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Abstract—In computer graphics, triangular mesh representations of surfaces have become very popular. Compared with parametric

and implicit forms of surfaces, triangular mesh surfaces have many advantages such as being easy to render, being convenient to

store, and having the ability to model geometric objects with arbitrary topology. In this paper, we are interested in data processing over

triangular mesh surfaces through partial differential equations (PDEs). We study several diffusion equations over triangular mesh

surfaces and present corresponding numerical schemes to solve them. Our methods work for triangular mesh surfaces with arbitrary

geometry (the angles of each triangle are arbitrary) and topology (open meshes or closed meshes of arbitrary genus). Besides the

flexibility, our methods are efficient due to the implicit/semi-implicit time discretization. We finally apply our methods to several filtering

and texture applications such as image processing, texture generation, and regularization of harmonic maps over triangular mesh

surfaces. The results demonstrate the flexibility and effectiveness of our methods.

Index Terms—Triangular mesh surface, diffusion equation, finite-volume method, image processing, texture generating,

harmonic map.

Ç

1 INTRODUCTION

TRIANGULAR mesh surfaces have been widely used in
computer graphics in the last three decades. Compared

with parametric and implicit surfaces, mesh surfaces have
many advantages such as being easy to render, being
convenient to store, and having the ability to model
geometric objects with arbitrary topology. There have been
a huge volume of literature on the modeling and processing
of mesh surfaces such as rendering [32], subdivision [15],
[59], compression and simplification [47], [26], fairing [23]
and editing [56], [2], parameterization, and texture mapping
[43], [57]. However, there exists little work on data
processing such as image processing and vector field
processing over mesh surfaces.

In the past decade, there is much work on data processing
over parametric and implicit surfaces. Among various
techniques, methods based on partial differential equations
(PDEs) have attracted much attention. The reason is that other
techniques such as wavelet analysis are difficult to be
generalized over surfaces. In 1997, Kimmel proposed scale-
space concepts of images on parametric surfaces via PDEs
and presented numerical methods to solve the problem [30].
Following the framework, Spira and Kimmel studied
problems of image enhancement [44] and image segmenta-
tion [45] over parametric surfaces. Therein, PDEs are defined
and numerically solved in parametric domains. In [10], the
authors considered data processing over implicit surfaces.
They studied several typical PDEs on implicit surfaces and
applied them to several problems such as image denoising,
harmonic map regularization, and pattern formation. In 2005,

the authors of the present paper provided an image
inpainting algorithm over implicit surfaces [54]. Different
from PDEs over parametric surfaces, PDEs over implicit
surfaces are numerically solved in the euclidean space in
which the surfaces are embedded. For efficiency, PDEs are
actually solved in a narrow band near the implicit surface,
and before numerically solving the PDEs, the data need to be
extended to this narrow band. For details about data
extension, the reader is referred to [34], [54], and [53].

Based on previous work, there are obviously two ways to
deal with the data processing problem over mesh surfaces: by
converting the mesh surfaces into either parametric forms or
implicit forms. The first approach is based on mesh
parameterization. The mesh surface is parameterized first
(globally or locally), and then, PDEs are solved in the
parameter domain by numerical schemes proposed for
parametric surfaces. The method used to generate textures
in [52] and the flow simulation technique reported in [46] fall
into this category. However, on one hand, the difficulty of
surface global parameterization brings a fatal weakness since
there is no global parameterization for most mesh surfaces at
all. On the other hand, elaborate boundary handling of
patches should be considered in piecewise-parameterization-
based methods. Besides, to our knowledge, general surfaces
cannot be parameterized without distortion. It should be
pointed out that the method in [49] to solve PDEs over mesh
surfaces is intrinsically based on parameterization. For the
second approach, one can construct an implicit representa-
tion for the given mesh surface first [58] and then solve the
problem over the implicit surface. Again, new difficulties
appear. One needs to convert the data from mesh surfaces to
implicit surfaces when constructing the implicit representa-
tion, and then data, extension is needed before data
processing. This affects the efficiency of the whole process.

In this paper, we solve data processing problems via
directly solving diffusion equations over mesh surfaces for
filtering and texture applications. We use the finite-volume
method (FVM) coupled with implicit/semi-implicit time
integrals to discretize these equations. In fact, similar
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spatial discretization techniques have been developed in the
scientific computing community where meshes are usually
of simple topology and generally euclidean. These techni-
ques include methods with finite-element flavor [13],
covolume and mimetic methods for compatible discretiza-
tions of differential operators [1], generalized finite-differ-
ence methods (FDMs) [12], and FVM [8]. However, little
work focuses on solving PDEs directly over mesh surfaces
in 3D space—surfaces represented as polyhedrons—and
only a few references catch our attention [24], [22], [42]. Du
and Ju developed FVM schemes to solve the elliptic type of
equations over mesh surfaces [24]. Desbrun et al. built a
powerful toolkit, namely, Discrete Exterior Calculus (DEC),
over simplicial complexes [22], [28] and applied it to fluid
simulations successfully [25]. However, in DEC, simplices
are required to be well centered [28]. In [42], the authors
simulate fluid flows over mesh surfaces, where the
modified FDM is adopted. Our FVM-based method is valid
for arbitrary triangulated surfaces, including seriously
irregular mesh surfaces (which appear frequently in the
adaptive representation of mesh surfaces) and mesh
surfaces of arbitrary topology. Besides, our methods benefit
from implicit/semi-implicit time discretizations and thus
are very effective. Furthermore (and most importantly), our
contribution focuses on the applications of the technique in
image processing and texture generation.

The paper is organized as follows: In Section 2, we
introduce some concepts and notations. Then, several
diffusion equations are proposed in Section 3, and their
corresponding numerical methods are presented in Section 4.
In Section 5, we discuss some applications of the PDEs in
image processing, harmonic map regularization and texture
generation. Conclusion and future work are included in
Section 6.

2 NOTATIONS

Assume thatM is a triangulated mesh surface with arbitrary
geometry and topology in IR3. The set of vertices, the set of
edges, and the set of triangles of M are denoted as
fvi : i ¼ 0; 1; . . . ;V� 1g, fei : i ¼ 0; 1; . . . ;E� 1g, and f�i :
i ¼ 0; 1; . . . ;T� 1g, respectively. Here, V is the number of
vertices, E is the number of edges, and T is the number of
triangles. We explicitly denote an edge ewhose endpoints are
p, q as ½p; q�. Similarly, a triangle � whose vertices are p, q, and r
is denoted as ½p; q; r�. If v is an endpoint of an edge e, then we
denote it as v � e. Similarly, if e is an edge of a triangle � , it is
denoted as e � � ; if v is a vertex of a triangle � , it is denoted as
v � � [28]. For a given triangle � , its barycenter and
circumcenter are denoted byBCð�Þ and CCð�Þ, respectively.
Let BCðeÞ be the barycenter of edge e. Obviously, the
circumcenter CCðeÞ of an edge e is just the barycenter of e.
Similarly, we define the barycenter and circumcenter of a
vertex v to be itself, that is, BCðvÞ ¼ CCðvÞ ¼ v. Let N1ðiÞ be
the 1-neighborhood of vertex vi. It is the set of indices of
vertices that are connected to vi. LetD1ðiÞ be the 1-disk of the
vertex vi.D1ðiÞ is the set of triangles, with vi being one of their
vertices. It should be pointed out that the 1-disk of a boundary
vertex is topologically just half of a disk.

