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• We reduce the computation time dramatically by solving convex optimization problem.
• We can simultaneously find a good combination of the knot number and knot locations.
• The algorithm has less knots with good fitting performance compared to other methods.
• We can recover the ground truth knots when data is sampled enough from a B-spline.
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a b s t r a c t

Curve fitting with splines is a fundamental problem in computer-aided design and engineering. However,
how to choose the number of knots and how to place the knots in spline fitting remain a difficult issue.
This paper presents a framework for computing knots (including the number and positions) in curve fit-
ting based on a sparse optimizationmodel. The framework consists of two steps: first, from a dense initial
knot vector, a set of active knots is selected at which certain order derivative of the spline is discontinu-
ous by solving a sparse optimization problem; second, we further remove redundant knots and adjust the
positions of active knots to obtain the final knot vector. Our experiments show that the approximation
spline curve obtained by our approach has less number of knots compared to existing methods. Particu-
larly, when the data points are sampled dense enough from a spline, our algorithm can recover the ground
truth knot vector and reproduce the spline.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Curve fittingwith splines is a traditional and fundamental prob-
lem in many engineering practices. In Computer Aided Design
(CAD) and Geometric Modeling, curves are fitted with splines to
reconstruct geometric models from measurement data [1–4]. In
signal processing and image processing, splines are often adopted
to process noisy signals or to approximate complicated functions
[5,6].

The intuitive idea of curve fitting with splines is to formulate
it as a least-square problem when knots are fixed. However, the
fitting result is not always satisfactory. Actually, it has long been
known that freeing knots in fitting improves the result dramati-
cally [7–10]. But spline fitting with free knots is still a challeng-
ing problem. The reasons are as follows. First, analytic expressions
for optimal knot locations, or even for general characteristics of

✩ This paper has been recommended for acceptance by Vadim Shapiro.
∗ Corresponding author.

E-mail addresses: khmkangkang@gmail.com, chenfl@ustc.edu.cn (F. Chen).

http://dx.doi.org/10.1016/j.cad.2014.08.022
0010-4485/© 2014 Elsevier Ltd. All rights reserved.
optimal knot distributions, are not easy to derive [11]. Second, the
unknown number and position of knots result in a large and non-
linear optimization problem, which is computationally very diffi-
cult.

In the literaturemanymethods have been proposed to optimize
knots with a given number of knots. The problem of knot place-
ment is formulated as a nonlinear optimization problem with the
constraint that knots should form a nondecreasing sequence. The
first type of techniques transforms the constrained optimization
problem into an unconstrained problem, then local gradient-based
method or Gauss–Newton method are employed for minimiza-
tion [11–13]. However, local optimization methods require a good
initial guess and cannot guarantee global optimality. The second
type of techniques applies global optimization to avoid the draw-
backs of local methods, but it is computationally more expensive
[14–16]. There are also some works which utilize the underlying
feature information of the data to select knots, instead of solving a
nonlinear optimization problem [1,17,18]. However, in suchmeth-
ods the number of knots is determined beforehand and the results
are sensitive to measurement noises.

Another approach for knot calculation is based on knot-removal
strategy which is to reduce the number of knots of a given spline
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by perturbing the spline within a given tolerance [19,20]. The
main idea of the technique is to remove interior knots according
to assigned weights. For data approximation, a piecewise linear
approximation of the data is computed, then knot removal strategy
is performed on the linear approximation, and finally the data is
approximated by a smooth spline with computed knots.

A new development in recent years for knot calculation is based
on sparse optimization [21,22]. Sparsity is the core of compressed
sensing which is widely used in computer vision and signal pro-
cessing [23–27]. Sparsity means that a signal can be represented in
a linear combination of some bases or dictionaries such that most
of the combination coefficients are zero. In [21], the authors for-
mulated the spline fitting problem as a convex optimization prob-
lem, where the l1 norm of jump of third order derivatives of C2

cubic splines is minimized; while in [22], the authors first selected
a subset of basis functions from the pre-specified multi-resolution
basis set using the statistical variable selectionmethod-Lasso, then
identified a concise knot vector that is sufficient to characterize
the vector space spanned by the selected basis functions to fit the
data. These twomethods can compute the number and positions of
the knots simultaneously, yet they still produce a lot of redundant
knots.

