&iName=master.img-003.jpg&w=179&h=188
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jcim.5b00069&iName=master.img-004.jpg&w=239&h=180


capability of the GPU in this work is 2.1, and the speed of
single precision code is about twice that of the double precision
code.
Considered both single and double precisions, 1D, block, and

2D operation, there are six versions about GPU codes (1D-
single, 1D-double, block-single, block-double, 2D-single, and
2D-double). GPU codes cannot deal with too large a system
because of the limitation of GPU memory. The IP and gradient
of cluster can be calculated when the cluster size is about
hundreds of thousands in 1D and block operation and
hundreds in 2D operations. But the accelerate ratio is not
increasing while the cluster size is up to several thousands.
There is little difference in running time between the single and
the double precision computation in CPU, so we only choose
the CPU computation with double precision. All of the codes
above are running with O3 optimization and each program

calculates the IP and gradient 1000 times to reach a reliable
running time.
In Figure 5, we found GPU computing is faster than CPU

computing in case of the cluster size n is up to 3 or 4. In 1D
operation, the peak acceleration ratio for GPU computing is
about 103 in double precision, and the rate is about 220 in
single precision. On the block operation, the peak acceleration
ratio of GPU computing is about 107/240 in double/single
precision. On the 2D operation, the peak acceleration ratio of
GPU computing is about 35/77 in double/single precision.
Due to the limitation GPU memory, 2D operation cannot be
used in computing the cluster at too large sizes. The
performance of block operation is better than 1D operation
at medium cluster sizes, but they are the same at large cluster
sizes. However, the performance of 2D operation is much
better than that of 1D and block operations for small clusters
because of high GPU occupancy.

Figure 5. Acceleration ratio of 1D, block, and 2D GPU operations for computing the IP and gradient at float (top) and double (bottom) precisions
as a function of the atom numbers. The CPU codes in double precision are taken as references (dashed line).

Table 2. Accuracy of GPU and CPU Codes in Single- and Double-Precisionsa

average IP: single-precision average IP: double-precision

cluster sizes GPU CPU AARD (‰) GPU CPU AARD (‰)

1 −33.5898 −33.5899 0.00 −33.5899 −33.5899 0.00
2 −17.0117 −17.0123 0.04 −17.0123 −17.0123 0.00
4 −79.5255 −79.5271 0.02 −79.5267 −79.5267 0.00
8 28.8061 28.7926 −0.47 28.8035 28.8035 0.00
16 494.993 495.050 0.11 494.985 494.985 0.00
32 3104.12 3103.11 −0.33 3104.11 3104.11 0.00
64 6498.62 6497.68 −0.14 6498.54 6498.54 0.00
102 44620.7 44610.8 −0.22 44617.2 44617.2 0.00
128 23031.1 23025.2 −0.25
203 83885.8 83614.3 −3.25

aAARD means average absolute relative deviation.
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The global structural determination is an NP problem, and
only the systems with a small cluster size can be dealt with. The
speed of single precision computation is about two times as that
of double precision computation. However, as shown in Table
2, the single precision computation has low performance in
accuracy. Thus, in searching the structure of (Al2O3)n cluster (n
= 1−15), we choose double precision GPU and 2D operation.
The structures of (Al2O3)n clusters are determined by the

GPU-based GA and the running time is also recorded for CPU
serial computing and GPU parallel computing. As shown in
Figure 6, the peak acceleration ratio for the whole GA-GPU

computing is about 35 in 2D operation double precision, which
is close to the acceleration ratio in IP-GPU computing. GA-
GPU computing has a positive acceleration ratio at the cluster
size n = 3, and after that point, the acceleration ratio grows
rapidly until reaches the peak value ∼35.

B. Geometry Strutures. Using the GA-LBFGS method
based on GPU, we located the putative lowest-energy structures
of (Al2O3)n (n = 1−15) clusters.