For each vertex vi, we define a piecewise linear
function �i such that �iðvjÞ ¼ �ij, i; j ¼ 0; 1; . . . ;V� 1,
where �ij is the Kronecker delta. It is obvious that the
support of �i is the 1-disk of the vertex vi. Furthermore,

f�i : i ¼ 0; 1; . . . ;V� 1g has the following good properties:
1) nonnegativity, that is, �i � 0, i ¼ 0; 1; . . . ;V� 1, and
2) partition of unity, that is,

P
0�i�V�1 �i � 1. A function u

defined over the triangulated surface M is considered to be
a piecewise linear function. Suppose u has function value ui
at vertex vi, i ¼ 0; 1; . . . ;V� 1; then, uðpÞ ¼

P
0�i�V�1 ui�iðpÞ

for any p 2M. Similarly, we can define vector-valued
functions ðu1ðpÞ; u2ðpÞ; . . . ; udðpÞÞ on M. For example, the
normal vector of M is such a function. In some applications,
the piecewise constant function over M is used, that is, a
single value is assigned to each triangle of M [28].

3 DIFFUSION EQUATIONS ON TRIANGULATED

SURFACES

In this section, we present several diffusion equations over
triangulated mesh surfaces, including linear/nonlinear
isotropic and anisotropic models. Assume that M is a
triangulated mesh surface, and a piecewise linear
function uðpÞ is defined on M. We denote the gradient
operator on M by rM and the Laplace-Beltrami operator on
M by4M . We assume that the initial function defined on M
is fðpÞ. For open surfaces, boundary conditions are needed.
If the mesh surface is closed, then the boundary condition is
ignored automatically.

3.1 Linear Model

The first model is a linear PDE defined as follows:

ut ¼ 4Mu;
@u
@~n j@M ¼ 0;
uðp; 0Þ ¼ fðpÞ;

8<
: ð1Þ

where ~n is the intrinsic outer normal of the boundary of M
lying on the tangent plane of M, and @M is the boundary of
M. Here, the Neumann boundary condition is set. When the
mesh surface M degenerates to a planar domain, the
linear model is just the classical heat equation, which is
widely applied in planar image processing, visualization of
2D vectors, etc.

3.2 Nonlinear Model

A general nonlinear PDE model is given as follows:

ut ¼ rM � g jrMujð ÞrMuð Þ;
@u
@~n j@M ¼ 0;
uðp; 0Þ ¼ fðpÞ;

8<
: ð2Þ

where gð�Þ is a nonnegative function (usually monotonically
descending). Specifically, by taking gðsÞ ¼ 1ffiffiffiffiffiffiffiffi

s2þ�
p , we have

the following typical nonlinear model:

ut ¼ rM � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrMuj2þ�
p rMu

� �
;

@u
@~n j@M ¼ 0;
uðp; 0Þ ¼ fðpÞ;

8>><
>>: ð3Þ

where � is a small positive number introduced to avoid

zero division. When the mesh surface M reduces to a planar

domain, the above model degenerates to the TV model [40],

[17], [20], which is very classical in planar image processing.

We call (3) the intrinsic TV model.
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3.3 Anisotropic Model

The linear and nonlinear models (1) and (2) are essentially
isotropic, that is, diffusion rates along different directions
are the same at a fixed point on M. In this section, we
present a general anisotropic PDE model. Assume that e1ðpÞ
and e2ðpÞ are two orthogonal piecewise constant vector
fields in the tangent space of M. That is, e1ðpÞ and e2ðpÞ are
constant vectors in each triangle of M, and they constitute
an orthogonal basis of the underlying space of the triangle.
Furthermore, we assume that g1ðjrMujÞ and g2ðjrMujÞ are
two positive functions. The anisotropic model reads

ut ¼ rM � g1ðrMu � e1Þe1 þ g2ðrMu � e2Þe2ð Þ;
g1ðrMu � e1Þe1 þ g2ðrMu � e2Þe2ð Þ � ~nj@M ¼ 0;
uðp; 0Þ ¼ fðpÞ:

8<
: ð4Þ

For different problems, appropriate functions g1 and g2

have to be chosen. Especially, if g1 ¼ g2, the anisotropic
model degenerates to an isotropic one. Furthermore, if
g1 ¼ g2 ¼ 1, the model (4) degenerates to the linear
model (1). From this point of view, the anisotropic model
is the generalized form of isotropic models.

4 NUMERICAL METHODS

In this section, numerical schemes are proposed to solve the
isotropic and anisotropic equations introduced in Section 3.
We adopt implicit/semi-implicit FVM schemes, that is,
implicit/semi-implicit time discretization coupled with
FVM spatial discretization.

4.1 Dual Meshes

Dual meshes are widely used in computational electro-
magnetism [1] and Discrete Exterior Calculus [28], [22].
Fig. 1 shows two typical dual meshes. The original mesh
consists of black lines, whereas the dual mesh is colored in
blue. The dual mesh in Fig. 1a is barycentric dual, formed by
connecting the barycenter and the middle point of each
edge in each triangle. The dual mesh in Fig. 1b is
circumcentric dual, formed by connecting the circumcenter
and the middle point of each edge in each triangle.
The circumcentric dual is in fact the Voronoi graph of the
original mesh. Any mesh always has a barycentric dual,
whereas its circumcentric dual may not exist. When a
triangle is an obtuse triangle, its circumcenter lies outside of
it. In this case, some numerical computation difficulties

arise. A method to deal with this case can be found in [33]

and [55]. For simplicity, we adopt the barycentric dual in

this paper.

4.2 Control Cell

Based on the concept of dual meshes, we assign a

control cell Ci to each vertex vi of mesh surface M.

The concept of control cells was used in [33] for

computing discrete geometry quantities. Fig. 2a shows

the control cell Ci for an inner vertex vi of the original

mesh, whereas Fig. 2b shows the control cell for a

boundary vertex. For the inner vertex vi, the boundary

of Ci is @Ci ¼
S
�2D1ðiÞ

S
vi�e�� ½BCðeÞ; BCð�Þ�. For the

boundary vertex, the boundary of the control cell is

@Cj ¼
[

�2D1ðjÞ

[
vj�e��

½BCðeÞ;BCð�Þ�

0
@

1
A[

[
vj�e	@M

½BCðvjÞ; BCðeÞ�

0
@

1
A:

Here, the orientations of intervals such as ½BCðeÞ; BCð�Þ�
should be taken in a sense with agreement to the clockwise

or counterclockwise orientations of the boundaries of

control cells.

4.3 Numerical Discretization

We discretize the PDEs via implicit/semi-implicit

FVM schemes: implicit/semi-implicit time discretization

and spatial discretization by integrating the PDEs over

some control cells. Then, a highly sparse linear system of

equations is obtained for each model. In the following, we

describe the details. The reader may refer to [8] and the

references therein for more knowledge about FVM.

4.3.1 Discretization of the Linear Model

For each vertex vi of the mesh model, we integrate the

two sides of (1) on the control cell Ci:Z
Ci

utdCi ¼
Z
Ci

4MudCi: ð5Þ

According to the divergence theorem, the right-hand side

of (5) is Z
@Ci

rMu � ~ndl;
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Fig. 1. A mesh and its dual mesh. (a) Barycentric dual. (b) Circumcentric

dual.

Fig. 2. Vertices and their control cells. (a) Barycentric dual: control cell of

an inner vertex. (b) Barycentric dual: control cell of a boundary vertex.



where ~n is the intrinsic outer normal of @Ci on M. To get a
more explicit expression of the above integral, we discuss it
in two cases: vi is an inner vertex or a boundary vertex.