Targeting on the limitations of existing methods, we propose a
computationally efficient framework to calculate knots for splines
fitting via sparse optimization. The framework is composed of two
stages: firstly we solve a convex sparse optimization model start-
ing from a dense initial knot vector. The output is those knots
(which we call active knots) at which a certain order derivatives
of the fitting spline is discontinuous. The idea to formulate the op-
timization model in this step is the same as that in [21] but with a
distinct formulation. Secondly, we adjust the active knots in the
first stage by certain rules to remove redundant knots. Further-
more, several theoretical results about the algorithm are estab-
lished in this paper. In particular, when the data points are sampled
dense enough from a spline, the knots of this spline can be recov-
ered by the proposed framework in any given precision.

The remainder of the current paper is organized as follows. In
Section 2, we review some preliminary knowledge about B-splines
and least-square fitting with B-splines. In Section 3, a two-stage
framework of curve fitting with B-splines is described. Some re-
lated theoretical results are also presented. In Section 4, we illus-
trate the effectiveness of the proposed method through numerical
experiments and comparisons with existing methods. Finally, in
Section 5, we conclude the paper with discussions on future re-
search problems.

2. Preliminaries

We refer to the fundamental book [1] for a complete treatment
of splines. Here we simply introduce the adopted notations which
are needed for presenting our results.

2.1. B-splines

Let {ci}ni=0 ∈ Rd ben+1 control points, andNp
i (t)be the B-spline

basis functions of degree p defined on a knot vector U = {t0, t1,
. . . , tn+p+1} with ti ≤ ti+1, i = 0, 1, . . . , n + p, then a B-spline
curve of degree p is defined by

c(t) =

n
i=0

ciN
p
i (t), (1)

where Np
i (t) is defined recursively as follows:

N0
i (t) =


1, t ∈ [ti, ti+1)
0, otherwise (2)

Np
i (t) =

t − ti
ti+p − ti

Np−1
i (t) +

ti+p+1 − t
ti+p+1 − ti+1

Np−1
i+1 (t), p ≥ 1. (3)
When d = 1, c(t) is called a B-spline function and the control
points are called spline coefficients. In this paper, we only consider
data fitting with B-spline functions.

U is often chosen as an open knot vector, namely boundary
knots are set to a = t0 = t1 = · · · = tp, tn+1 = · · · = tn+p+1 = b.
The knots ti, i = p + 1, . . . , n are called interior knots of U . The
multiplicity of an interior knot ti is denoted bymi (mi ≤ p+ 1). An
interior knot ti is called an active knot of c(t) if the (p + 1 − mi)th
order derivative of c(t) is discontinuous at ti, otherwise it is called
an inactive knot of c(t). Fig. 1 shows a C2 continuous cubic B-spline
function and its first three derivatives. The spline has 9 interior
knots (marked by crosses) and 3 active knots (marked by black
crosses) where the third order derivatives are discontinuous.

The kth order derivative of c(t) is a B-spline of degree p − k:

c(k)(t) = Π k
i=1(p + 1 − i)

n
i=k

c(k)
i Np−k

i (t), (4)

with

c(k)
i =


ci, if k = 0,
c(k−1)
i − c(k−1)

i−1

ti+p+1−k − ti
, if k > 0.

(5)

The Fourier transform of the jth basis function Np
j (t) is defined

as

Np
j (t) =


−∞

−∞

Np
j (t)e

iwtdt =
(p + 1)!
(iw)p+1

p+1+j
k=j

eiwtk

θ ′(tk)
, (6)

where θ(t) = Π
p+1+j
k=j (t − tk), w ∈ R represents frequency. For

uniformly distributed knots, the Fourier transform can be simpli-
fied as:

Np
j (t) =


ei|τ |w

− 1
i|τ |w

p+1

, (7)

where |τ | is defined as |τ | = max
i

(ti+1 − ti).