(Al2O3)n (n = 1−5). As shown in Figure 7, the global
minimum (1A) is a state with D3h symmetry for Al2O3, the liner
isomer (1B) is 0.04 eV higher in energy, and the kite-shaped
(1C) is 0.60 eV higher in energy with C2v symmetry in our
calculation. For (Al2O3)2, the global minimum (2A) is a cage
with Td symmetry. The 2B isomers with C2v symmetry is 0.20
eV higher in energy, 2C isomers with C2v symmetry is 0.74 eV
higher in energy, and 2D isomers with C2h symmetry is 2.69 eV
higher in energy. For (Al2O3)3, 3A is a tea-cozy structure with
C1 symmetry, and the first three isomers are nearly degenerate
in energy. For (Al2O3)4, the superimposed isomer (4A) with
D3d symmetry that was assumed to be the global minimum
structure, it has two surfaces and each surface consists of three
deformed-hexagons. For (Al2O3)5, 5A is in the lowest energy
with C2v symmetry.

(Al2O3)n (n = 6−10). For large clusters, as shown in Figure 7,
the structures are more complex. 6A is the lowest energy
isomer for (Al2O3)6 with C1 symmetry. For (Al2O3)7, the triple-
tower-layer isomer (7A) with Cs symmetry is the global
minimum structure. For (Al2O3)8, the global minimum (8A) is
a cage with D2d symmetry, it is consisted of four surface and
each surface is a deformed-hexagon as 4A. For (Al2O3)9, 9A is
the most stable isomer with C1 symmetry, and for (Al2O3)10,

Figure 6. Acceleration ratio of GA-LBFGS in double precision as a
function of cluster sizes.

Figure 7. Structures, symmetry point groups, and relative energies (eV) of the global minimum and lower-lying structures of (Al2O3)n (n = 1−10)
that were calculated by GA-LBFGS: Al gray, O red.
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10A with C1 symmetry has the lowest energy with respect to
other isomers.
Putative structures of (Al2O3)n (n = 1−10) clusters have

been reported in the literature.41,50,51 We find that all the
reported structures have been successfully located by out GA-
GPU computing, indicating reliability of our method. The
energy orders of some clusters may be different due to the
differences for the method in calculating the energy.
(Al2O3)n (n = 11−15). We also predict the structures for

(Al2O3)n (n = 11−15) clusters which have not been reported,
using GPU computing. As shown in Figure 8, for (Al2O3)11, the
global minimum (11A) is a layered tower with Cs symmetry
which is similar to the 7A structure. For (Al2O3)12, 12A with C1
symmetry is the most stable isomer, in which some atoms can
overlap in the specific perspective. For (Al2O3)13, 13A is a
bottle-shaped structure with Cs symmetry. For (Al2O3)14, 14A is
a heart-shaped structure with D2 symmetry. For (Al2O3)15, 15A
is the global minimum structure with C1 symmetry which is a
bit like the composition of 9A.
C. Discussion. In this work, both 1D, block, and 2D

operations in GPU computing are investigated, where 1D and
block operation is linear and 2D operation is planar. For large
cluster sizes, peak acceleration ratio can achieved in 1D and
block operations when the occupancy rate of GPU reaches
100%, while at a small cluster size, the performance of 2D
operation is much better than that of 1D as the former one has
a higher occupancy rate of GPU. In our calculations, the
(Al2O3)n cluster is not so large, so 2D operation has better
performance.
In our GA-GPU codes, only the IP codes are replaced in

GPU. To achieve a higher acceleration ratio, the whole LBFGS
codes should be put into GPU. Furthermore, there are too
many complex logical operations in LBFGS, and it is
unreasonable to do so. A gradient-based local minimization
method suitable for GPU computing is expected for higher
performance.

4. CONCLUSIONS
In summary, we treat the (Al2O3)n clusters as the RM and
compute the IP of them to express the cluster energy using the
GPU-based GA-LBFGS to get the global minimum structures
of (Al2O3)n clusters. For (Al2O3)n clusters, all the optimization
structures are in good accordance with the structures found in
the previous work when n is from 1 to 10 and every
optimization structure has high symmetry when n is from 11 to
15. In calculation of the analytical interatomic potential and
gradient, the peak acceleration ratio in a GPU is about 220
times compared to a CPU in single precision, and the value is
103 for double precision. The peak acceleration ratio is about
240 and 107 on the block operation, and it is about 77 and 35
on the two-dimensional operation compared to a CPU in single
and double precision, respectively. This work can not only be
applied in (Al2O3)n clusters but also to other cluster systems,
and we contine this work to find a more efficient GPU
computing solution.
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