If vi is an inner vertex, the above integral becomesZ
S

�2D1ðiÞ

S
vi�e��

BCðeÞ;BCð�Þ½ �
rMu � ~ndl

¼
X

�2D1ðiÞ

Z
S

vi�e��
BCðeÞ;BCð�Þ½ �

rMu � ~ndl;

where the orientation of interval ½BCðeÞ; BCð�Þ� should be
taken in a sense with agreement to the orientation of @Ci,
as mentioned in Section 4.2. When restricted in a triangle
� ¼ ½vi; vj; vk�

rMuj� ¼ uirM�i þ ujrM�j þ ukrM�k:

According to the piecewise linearity of �i, �j, and �k, we
know that rM�i, rM�j, and rM�k are three constant
vectors when restricted in � [28]; hence, so is rMuj� .
Therefore, the right-hand side of (5) becomes

X
�2D1ðiÞ

rMu �
Z
S

e;vi�e��
BCðeÞ;BCð�Þ½ �

~ndl:

By exchanging the order of sums, we obtain

ui!ii þ
X

j2N1ðiÞ
uj!ij; ð6Þ

where

!ij ¼
P

�;½vi;vj���
rM�j �

R S
e;vi�e��

BCðeÞ;BCð�Þ½ � ~ndl;

!ii ¼ �
P

j2N1ðiÞ
!ij:

8><
>: ð7Þ

If vi is a boundary vertex, by a similar derivation, we get
the same expression as (6) by noticing the boundary
condition of the PDE model. Thus, we get a uniform spatial
discretization for all the mesh surfaces. Since the barycentric
dual mesh is chosen, the coefficients in (6) are determined,
and therefore, they are time independent.

Now, we discretize the linear model. We adopt
implicit time discretization as follows:

Ai
unþ1
i � uni
4t ¼ unþ1

i !ii þ
X

j2N1ðiÞ
unþ1
j !ij;

where Ai is the area of the control cell of vi. Denoting
U ¼ ðu0; u1; . . . ; uV�1Þ0, the above equation is formulated in
the matrix form

WUnþ1 ¼ diagðA0; A1; . . . ; AV�1ÞUn; ð8Þ

where W is determined by f!ijg and the areas of the control
cells. As one will see, W is a highly sparse and symmetric
matrix. Hence, the preconditioned biconjugate gradient
(PBCG) method is a good choice to solve the linear system;
see the Appendix. Since an implicit scheme is applied,
one can choose large time steps. This discretization method
is much more efficient than explicit schemes. It should
be pointed out that one need not design a special

storage structure for the sparse coefficient matrix by using
the 1-disks and 1-neighbors of vertices of mesh surfaces.

4.3.2 Discretization of the Nonlinear Model

By a similar derivation with the linear model, we integrate
on the two sides of the first equation of (2) over the control
cell Ci of vertex vi. According to the divergence theorem,
the right-hand side of the equation becomes

X
�2D1ðiÞ

g jrMujð ÞrMu �
Z
S

e;vi�e��
BCðeÞ;BCð�Þ½ �

~ndl:

Since rMu is a piecewise constant vector field on M, it is
necessary to calculate the values on two triangles sharing
the common edge, respectively. The contribution of triangle
� ¼ ½vi; vj; vk� in the above summation is

g jrMuj� j
� �

ðuicii;� þ ujcij;� þ ukcik;� Þ; ð9Þ

where

cij;� ¼ rM�j �
R S
e;vi�e��

BCðeÞ;BCð�Þ½ �~ndl;

cik;� ¼ rM�k �
R S
e;vi�e��

BCðeÞ;BCð�Þ½ �~ndl;

cii;� ¼ �cij;� � cik;� :

8>><
>>: ð10Þ

Once the dual-mesh structure is chosen, coefficients cii;� ,
cij;� , and cik;� are determined, and therefore, they are
independent of time.

We discretize the model (2) via a semi-implicit scheme:

Ai
unþ1
i � uni
4t ¼X

�2D1ðiÞ
g jrMujn� j
� �

unþ1
i cii;� þ unþ1

j cij;� þ unþ1
k cik;�

� �
:

It can be written as in the matrix form:

KnUnþ1 ¼ diagðA0; A1; . . . ; AV�1ÞUn; ð11Þ

where Ai, i ¼ 0; 1; . . . ;V� 1, and U are defined in the linear
model, and Kn is also highly sparse and symmetric. Again,
the PBCG method is a good choice to solve the system. Note
that the coefficient matrix Kn is dependent on not only the
coefficients fcii;� ; cij;� ; cik;� ; cji;� ; cjj;� ; cjk;� ; cki;� ; ckj;� ; ckk;�g, but
also the data Un, so it should be updated dynamically.
However, the updating procedure is very simple and does
not expend much CPU cost; see the Appendix for details.

4.3.3 Discretization of the Anisotropic Model

Based on the numerical scheme of the nonlinear isotropic
PDE, one can design a discretization scheme for the
anisotropic model (4) analogously. We integrate the
two sides of the first equation in (4) over the control cell
Ci of vi and write the right-hand side of the equation asX

�2D1ðiÞ
g1 jrMujð ÞðrMu � e1Þe1 þ g2 jrMujð ÞðrMu � e2Þe2ð Þ

�
Z
S

e;vi�e��
BCðeÞ;BCð�Þ½ �

~ndl:

Here, we use the fact that rMu, g1ðjrMujÞ, g2ðjrMujÞ, e1,
and e2 are all constants when restricted on a triangle.
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Concretely, the contribution of triangle � ¼ ½vi; vj; vk� in the
above summation is

g1 jrMuj� j
� �

uic
1
ii;� þ ujc1

ij;� þ ukc1
ik;�

� �
þ g2 jrMuj� j

� �
uic

2
ii;� þ ujc2

ij;� þ ukc2
ik;�

� �
;

ð12Þ

where

c1
ij;� ¼ ðrM�j � e1Þ e1 �

R S
e;vi�e��

BCðeÞ;BCð�Þ½ � ~ndl

 !
;

c2
ij;� ¼ ðrM�j � e2Þ e2 �

R S
e;vi�e��

BCðeÞ;BCð�Þ½ � ~ndl

 !
;

c1
ik;� ¼ ðrM�k � e1Þ e1 �

R S
e;vi�e��

BCðeÞ;BCð�Þ½ � ~ndl

 !
;

c2
ik;� ¼ ðrM�k � e2Þ e2 �

R S
e;vi�e��

BCðeÞ;BCð�Þ½ � ~ndl

 !
;

c1
ii;� ¼ �c1

ij;� � c1
ik;� ; c

2
ii;� ¼ �c2

ij;� � c2
ik;� :

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð13Þ

These coefficients are also determined once the dual-mesh
structure and the orthogonal vector fields are chosen.

Now, the numerical scheme of the anisotropic (4) is
described as

Ai
unþ1
i � uni
4t ¼X

�2D1ðiÞ
gn1 unþ1

i c1
ii;� þ unþ1

j c1
ij;� þ unþ1

k c1
ik;�

� �

þ
X

�2D1ðiÞ
gn2 unþ1

i c2
ii;� þ unþ1

j c2
ij;� þ unþ1

k c2
ik;�

� �

or in matrix form

LnUnþ1 ¼ diagðA0; A1; . . . ; AV�1ÞUn: ð14Þ

When g1ðjrMujÞ and g2ðjrMujÞ are not constant functions,
the coefficient matrix Ln is dependent on not only
the coefficients fc1

ii;� ; c
1
ij;� ; c

1
ik;� ; c

2
ii;� ; c

2
ij;� ; c

2
ik;� ; c

1
ji;� ; c

1
jj;� ; c

1
jk;� ;

c2
ji;� ; c

2
jj;� ; c

2
jk;� ; c

1
ki;� ; c

1
kj;� ; c

1
kk;� ; c

2
ki;� ; c

2
kj;� ; c

2
kk;�g, but also the

data u at tn. Hence, Ln need to be updated dynamically in
each time step. Similarly, Ln is also highly sparse and
symmetric.