2.2. Least squares approximation by splines

Given a set of data {Pi}Ni=1, and corresponding parameter values
{si}Ni=1, the least square approximation with splines is defined

min
c(t)

N
i=1

(c(si) − Pi)2, (8)

where c(t) is a spline function defined by (1).When the knot vector
U of the spline function c(t) is fixed, problem (8) is reduced to

min
C∈Rn+1

∥P − AC∥
2, (9)

where P = (P1, . . . , PN)T , A = (aij)N×(n+1) with aij = Np
j (si), and

C = (c0, c1, . . . , cn)T is the coefficient vector.
If A has rank n + 1, then ATA is nonsingular, thus the solution C

of problem (9) is obtained uniquely by

ATAC = ATP. (10)
The sufficient and necessary conditions for A to have rank n + 1
are stated by Schoenberg and Whitney [28]. If A does not have full
rank, the solution C is defined as the solution which minimizes
∥C∥2 among all the solutions of (10).

3. Knot calculation for spline fitting

In this section, we will present a two-stage framework of knot
calculation for spline fitting in detail. We start with an outline of
the algorithm. Then the sparse optimization model and knot ad-
justment strategy are described respectively.
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(a) c(t). (b) c(1)(t). (c) c(2)(t). (d) c(3)(t).

Fig. 1. A cubic B-spline function and its first three derivatives. The active knots are indicated by black crosses and the inactive knots are indicated by green crosses.
3.1. Outline of knot calculation

For data fitting with spline, it is often expected that the num-
ber of knots should be as few as possible under the condition that
the fitting performance is good enough. Suppose c(t) is defined as
in (1) with an initial knot vector U = {t0, t1, . . . , tn+p+1}, then the
number of valid knots can be described by the number of nonzero
elements in the vector v = (|c(p)(t+j ) − c(p)(t−j )|)

j=n
j=p+1 which de-

scribes the jumps of pth order derivatives of c(t) at the interior
knots, because c(p)(t) now is a piecewise constant function and
the breakpoints are interior knots. Thus to minimize the number
of knots, one can apply l0-norm minimization technique to vector
v, which has been widely used in computer vision and signal pro-
cessing.

Let {Pi}Ni=1 be given data points with corresponding parameters
{si}Ni=1, and c(t) be a B-spline function defined by Eq. (1). Then the
fitting problem is formulated as

min
n

ci ∈ R, i = 0 . . . n
tj, j = p + 1, . . . , n

∥Jc(p)
∥0 (11a)

s.t.
N
i=1

(c(si) − Pi)2 ≤ Nε (11b)

where the l0 norm ∥ ·∥0 indicates the number of nonzero elements
in the vector, ε > 0 is a fixed tolerance to control the quality of fit
and Jc(p) is the jump vector of pth order derivatives of c(t) at the
interior knots, defined as

Jc(p)
= (Jc(p)(tp+1), . . . , Jc(p)(tn))

with Jc(p)(tj) = c(p)(t+j )−c(p)(t−j ), j = p+1, . . . , n. For small p, an
explicit formula for Jc(p) can be written down based on (5). In this
paper, we will restrict our experiments on fitting with cubic spline
functions.

Problem (11) has three parts of unknowns: spline coefficients
{ci}ni=0, knot number n and interior knot vector {ti}ni=p+1. Since
a spline is a non-convex and nonlinear function of knot values,
problem (11) is a non-convex and nonlinear optimization problem
which is very difficult to compute. To find an optimal solution, we
start from a dense knot vector to search for the best possible num-
ber of knots and their locations simultaneously by solving a con-
vex optimization problem, followed by a further knot adjustment
strategy, see Fig. 2 for reference.

For the first step, an initial knot vector containing enough knots
for representing the details of data is provided. We then find a
spline function with provided initial knots to fit the data with
least square approximation by solving problem (11) except that the
knots are fixed. That means we find a spline approximation with
fewest number of pth order derivative jumps. The nonzero jumps
correspond to some active knotswhich are used as the input for the
second step.

For the second step, our goal is to further decrease the knot
number while keeping the fitting quality. Only pruning knots from
the input knot vector cannot fix redundant knot problem. So here
we adopt the following adjustment strategy. For each interval
[tik , tik+1 ] of the input active knot vector Ũ = {tik}

m
k=1, we insert

the middle point t∗ in the interval to obtain a new vector U∗ and
compute the approximated degree p spline function c∗(t) by solv-
ing problem (11) with U∗. If t∗ is an active knot of c∗(t), then we
replace the interval [tik , tik+1 ] with one of the following two inter-
vals [tik , t

∗
] and [t∗, tik+1 ]. This process is repeated until the length

of the interval is small enough or the interval does not contain any
parameters si. We then merge the interval to a single knot.

As an illustration example shown in Fig. 2, data points are uni-
formly sampled in [0, 1] with N = 101 from the function f (t) =

1.0/((x − 0.5)2 + 0.02). The tolerance ε = 0.005 and the initial
knots are chosen as 11 equidistant points in [0, 1]. Fig. 2(a) shows
the approximated B-spline (red curve) and the corresponding ac-
tive knots (blue triangles) obtained in the first step. Fig. 2(b) depicts
the approximated B-spline together with the final five interior
knots by the second step. The five interior knots are (0.2000,
0.3941, 0.5000, 0.6066, 0.8000),where the knots 0.3941 and0.6066
are the results of performing adjustment strategy on the two inter-
vals (0.3, 0.4) and (0.6, 0.7) respectively.

3.2. Sparse fitting

In this section, we firstly present details of formulating and
solving the sparse optimization model, then we provide some
theoretic results about the properties of such a problem, which are
helpful for understanding and designing strategy in second stage.

3.2.1. Sparse optimization model
Suppose we have fixed an initial knot vector U = {t0, t1, . . . ,

tn+p+1}, then problem (11) can be reformulated as

min
ci∈R,i=0...n

∥Jc(p)
∥1 (12a)

s.t.
N
i=1

(c(si) − Pi)2 ≤ Nε. (12b)

Here we change l0 norm of objective function to l1 norm for the
ease of solve:

∥Jc(p)
∥1 ≡

n
j=p+1

|c(p)(t+j ) − c(p)(t−j )|.

We call (12) as sparse optimization model. Since it is a convex
optimization problem, it can be solved efficiently. For initial knots
in U , they are usually chosen uniformly in domain [a, b]. The au-
thors [22] proposed a way of estimating the number of knots for
given sample points according to the Fourier transformation of B-
splines and Nyquist–Shannon sampling theorem [29]. The idea is
as follows. A basis function can be treated approximately as a band
limited signalwith bandwidth [−2π/|τ |, 2π/|τ |] fromEq. (7). Ad-
ditionally, there are N data points in the interval [a, b], so the sam-
pling rate ω equals N

(b−a) . If we want to capture all the information
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(a) The result solved by first step. (b) The result solved by second step.

Fig. 2. Workflow of knot calculation. (a) The blue triangles are marked for the active knots of the approximated B-spline (red curve) solved by first step. (b) The knots (blue
triangles) and the corresponding approximated B-spline (red curve) obtained by second step.
contained in the given data, then the basis functions should contain
frequency components with frequency at least ω/2 according to
Nyquist–Shannon sampling theorem, that is 2π/|τ | ≥ ω/2, hence
|τ | ≤ 4π/ω. Then the number of interior knots of the knot vec-
tor should be at least 1/|τ | ≥

N
4π(b−a) . For example, suppose a =

0, b = 1,N = 1001, then there should be at least 80 interior knots.
It should be pointed out that the above estimate only provides

a lower bound for initial knot number. In practice, initial knots
are often selected more than the lower bound to capture the fine
features of data points.

When the jump |c(p)(t+j ) − c(p)(t−j )| is close to zero, the corre-
sponding knot tj is pruned. The remaining knots are called active
knots. When problem (12) is solved, the active knots of c(t) can be
consequently determined. The objective function in problem (12)
favors c(t) has few number of active knots. Consequently most of
the initial knots are pruned. Notice that c(t) can be represented as
a spline defined over the active knots, that is, inactive knots can be
deleted without changing the spline function.