In our applications, we choose two constants for
g1ðjrMujÞ and g2ðjrMujÞ. In this case, the coefficient matrix
is independent of time and, hence, the updating procedure
is skipped.

4.3.4 Computation of Coefficients

In this section, we derive more concise expressions for those
coefficients obtained in the above sections. As one can see,
the integrals of the normal vectors over the boundaries of
control cells play an important role.

Theorem 1. Let � ¼ ½A;B;C� be a triangle and � ¼ �ðtÞ,
t 2 ½0; 1�, be an arbitrary curve within the triangle with
endpoints �ð0Þ ¼ P and �ð1Þ ¼ Q, as shown in Fig. 3a. ThenZ

�ðtÞ
~ndl ¼ jPQj~nPQ; ð15Þ

where ~n is the normal vector of �ðtÞ, and ~nPQ is the unit vector
perpendicular to the line segment ½P;Q� ¼ �ð1Þ � �ð0Þ.

Proof. Consider the underlying plane of the triangle
½A;B;C� with coordinate system ðx; yÞ. Then, we haveZ

�ðtÞ
~ndl ¼

Z 1

0

ðy0;�x0Þ
�0ðtÞj j �0ðtÞj jdt

¼
Z 1

0

ðy0;�x0Þdt

¼
Z 1

0

y0dt;

Z 1

0

�x0dt
� �
¼ jPQj~nPQ:

This proves the theorem. tu
Based on the above theorem, the coefficients in the

previous sections can be computed as follows: In Fig. 3b, the
dashed blue line segment whose endpoints are the inter-
sections of the boundary curve of control cell Ci within

� ¼ ½vi; vj; vk� with the edges of � is parallel to edge ½vj; vk�.
The green vector is the normal of the dashed blue line. The
red vector stands for the gradient vector rM�j restricted in

� that is perpendicular to the opposite edge of vertex vj and
whose length is the reciprocal of the distance between vj
and the underlying line of ½vi; vk� [28]. Thus, the coefficients

defined in (7), (10), and (13) can be calculated through
simple vector operations; see the Appendix for details.

Further analysis will help to show the symmetry proper-
ties of the coefficient matrices in the diffusion models.

Referring to Fig. 3b, by some analysis, one can easily obtain

!ij ¼
1

2
ðcot�ij þ cot�ijÞ;
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Fig. 3. Computation of coefficients. (a) Normal vector integral. (b) !ij and

cij;� . (c) c1
ij;� and c2

ij;� . (d) c1
ji;� and c2

ji;� . (e) c1
ik;� and c2

ik;� . (f) c1
ki;� and c2

ki;� .



which shows the symmetry of the coefficient matrix of the

linear model (1). This expression was also obtained in [28]

and [22]. We also have

cij;� ¼
1

2
cot�ij;

which demonstrates the symmetry of the coefficient matrix
of the nonlinear model (2). Expressions for the coefficients
of the anisotropic model such as c1

ij;� and c2
ij;� are a bit more

complex. Assume that two piecewise constant orthogonal
vector fields e1 and e2 are given. Suppose the angle from
rM�j to e1 (in clockwise) is �, as shown in Figs. 3c, 3d, 3e,
and 3f, and e2 is rotated from e1 clockwise by �

2 . Then, we
can express those coefficients via � and angles ffi, ffj, and ffk
with respect to vertices vi, vj, and vk of � . From (13) and
Figs. 3c and 3d, we have

c1
ij;� ¼

1

2 sin ffk cos � cosð�� ffkÞ ¼ c1
ji;� ;

which shows the symmetry of c1
ij;� and c1

ji;� . From Figs. 3e

and 3f, we obtain that

c1
ik;� ¼

�1

2 sin ffj cosð�þ ffiÞ cosð�� ffkÞ ¼ c1
ki;� :

For c2
ij;� , c

2
ji;� , c

2
ik;� , and c2

ki;� , one simply replaces � by �þ �
2

and gets

c2
ij;� ¼

1

2 sin ffk sin � sinð�� ffkÞ ¼ c2
ji;�

and

c2
ik;� ¼

�1

2 sin ffj sinð�þ ffiÞ sinð�� ffkÞ ¼ c2
ki;� :

Therefore, the coefficient matrix of the anisotropic model

is also symmetric. Furthermore, one can verify that

c1
ij;� þ c2

ij;� ¼ cij;� . This fact is expected since the nonlinear

model is just a special case of the anisotropic model in

which g1ð�Þ ¼ g2ð�Þ.

5 APPLICATIONS

In this section, several applications of the three
PDE models are to be presented. These applications
include image denoising, image inpainting, harmonic map
regularization, and texture generating over triangulated
mesh surfaces.

Planar image processing is a classical and popular
research field with many interesting problems and
applications. A wealthy of literature has discussed the
problems, and many techniques have been put forward in
recent decades. Among them, the PDE-based methods
have attracted much attention. These methods include
scale-space constructing algorithms [31], [29], [36], [38],
[51] for multiresolution representations, edge-preserving
image denoising techniques [40], [17], [16], [18], [27],
image decomposition methods [3], [4], [35], image inpaint-
ing algorithms [11], [9], [19], [6], [7], edge detection and
segmentation techniques based on level set methods [14],
[21], [39], [50], etc. Two good review papers in this aspect
are [20] and [41].

5.1 Denoising Images over Triangulated Surfaces

So far, there are many efficient planar image denoising
models including linear and various nonlinear PDEs. It can be
shown that the linear PDE model is equivalent to Gaussian
convolution. To preserve edges while denoising, various
nonlinear PDE models are proposed by modifying the
coefficient of heat exchange in the linear model [36] or by
the variational principle [40]. Nonlinear image denoising
models are difficult to be realized via convolution-based
methods. Later on, PDE-based methods were generalized to
denoise images on implicit surfaces [10]. In [5], the authors
described a texture denoising model on mesh surfaces
coupled with a surface fairing technique. Their method falls
into finite-element methods (FEMs) based on the local
parameterization of triangular mesh surfaces. Furthermore,
handling of surface boundaries should be considered in their
method since a smooth function space based on Loops
subdivision is used.