3.2.2. Characteristic of sparse model
In this section, we study the solution of problem (12)when data

points are sampled dense enough from a spline function. We illus-
trate it with p = 0. Suppose data points {Pi}Ni=1 with correspond-
ing parameter values {si}Ni=1 are sampled froma piecewise constant
function with breakpoints k1 < · · · < kl, and a B-spline c(t) of de-
gree p = 0 defined over an initial knot vector U = {t0, t1, . . . ,
tn, tn+1} is used to fit the data points via problem (12). We are in-
terested in the characteristic of spline c(t) at the interval Ii0 =

[ti0 , ti0+1] which contains a breakpoint.
Without loss of generality, suppose ki ∈ [ti0 , ti0+1] and the value

sampled at ki is shown in Fig. 3(a). For convenience, ci−1 < ci is
assumed. The value of c(t) at the three intervals Ii0−1, Ii0 , Ii0+1 are
denoted by d1, d2, d3 respectively.We also suppose the data points
in the two adjacent intervals of Ii0 have been fitted well, that is
d1 = ci−1, d3 = ci, see Fig. 3(b) for reference. Notice that the opti-
mal value of problem (12) does not depend on d2 as long as ci−1 ≤

d2 ≤ ci since the sum of the jump in c(t) at ti0 and ti0+1 equals
|d2 − d1| + |d3 − d2| = d3 − d1 = ci − ci−1. But the fitting er-
ror E =

N
i=1(c(si) − Pi)2 depends on d2. Particularly, the fitting

error at an interval Ii0 is defined by Ei0 =


si∈Ii0
(c(si) − Pi)2. We

are going to study how the fitting error Ei0 , thus E, changes when a
midpoint is inserted in Ii0 . There are two cases.

(1) First case: none of the parameters {si}Ni=1 lies in Ii0 . Fig. 3(b)
shows this case, where the horizontal dashed (solid) line segments
are marked for the value of true solution (approximated solution)
on Ii0 . For this case,wemerge the endpoints ti0 and ti0+1 as themid-
point t∗ = 0.5(ti0 + ti0+1), and the resulting knot vector is denoted
by

U∗
= {t0, . . . , ti0−1, t∗, ti0+2, . . . , tn+1}.

A spline c∗(t) defined on U∗ is constructed as shown in Fig. 3(c).
Substituting c∗(t) in problem (12), it can be seen that both the ob-
jection value and fitting error do not change comparing to that of
c(t). But the number of knots of c∗(t) is one less than that of c(t).

(2) Second case: among si, i = 1, 2, . . . ,N , there are n1 param-
eters in [ti0 , ki] and n2 parameters in [ki, ti0+1]. Then the value d2
should be ci−1n1+cin2

n1+n2
to minimize the fitting error Ei0 and conse-

quently we have Ei0 =
n1n2(ci−ci−1)

2

n1+n2
. For this case, we insert the

midpoint t∗ = 0.5(ti0 + ti0+1) in Ii0 and the resulting knot vector
is denoted by U∗

= {t0, . . . , ti0 , t
∗, ti0+1, . . . , tn+1}. A spline c∗(t)

defined on U∗ is constructed as shown in Fig. 3(d), where d∗

2 =
ci−1n0+cin2

n0+n2
and the corresponding fitting error at Ii0 is denoted by

E∗

i0
=

n0n2(ci−ci−1)
2

n0+n2
, where n0 is the number of parameters of si ly-

ing in [t∗, ki] (or [ki, t∗]). Comparing to c(t), the objection value
of problem (12) do not change, but the fitting error E∗

i0
< Ei0 if

n0 < n1.
The above analysis inspires us to subdivide Ii0 into two subinter-

vals [ti0 , t
∗
] and [t∗, ti0+1], then replace Ii0 by one of the subinter-

vals tomake the fitting error decrease. This process can be repeated
until the length of the interval is small enough or the interval does
not contain any parameter si. The two end points of the interval is
then merged into one single knot.