In this section, we propose an algorithm for denoising
images over triangulated surfaces by directly solving PDEs
over the surfaces. The advantage is that difficulties are
avoided because of nonconversions between mesh surfaces
and parametric/implicit surfaces. In the following, the
function u stands for the color information over the mesh
surface. Furthermore, the noise model is assumed to be
Gaussian. This yields a constraint term (also called a fidelity
term)

	ðf � uÞ

in the final PDE model, where 	 is the Lagrangian
multiplier (see [40] for the planar case and [10]). The linear
denoising model is thus

ut ¼ 4Muþ 	ðf � uÞ;
@u
@~n j@M ¼ 0;
uðp; 0Þ ¼ fðpÞ:

8<
: ð16Þ

Based on the intrinsic TV (3), a typical nonlinear
denoising model is

ut ¼ rM � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrMuj2þ�
p rMu

� �
þ 	ðf � uÞ;

@u
@~n j@M ¼ 0;
uðp; 0Þ ¼ fðpÞ:

8>><
>>: ð17Þ

Different from the method in [5], the numerical dis-
cretization of (16) and (17) based on FVM is straightforward
according to the numerical schemes described in the above
section, and no special treatment of surface boundaries is
needed in the final computation. The choice of the
Lagrangian multiplier 	 is a consideration. A different 	
will result in a different effect. When 	 is large, the
denoising procedure will be affected mainly by the
constraint term. However, if 	 is small, then the diffusion
term becomes the leading factor. 	 can be considered to be
in inverse proportion to the variance of the noise. In
practical applications, the variance of the noise for each
individual image is estimated since the accurate computa-
tion is expensive and unnecessary, as demonstrated in our
experiments. Our experiments show that this simple and
direct strategy works very well.

Our models work for any triangulated surfaces with
arbitrary geometry and topology. We provide several
examples to demonstrate the method, as shown in Figs. 4

WU ET AL.: DIFFUSION EQUATIONS OVER ARBITRARY TRIANGULATED SURFACES FOR FILTERING AND TEXTURE APPLICATIONS 671



and 5. Each row in the figures illustrates an example. In each
example, the left image is the original image with noise, the
middle image is the result of the linear denoising model (16),
and the right image is the result of the intrinsic TV model (17).
In Fig. 4, the first row shows an example of denoising a gray
image with 25 percent noise on a closed surface, the second is
an example of denoising a color image with 50 percent noise
on a closed surface, and the third row illustrates an example
of denoising the Lena image with 33 percent noise painted on
an open mesh surface on which Neumann boundary

conditions are used. From the examples, one can see that
the nonlinear model produces better results than the linear
model. Specifically, the nonlinear model preserves edges
perfectly, whereas the linear model smoothes out them when
removing noises from images. The CPU cost for both image
denoising models is less than 1 minute.

In Fig. 5, we illustrate two examples of denoising images
with different noises on a closed surface. The noise in the first
example is 20 percent and much less than that in the second
example in which 80 percent noise is added. As one can see

672 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 4. Denoising images on closed (the first and the second rows) and open (the third row) surfaces. For the third row, boundary conditions should
be considered.



from the denoising results, noise removal is much more
difficult in the second example than in the first one. However,
the nonlinear model still produces acceptable results—pre-
serving edges—although the noise is much stronger. For the
linear denoising model, when the noise is strong enough,
small structures of images will be smeared by the blur effect of
the model (look at the eyes of the bunny).

5.2 Inpainting Images on Triangulated Surfaces

The image inpainting problem was first proposed by
Bertalmio et al. in [11]. Usually, distortions such as
scratches exist in an old photo. Image inpainting algorithms
aim to repair these distortions automatically by computers.
Inpainting algorithms can also be applied to features of
movie magic, text removal [20], etc. There are many
techniques for inpainting planar images [11], [9], [19], [6],
[7]. However, little work is done on inpainting images on
surfaces. The authors of the present paper proposed an
image inpainting algorithm on implicit surfaces [54]. In this
section, we present models and algorithms for inpainting
images over triangulated mesh surfaces.

We assume that the noise model is Gaussian and the
image information over D �M is distorted. Since f jD is
missing and, hence, not trustful, we introduce a function,
which is called inpainting mask, as

1DðpÞ ¼
1; p 2M nD
0; p 2 D

	

to help to build the fidelity term. The linear inpainting

model is

ut ¼ 4Muþ 	1Dðf � uÞ;
@u
@~n j@M ¼ 0;

uðp; 0Þ ¼ fðpÞ frdðpÞð Þ;

8><
>: ð18Þ

where frdðpÞ is a random initial guess introduced as a choice

of the initial condition, which is defined as

frdðpÞ ¼
fðpÞ; p 2M nD;
random number; p 2 D:

	

Sometimes, this simple trick can provide a faster inpainting
procedure. A typical nonlinear model is the following
intrinsic TV model:

ut ¼ rM � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrMuj2þ�
p rMu

� �
þ 	1Dðf � uÞ;

@u
@~n j@M ¼ 0;
uðp; 0Þ ¼ fðpÞ frdðpÞð Þ;

8><
>: ð19Þ

where frdðpÞ is the same as that in (18).
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A similar technique with the discretization of (16) and
(17) is applied to numerically discretizing (18) and (19).
Here, three examples are illustrated in Fig. 6 to demonstrate
the inpainting algorithm. For each row of an example, the
left is the distorted image in which scratches (even crossing
edges of images) or random spots or a combination of
these two distortions can be observed; the middle and
right images are inpainted results via the linear model (18)
and the nonlinear inpainting model (19), respectively. As in

the image denoising problem, the nonlinear inpainting

model produces a better effect than the linear model. The

linear model (18) blurs the undistorted part of the original

image while inpainting the distorted part, whereas the

nonlinear inpainting model (19) preserves the undistorted

part perfectly. To speed up the computation, we choose

larger time steps than those in the image denoising

problem. Also, random initial guesses are used. Again,
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Fig. 6. Inpainting images on closed (the first and the second rows) and open (the third row) surfaces. Therein, the surface in the first row has a genus
of 2. For the third row, boundary conditions are considered.



only a few iterations are needed to obtain the results shown
in Fig. 6. CPU costs do not exceed 1 minute.

5.3 Regularizing Harmonic Maps on Triangulated
Surfaces

Consider a vector-valued function u ¼ ðu1; . . . ; umÞ : M !
Sm�1 on a manifold M, where Sm�1 is the unit sphere of
dimension m� 1. Especially, if m ¼ 3, u is restricted on a
2D sphere, that is, a vector-valued function that has
three components with unit length. Many quantities
such as principal directions and normal directions of the
surface M, and normalized RGB vectors of color images
fall into this category. In the following, we introduce
models to regularize vector-valued map u.

As pointed out in [10], one can obtain a coupled system
of PDEs:

@uk
@t
¼ rM � jrMujp�2rMuk

� �
þ ukjrMujp; 1 � k � m;

for harmonic map regularization via constrained energy
minimization. Here,

jrMuj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1�k�m

jrMukj2
s

;

and p � 1. In this paper, we study two typical regulariza-
tion models: the linear model ðp ¼ 2Þ and a nonlinear model
ðp ¼ 1Þ. For a triangulated surface M, with the boundary
and initial conditions concerned, the two models are given
as follows:

@uk
@t ¼ rM � ðrMukÞ þ ukjrMuj2; 1 � k � m;
@uk
@~n j@M ¼ 0; 1 � k � m;
ukðp; 0Þ ¼ fkðpÞ; 1 � k � m;

8<
: ð20Þ

and

@uk
@t ¼ rM � rMukffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jrMuj2þ�
p
� �

þ ukjrMuj; 1 � k � m;
@uk
@~n j@M ¼ 0; 1 � k � m;
ukðp; 0Þ ¼ fkðpÞ; 1 � k � m;

8>><
>>: ð21Þ

where � is a small positive number.
It is straightforward to discretize (20) and (21) as

previous models. After discretization, linear systems are
then obtained whose coefficient matrices have little differ-
ence from those for models (1) and (3). It should be pointed
out that all components must be calculated in each time step
since they are coupled. We illustrate two examples in Fig. 7.
Mesh surfaces with noisy normals are shown in the first
column. The second column is the result of the linear model
(20), and the third column is that of the nonlinear
regularization model (21). The second row is the zoom-ins
of the first row. One can see that the nonlinear regulariza-
tion model preserves the sharp features of normals,
whereas the linear model smoothes them out (look at the
nose of the horse in the zoom-ins, also the lip and jaw of the
Venus head). The computational time for both models
ranges from several seconds to several minutes.