For general case p ≠ 0, when the given data points are sam-
pled from a B-spline of degree p, we have a similar conclusion. We
summarize the observation in the following theorem.

Theorem 3.1. Suppose the data points are sampled dense enough
from a B-spline of degree p with true knots k1 < · · · < kl, ε > 0 is
small enough, and the initial knot vector is U = {t0, t1, . . . , tn+p+1}.
The active knots selected by problem (12) are collected increasingly in
a vector U = {ti1 , ti2 , . . . , tim}. Then for each kj, j = 1, . . . , l, there
exists j1, 1 ≤ j1 ≤ m−1 such that kj ∈ [tij1 , tij1+1 ] and ij1+1 = ij1+1.

Proof. We prove the conclusion by contradiction. Without loss of
generality, suppose k1 ∈ [ti1 , ti2 ], but i1+1 ≠ i2. c(t) is the approx-
imated B-spline solved by problem (12)with knot vectorU and pa-
rameter ε. The optimal value of problem (12)with respect to c(t) is
denoted as TV . As assumed i1+1 ≠ i2, then there exists a knot t∗ in
U such that ti1 < t∗ < ti2 . And t∗ must be an inactive knot of c(t).

Now we consider a new B-spline c∗(t) of degree p defined on
a knot vector U∗ which is defined as follows: If k1 ∈ [t∗, ti2 ],
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Fig. 3. Optimal solutions of constant piecewise function. The horizontal dashed (solid) line segments aremarked for the value of true solution (approximated solution) on Ii0 .
(a) ε = 10−6 . (b) ε = 10−3 .

Fig. 4. The results solved by the first step with different tolerances. The blue triangles are marked for the active knots of the approximated B-spline (red curve) and the
black circles are data points.
U∗
= {t∗, ti2 , . . . , tim}; otherwise U∗

= {ti1 , t
∗, ti3 , . . . , tim} (here

for simplicity, we ignore the boundary knots of U∗). Let TV ∗
=

∥Jc∗(p)(t)∥1 as defined in problem (12), then c∗(t) is determined
by solving a least square approximation of the given data points
with the constraint TV ∗

= TV .
Notice that the sampled B-spline function is a piecewise poly-

nomial in [ti1 , ti2 ] since there is an active knot k1 ∈ [ti1 , ti2 ]. The
constructed new spline c∗(t) happens to be a piecewise polyno-
mial in the interval [ti1 , ti2 ], while c(t) is a continuous polynomial.
This means c∗(t) has one more degree of freedom than c(t) when
they approximate the sampled data points. So the fitting error of
c∗(t) is less than or equal to the one of c(t), that is
N
i=1

(c∗(si) − Pi)2 ≤

N
i=1

(c(si) − Pi)2 ≤ Nε.

Firstly, it can be asserted that the fitting error of c∗(t) is less
than that of c(t), otherwise there will be two different solutions
with the same optimal value for the problem (12) which contra-
dicts with the uniqueness of solution of problem (12).

Then, because problem (12) is a convex optimization, so the fit-
ting error of the optimal solution must be equal to Nε. Thus TV ∗

cannot be an optimal value, then TV is not an optimal value be-
cause TV = TV ∗, then c(t) is not the optimal solution of problem
(12) which contradicts with the assumption.

Above all, if k1 ∈ [ti1 , ti2 ]with i1+1 ≠ i2, then c(t) is not the op-
timal solution to the problem (12). In other words, if k1 ∈ [ti1 , ti2 ],
then it must have i1 + 1 = i2. Hence the theorem is proved. �

Remark 3.1. 1. For p = 0, we have d2 =
ci−1n1+cin2

n1+n2
. Suppose

|ci − ci−1| < η, then |d2 − ci| = |
n1(ci−ci−1)

n1+n2
| < η

n1
n1+n2

< η.
Analogously, we have |d2 − ci−1| < η. If η is small enough, then
d2 ≈ ci or d2 ≈ ci−1. Additionally, when n1 ≪ n2 or n2 ≪ n1,
we also have d2 ≈ ci or d2 ≈ ci−1. For such two cases, we may
not have the conclusion in Theorem 3.1, that is the two knots
ti0 , ti0+1 which are adjacent to ki may not be contained inU . For
general degree p, when the jump at kj is too small or the param-
eters of data points around kj are distributed unevenly, it may
have ij1 + 1 ≠ ij1+1, that is tij1 or tij1+1 may not be in U . Thus
in the second step the true knots cannot be recovered precisely
or even omitted in some cases. Fortunately such kinds of knots
always have little effect on fitting performance and there is no
redundancy phenomenon around them from the experiments.