5.4 Generating Textures on Triangulated Surfaces

Texture mapping on mesh surfaces is very popular and has
been studied for many years in computer graphics commu-
nity. So far, a lot of algorithms have been put forward to map

textures onto mesh surfaces, and most of these algorithms are
based on surface parameterization. However, as pointed
out in previous sections, parameterization causes many
difficulties such as global parameterization is very hard for
complex geometry and topology, local parameterization
introduces distortion, and one has to handle cracks of atlases.

In this section, we present a method to generate textures
directly on mesh surfaces by PDEs. In fact, such techniques
appeared in more than 10 years ago [49], [52], and they are
based on a kind of reaction-diffusion equations that initially
appeared in chemistry science and were discovered by
Turing in 1952 to generate “patterns” (textures in images)
[48]. The basic idea in these techniques is to have a number of
“chemicals” that diffuse at different rates and react with each
other. The pattern is then obtained by assigning a brightness
value to the concentration of one of the chemicals. It is obvious
that different reaction-diffusion equations or even the same
equation with different parameters generate different pat-
terns. This method attracts little attention for its low
efficiency. The first reason affecting the efficiency is that the
PDEs are not solved directly over mesh surfaces. The authors
of [52] solved the PDEs in the piecewise parametric spaces of
the given surface. In [49], the authors projected the neighbors
of a vertex of the mesh surface to a plane at first and
then constructed a Voronoi graph and locally solved their
reaction-diffusion model numerically. This projecting proce-
dure is intrinsically a local parameterization, and hence, the
algorithm is costly. Furthermore, errors are introduced
into the numerical computation for metric distortion of
parameterization. The second reason is that their numerical
methods are all based on explicit schemes, which brings a
strict time step constraint when the triangles of the
mesh surfaces are seriously irregular and nonuniform. In
this section, we present a new method to numerically solve
the reaction-diffusion equations directly on mesh surfaces
based on implicit/semi-implicit FVM schemes.

The first model is given as follows:

@u1

@t ¼ D14Mu1 þ F ðu1; u2Þ;
@u2

@t ¼ D24Mu2 þGðu1; u2Þ;
@u1

@~n j@M ¼ 0;
@u2

@~n j@M ¼ 0;

8>>><
>>>:

ð22Þ

whereu1 andu2 are concentrations of two “chemicals” whose
diffusion rates are D1 and D2, respectively, and F and G are
two functions indicating the reaction between the
two chemicals. The initial values of u1 and u2 are usually
random numbers and hence are omitted in the reaction-
diffusion model. Equation (22) is an isotropic model. To
control the final textures more flexibly, one can adopt the
following anisotropic model:

@u1

@t ¼ rM �
�
g11 jrMu1jð ÞðrMu1 � e1Þe1 þ g12 jrMu1jð Þ

ðrMu1 � e2Þe2

�
þ F ðu1; u2Þ;

@u2

@t ¼ rM �
�
g21 jrMu2jð ÞðrMu2 � e1Þe1 þ g22 jrMu2jð Þ

ðrMu2 � e2Þe2

�
þGðu1; u2Þ;

g11 jrMu1jð ÞðrMu1 � e1Þe1þg12 jrMu1jð ÞðrMu1 � e2Þe2ð Þ
�~nj@M ¼ 0;
g21 jrMu2jð ÞðrMu2 � e1Þe1þg22 jrMu2jð ÞðrMu2 � e2Þe2ð Þ
�~nj@M ¼ 0;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð23Þ

in which gij, i ¼ 1; 2, and j ¼ 1; 2 are piecewise constant
functions indicating diffusion rates of chemicals along
different directions, and e1 and e2 are two piecewise
constant orthogonal vector fields on M. Thus, one can
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control the shapes of the final textures by modifying these
parameters.

There are many choices for F and G. Different choices
result in different reaction-diffusion models. Here, we
choose the classical Turing model:

F ðu1; u2Þ ¼ sð
 � u1u2Þ;
Gðu1; u2Þ ¼ sðu1u2 � u2 � �Þ;

ð24Þ

where s is the reaction rate, 
 is the growth rate, and � is
the decay.

The discretizations of the isotropic model (22) and the
anisotropic model (23) are straightforward based on implicit/
semi-implicit FVM schemes. As in the harmonic map
regularization problem, here, u1 and u2 are updated
simultaneously since they are coupling with each other.
Our numerical methods are direct and do not require any
localprojection operation. Besides, the time-step constraint

disappears. These advantages improve the algorithms’
efficiency dramatically. We illustrate four examples, as
shown in Fig. 8. Figs. 8a, 8b, and 8c show textures generated
by the isotropic model (22), whereas the texture in Fig. 8d is
generated by the anisotropic model (23). As one can see, the
texture in Fig. 8d is with a certain direction. Comparatively,
the anisotropic reaction-diffusion model generates more
flexible textures by control of directional diffusion rates of
chemicals than the isotropic one. CPU costs for generating
textures are more expensive than those in the above three
applications. Several minutes are needed to generate each
surface texture in Fig. 8. However, it is much faster than the
previous methods.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present several diffusion equations
(including linear, nonlinear, and anisotropic models)
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Fig. 7. Regularizing normal vectors on surfaces. The second row is the zoom-ins of the first row.



over triangulated mesh surfaces and design numerical
methods to solve these PDEs based on implicit/semi-
implicit FVM schemes. Several applications, including
image denoising, image inpainting, harmonic map regular-
ization, and texture generating over triangulated surfaces
are then discussed with examples. Our methods are direct
and require no conversion between mesh surfaces and
parametric/implicit surfaces. Thus, problems such as global
parameterization, metric distortion, and data extension are
avoided. In addition, our methods are not restricted by a
stricttime-step constraint due to implicit/semi-implicit
discretization, so that they are very efficient comparatively
with the previous methods. Furthermore, our numerical
schemes are suitable for triangulated surfaces with
arbitrary geometry and topology. This is very important
in data processing over mesh surfaces since the triangles
of the mesh surfaces are usually highly irregular and
nonuniform (this is especially obvious in the multiresolu-
tion and adaptive representation of mesh surfaces). Experi-
mental results illustrate the flexibility and efficiency of our
methods. Examples also suggest that nonlinear models
generally produce better effects than linear models.

Several issues need to be considered in our future work.
First, we are going to investigate other data processing
problems such as deblurring, edge detection of images,
applications of the Beltrami framework of manifold repre-
sentation of images, and removal of other types of noises such
as salt-pepper noise, as well as diffusion models based on
color space considerations on arbitrary triangulated surfaces.

Second, we plan to extend the methods to other types of mesh
surfaces such as quadrilateral meshes and even meshes
whose valences are arbitrary and variational. The computa-
tional efficiency and the theoretical analysis of the numerical
methods and applications are also important issues worthy of
further study.

APPENDIX

IMPLEMENTATION BASED ON PBCG

In this Appendix, we describe some implementation
details of our numerical methods. The procedure includes
three steps that are detailed as follows:

The first step is extracting topological information of the
mesh surface. After loading data (including the vertex list
and the triangle list of the mesh, as well as the color
information defined on it), we find the 1-disks of all vertices
and then 1-neighbors by a loop of the triangle list. Also, we
compute the areas of all the triangles and, then, the areas of
all the control cells. These data are stored in arrays.

The second step is the computation of coefficient
matrices. For each triangle � ¼ ½vi; vj; vk�, we compute its
three vectors rM�i, rM�j, and rM�k and store them in an
array indexed by the triangle. Then, coefficients defined
in (7), (10), and (13) for the linear, nonlinear, and
anisotropic models are calculated. These coefficients
are stored in arrays cooperated with the arrays of 1-disks
and 1-neighbors. All these quantities can be obtained via
simple vector operations. In the following, we narrate this
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in detail. From Theorem 1, we need outer normal vectors ~n
colored in green andrM�i,rM�j, andrM�k colored in red,
as shown in Fig. 3b, 3c, 3d, 3e, and 3f. Taking this as an
example, we refer to Fig. 9. Since the barycentric dual
structure is used, we know that the green unit normal in
Fig. 9a is parallel to the height vector on edge vjvk.
Similarly, according to [28], the red gradient in Fig. 9a is
parallel to the height vector on edge vivk. Therefore, the key
is to compute the height vector of a triangle on some certain
edge; see Fig. 9b for an example. This height vector ~hj can
be calculated as follows:

1. Let ~v1 ¼ vk � vi and ~v2 ¼ vj � vi.
2. � ¼ ~v2�~v1

~v1�~v1
.

3. O ¼ �vk þ ð1� �Þvi.
4. ~hj ¼ vj �O.

Hence, the unit outer normal can be constructed by a
reversion and a normalization operation. The gradient is
just the height vector multiplied with a scaling factor [28].

The last step is numerically solving the PDEs. Based on

the coefficients obtained in the second step, we solve linear

systems by the PBCG method since the systems are almost

highly sparse. Referring to some classical implementation of

the PBCG method such as that described in [37], we need

only design two operations: preconditioning and multi-

plication of sparse matrices and vectors. These operations

use only nonzero elements of coefficient matrices and thus

are very effective. Keep in mind that the nonzero elements

of the coefficient matrices of the systems are all constructed

b y f!ii; !ijg, fcii;� ; cij;� ; cik;� ; cji;� ; cjj;� ; cjk;� ; cki;� ; ckj;� ; ckk;�g,
fc1

ii;� ; c
1
ij;� ; c

1
ik;� ; c

2
ii;� ; c

2
ij;� ; c

2
ik;� ; c

1
ji;� ; c

1
jj;� ; c

1
jk;� ; c

2
ji;� ; c

2
jj;� ; c

2
jk;� ;c

1
ki;� ;

c1
kj;� ; c

1
kk;� ; c

2
ki;� ; c

2
kj;� ; c

2
kk;�g, and jrMujn� j. We use an array to

store the jrMujn� j values (for all triangles) and update them

in each time step. The computation of rMujn�¼½vi;vj;vk� is

through a linear combination of rM�i, rM�j, and rM�k

with data uni , unj , and unk at current time. For the linear

model, the coefficient matrix is independent of time, and so

are the two operations for PBCG. For the nonlinear models,

the coefficient matrices depend on jrMujn� j. However, the

changes of the elements in the coefficient matrices merely

include scalings (see (9), (11), (12), and (14)), and hence,

the update of the coefficient matrices used in the

two operations for PBCG is very fast and simple by the

stored values jrMujn� j and the chosen function gðjrMujÞ
(or g1ðjrMujÞ and g2ðjrMujÞ in the anisotropic model).

ACKNOWLEDGMENTS

The authors are supported by the National Key Basic
Research Project of China (2004CB318000), the Outstanding
Youth Grant of NSF of China (60225002), the NSF of China
(60533060, 10671192, and 10701069), the Specialized Re-
search Fund for the Doctoral Program of Higher Education
(No. 20060358055), and the 111 Project (b07033).

REFERENCES

[1] “Compatible Spatial Discretizations” The IMA Volumes in Mathe-
matics and Its Applications, vol. 142, D.N. Arnold, P.B. Bochev,
R.B. Lehoucq, R.A. Nicolaides, and M. Shashkov, eds., Springer,
2006.

[2] O.K.C. Au, C.L. Tai, L.G. Liu, and H.B. Fu, “Dual Laplacian
Editing for Meshes,” IEEE Trans. Visualization and Computer
Graphics, vol. 12, no. 3, pp. 386-395, May/June 2006.

[3] J.F. Aujol, G. Aubert, L.B. Feraud, and A. Chambolle, “Image
Decomposition into a Bounded Variation Component and an
Oscillating Component,” J. Math. Imaging and Vision, vol. 22, no. 1,
pp. 71-88, 2005.

[4] J.F. Aujol, G. Gilboa, T.F. Chan, and S. Osher, “Structure-Texture
Image Decomposition-Modeling, Algorithms, and Parameter
Selection,” Int’l J. Computer Vision, vol. 67, no. 1, pp. 111-136, 2006.

[5] C.L. Bajaj and G. Xu, “Anisotropic Diffusion of Surfaces
and Functions on Surfaces,” ACM Trans. Graphics, vol. 22, no. 1,
pp. 4-32, 2003.

[6] C.A.Z. Barcelos and M.A. Batista, “Image Inpainting and
Denoising by Nonlinear Partial Differential Equations,” Proc.
16th Brazilian Symp. Computer Graphics and Image Processing
(SIBGRAPI ’03), pp. 287-293, 2003.

[7] C.A.Z. Barcelos, M.A. Batista, A.M. Martins, and A.C. Nogueira,
“Level Lines Continuation Based Digital Inpainting,” Proc.
17th Brazilian Symp. Computer Graphics and Image Processing
(SIBGRAPI ’04), pp. 50-57, 2004.

[8] T. Barth and M. Ohlberger, “Finite Volume Methods: Foundation
and Analysis,” Encyclopedia of Computational Mechanics. John Wiley
& Sons, 2004.

[9] M. Bertalmio, A.L. Bertozzi, and G. Sapiro, “Navier-Stokes, Fluid
Dynamics, and Image and Video Inpainting,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR ’01), pp. 355-362,
2001.

[10] M. Bertalmio, L.T. Cheng, S. Osher, and G. Sapiro, “Variational
Problems and Partial Differential Equations on Implicit Surfaces,”
J. Computational Physics, vol. 174, no. 2, pp. 759-780, 2001.

[11] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image
Inpainting,” Proc. ACM SIGGRAPH ’00, pp. 417-424, 2000.

[12] A. Bossavit, “Generalized Finite Differences in Computational
Electromagnetics,” Progress in Electromagnetics Research, vol. 32,
pp. 45-64, 2001.

[13] A. Bossavit, Computational Electromagnetism. Academic Press, 2004.
[14] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic Active

Contours,” Int’l J. Computer Vision, vol. 22, pp. 61-79, 1997.
[15] E. Catmull and J. Clark, “Recursively Generated B-Spline Surfaces

on Arbitrary Topological Meshes,” Computer-Aided Design, vol. 10,
no. 6, pp. 350-355, 1978.

[16] T.F. Chan, S.H. Kang, and J. Shen, “Total Variation Denoising
and Enhancement of Color Images Based on the CB and
HSV Color Models,” J. Visual Comm. and Image Representation,
vol. 12, pp. 422-435, 2001.

[17] T.F. Chan, S. Osher, and J. Shen, “The Digital TV Filter and
Nonlinear Denoising,” IEEE Trans. Image Processing, vol. 10, no. 2,
pp. 231-241, 2001.