2. If some true knots are contained in several adjacent intervals,
such as ki ∈ [ti0 , ti0+1], ki+1 ∈ [ti0+1, ti0+2], . . ., then the con-
clusion in Theorem 3.1 may not be true. So the initial knots are
always chosen dense enough to avoid this case.

We take Fig. 4 as an illustration for Theorem 3.1. Data points are
randomly sampled in [0, 1] with N = 101 from a B-spline associ-
atedwith three interior knots 0.21, 0.5, and 0.93. The tolerance ε =

10−6 and the 201 initial knots are chosen uniformly from [0, 1].
Fig. 4(a) shows the approximated B-spline (red curve) and the as-
sociated active knots (blue triangles) selected in the first step. For
each true knot, the two initial knots adjacent to it are selected as ac-
tive knots. It should be pointed out that the requirement (ε should
be small enough) in Theorem 3.1 is necessary. Fig. 4(b) shows
the active knots and the corresponding approximated B-spline
for the case ε = 0.001, where the two knots adjacent to knot 0.93
are not included in the active knots set.

Fig. 4 also illustrates that the knots of the approximated splines
only by the first step are still much more than expected. Fortu-
nately these active knots are clustered into three groups cleanly
and are distributed intensively around a true knot. Such character-
istic is not special when the data are sampled from a spline func-
tion. The following subsection will discuss how to design the knot
adjustment strategy on account of this characteristic.

3.3. Locally adjust knot position

Let U be the initial knot vector, U be the set of active knots se-
lected by problem (12) and k1 < k2 < · · · < kl be the real knots
of a given B-spline function f (t) as defined in Theorem 3.1. Obvi-
ouslyU is a subset of U . And if [tj, tj+1] contains a knot of the given
B-spline, then tj and tj+1 must be in U based on Theorem 3.1. And
such interval can be narrowed down to a single knot of the B-spline
function. In this subsection, we will discuss how to find such inter-
val and how to merge such interval to a single knot.

For each interval [tik , tik+1 ], we insert the middle point t∗ of the
interval inU to get a new knot vector

U∗
= {ti1 , . . . , tik , t

∗, tik+1 , . . . , tim}.
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And the sparse optimization problem (12) is solved again with U∗.
According to Theorem 3.1, if there is a real knot of f (t) in [tik , tik+1 ],
then t∗ will be selected as an active knot, and, tik or tik+1 will be-
come an inactive knot. For convenience and numerical stability, we
usually find the minimal one of three jumps of the pth derivative
of the approximated B-spline at three knots tik , t

∗, tik+1 and if the
jump at tik or tik+1 is the minimal one, then the interval [tik , tik+1 ] is
considered as the candidate interval whichwill be narrowed down
to a single knot.We conclude this idea in the function flag = IsCan-
didateInterval (i, t, Err).

For each candidate interval [tik , tik+1 ], we replace interval
[tik , tik+1 ] with either [tik , t

∗
] or [t∗, tik+1 ] depending on the local

fitting error, where t∗ is the middle point of the interval [tik , tik+1 ].
Or in other words, we replace either knot tik or tik+1 with t∗. This
process is repeated until the interval does not contain any parame-
ters si or the length of the interval is small enough. We thenmerge
the two end points of the interval into a single knot.

The detailed procedure for adjusting knots is summarized in
Algorithm 1.

Algorithm 1 Locally adjust the knots position (I)

Input: threshold tol, knot vectorU .
Output: knot vector U∗.