[18] T.F. Chan and F. Park, “Data Dependent Multiscale Total
Variation Based Image Decomposition and Contrast Preserving
Denoising,” Technical Report UCLA CAM Report 04-15,
UCLA CAM, 2004.

[19] T.F. Chan and J. Shen, “Mathematical Models for Local
Nontexture Inpaintings,” SIAM J. Applied Math., vol. 62, no. 3,
pp. 1019-1043, 2001.

[20] T.F. Chan, J. Shen, and L. Vese, “Variational PDE Models in Image
Processing,” Notice of Am. Math. Soc., vol. 50, pp. 14-26, 2003.

[21] T.F. Chan and L.A. Vese, “An Active Contour Model without
Edges,” Lecture Notes in Computer Science, vol. 1682, pp. 141-151,
Springer, 1999.

678 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 9. Computation for normals and gradients.



[22] M. Desbrun, A.N. Hirani, M. Leok, and J.E. Marsden, Discrete
Exterior Calculus, http://arxiv.org/abs/math.DG/0508341, 2005.

[23] M. Desbrun, M. Meyer, P. Schröder, and A.H. Barr, “Implicit
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Differential-Geometry Operator for Triangulated 2-Manifolds,”
Visualization and Math. III, H.-C. Hege and K. Polthier, eds.,
Springer, 2002.

[34] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. Springer, 2002.

[35] S. Osher, A. Sole, and L. Vese, “Image Decomposition and
Restoration Using Total Variation Minimization and the H�1

Norm,” Multiscale Modeling and Simulation, vol. 1, pp. 349-370,
2003.

[36] P. Perona and J. Malik, “Scale-Space and Edge Detection Using
Anisotropic Diffusion,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 12, no. 7, pp. 629-639, July 1990.

[37] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C, second ed. Cambrige Univ. Press, 1992.

[38] E. Radmoser, O. Scherzer, and J. Weickert, “Scale-Space Properties
of Regularization Methods,” Lecture Notes in Computer Science,
vol. 1682, pp. 211-222, Springer, 1999.

[39] J.R. Rommelse, H.X. Lin, and T.F. Chan, “A Robust Level Set
Algorithm for Image Segmentation and Its Parallel Implementa-
tion,” Technical Report UCLA CAM Report 03-05, UCLA CAM,
2003.

[40] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear Total Variation
Based Noise Removal Algorithms,” Physica D, vol. 60, pp. 259-268,
1992.

[41] J. Shen, “Inpainting and the Fundamental Problem of Image
Processing,” SIAM News, vol. 36, no. 5, 2003.

[42] L. Shi and Y. Yu, “Inviscid and Incompressible Fluid Simulation
on Triangle Meshes,” J. Computer Animation and Virtual Worlds,
vol. 15, pp. 173-181, 2004.

[43] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski,
“Bounded Distortion Piecewise Mesh Parameterization,” Proc.
IEEE Conf. Visualization (VIS ’02), pp. 355-362, 2002.

[44] A. Spira and R. Kimmel, “Enhancing Images Painted on
Manifolds,” Lecture Notes in Computer Science, vol. 3459, pp. 492-
502, Springer, 2005.

[45] A. Spira and R. Kimmel, “Segmentation of Images Painted on
Parametric Manifolds,” Proc. European Signal Processing Conf.
(EUSIPCO ’05), Sept. 2005.

[46] J. Stam, “Flows on Surfaces of Arbitrary Topology,” ACM Trans.
Graphics, vol. 22, no. 3, pp. 724-731, 2003.

[47] G. Taubin and J. Rossignac, “Geometric Compression
through Topological Surgery,” ACM Trans. Graphics, vol. 17,
no. 2, pp. 84-115, 1998.

[48] A. Turing, “The Chemical Basis of Morphogenesis,” Philosophical
Trans. Royal Soc. B, vol. 237, pp. 37-72, 1952.

[49] G. Turk, “Generating Textures on Arbitrary Surfaces Using
Reaction-Diffusion,” Computer Graphics, vol. 25, no. 4, pp. 289-
298, 1991.

[50] L.A. Vese and T.F. Chan, “A Multiphase Level Set Framework for
Image Segmentation Using the Mumford-Shah Model,” Int’l
J. Computer Vision, vol. 50, no. 3, pp. 271-293, 2002.

[51] J. Weickert and B. Benhamouda, “A Semidiscrete Nonlinear Scale-
Space Theory and Its Relation to the Perona-Malik Paradox,”
Advances in Computer Vision. Springer, pp. 1-10, 1997.

[52] A. Witkin and M. Kass, “Reaction-Diffusion Textures,” Computer
Graphics (Proc. ACM SIGGRAPH ’91), vol. 25, no. 4, pp. 299-308,
1991.

[53] C.L. Wu, J.S. Deng, and F.L. Chen, “Fast Data Extrapolating,”
J. Computational and Applied Math., vol. 206, no. 1, pp. 146-157,
2007.

[54] C.L. Wu, J.S. Deng, W.M. Zhu, and F.L. Chen, “Inpainting Images
on Implicit Surfaces,” Proc. 13th Pacific Conf. Computer Graphics and
Applications (PG ’05), pp. 142-144, 2005.

[55] G. Xu, Q. Pan, and C.L. Bajaj, “Discrete Surface Modelling Using
Partial Differential Equations,” Computer Aided Geometric Design,
vol. 23, no. 2, pp. 125-145, 2006.

[56] Y.Z. Yu, K. Zhou, D. Xu, X.H. Shi, H.J. Bao, B.N. Guo, and
H.Y. Shum, “Mesh Editing with Poisson-Based Gradient Field
Manipulation,” Proc. ACM SIGGRAPH ’04, pp. 641-648, 2004.

[57] E. Zhang, K. Mischaikow, and G. Turk, “Feature-Based Surface
Parameterization and Texture Mapping,” ACM Trans. Graphics,
vol. 24, no. 1, pp. 1-27, 2005.

[58] H.K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit and
Nonparametric Shape Reconstruction from Unorganized Points
Using a Variational Level Set Method,” Computer Vision and Image
Understanding, vol. 80, no. 3, pp. 295-319, 2000.

[59] D. Zorin and P. Schroder, “Subdivision for Modeling and
Animation,” ACM SIGGRAPH ’00 Course Notes, 2000.

Chunlin Wu was born in Jiangxi, Peoples
Republic of China, in 1982. He received the
PhD degree from the University of Science and
Technology of China, Hefei, Peoples Republic of
China, in 2006. Currently, he is a postdoctoral in
the Department of Mathematics, University of
Science and Technology of China. His research
interests are in computer graphics and image
processing.

Jiansong Deng was born in Shangdong,
Peoples Republic of China, in 1971. He received
the PhD degree from the University of Science
and Technology of China, Hefei, Peoples Re-
public of China, in 1998. Currently, he is a
professor in the Department of Mathematics,
University of Science and Technology of China.
His research interests include computer-aided
geometric design and computer graphics.

Falai Chen was born in Anhui, Peoples Republic
of China, in 1966. He received the PhD degree
from the University of Science and Technology
of China, Hefei, Peoples Republic of China, in
1994. He is a professor in the Department of
Mathematics, University of Science and Tech-
nology of China. His research interests include
computer-aided geometric design and computer
graphics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WU ET AL.: DIFFUSION EQUATIONS OVER ARBITRARY TRIANGULATED SURFACES FOR FILTERING AND TEXTURE APPLICATIONS 679



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