1: Initialization U∗
= U; i = 1;

2: Err = LeastSquareFit(U∗);
3:
4: while(i < size(U∗)) {

5: t = [U∗(1 : i) 0.5(U∗(i) + U∗(i + 1)) U∗(i + 1 : end)];
6: flag = IsCandidateInterval(i, t, Err);
7: if 1 == flag

8: pre = U∗(i); next = U∗(i + 1);
9: while( next − pre > tol ) {

10: mid = 0.5(next + pre);
11: Lt = [U∗(1 : i) mid U∗(i + 2 : end)];
12: Lerr = LeastSquareFit(Lt);
13: Rt = [U∗(1 : i − 1) mid U∗(i + 1 : end)];
14: Rerr = LeastSquareFit(Rt);
15: if Rerr < Lerr
16: U∗

= Rt;
17: else
18: U∗

= Lt;
19: endif
20: pre = U∗(i); next = U∗(i + 1);
21: } endwhile
22: U∗(i) = 0.5(pre + next); U∗(i + 1) = [];

23: endif
24: i = i + 1;
25: } endwhile

Algorithm 2 Err = LeastSquareFit(t)
Input: knot vector t.
Output: fitting error Err .

1: solve problem (9) with t;
2: Err =

N
i=1(c(si) − Pi)2/N;

return Err .

In general, for data points sampled from a spline function, the
strategy of finding a candidate interval can be simplified. The sim-
plification is based on the observation that the selected active
Algorithm 3 flag = IsCandidateInterval (i, t, Err)
Input: interval index i, knot vector t and error Err .
Output: interval flag flag .

1: flag = 1;
2: solve problem (12) with U := t and ε := Err;
3: Jl = |c(p)(t+i+l) − c(p)(t−i+l)|, l = 0, 1, 2;
4: if J1 < J0 && J1 < J2
5: flag = 0;
6: endif
return flag .

knots by the first step are separated into several groups naturally.
So firstly we separate the input knotsU by the function G = Clus-
terClassify(δ,U) according to knot spacing δ. In detail, supposeU(i) belongs to the jth groupGj, ifU(i+1)−U(i) > δ, thenU(i+1)
belongs to the (j + 1)th group Gj+1. The knot spacing δ equals the
length of two adjacent interior knots in the initial knot vector U .
With this function, the candidate intervals are found without solv-
ing problem (12) again.

In addition, in order to allow inserting multiple knots in an in-
terval, a comparison between Ed and Ep is added, where Ed and Ep
are the fitting errors of the least square approximated B-spline de-
fined onMdt andMpt respectively. HereMdt andMpt are the knot
vectors obtained by inserting a single knot and a double knot inU ,
which are defined in Algorithm 4. We summarize this adjustment
strategy in Algorithm 4.

Algorithm 4 Locally adjust knots position(II)

Input: knots spacing δ, threshold tol, knot vectorU .
Output: knot vector U∗.

1: Initialization i = 1; G = ClusterClassify(δ,U); U∗
= U(G)

2: while(i < size(U∗)) {

3: mid = 0.5(U∗(i) + U∗(i + 1))
4: Mdt = [U∗(1 : i) mid U∗(i + 1 : end)];
5: Ed = LeastSquareFit(Mdt);
6: Mpt = [U∗(1 : i) mid mid U∗(i + 1 : end)];
7: Ep = LeastSquareFit(Mpt);
8: if 2Ep < Ed
9: flag = 1;

10: else
11: flag = 2;
12: endif
13: pre = U∗(i); next = U∗(i + 1);
14: while( next − pre > tol ) {

15: Lt = [U∗(1 : i) 0.5(next + pre) U∗(i + 2 : end)];
16: Lerr = LeastSquareFit(Lt);
17: Rt = [U∗(1 : i − 1) 0.5(next + pre) U∗(i + 1 : end)];
18: Rerr = LeastSquareFit(Rt);
19: if Rerr < Lerr
20: U∗

= Rt;
21: else
22: U∗

= Lt;
23: endif
24: pre = U∗(i); next = U∗(i + 1);
25: } endwhile
26: if 2 == flag
27: U∗(i) = 0.5(pre + next); U∗(i + 1) = [];
28: else
29: U∗(i) = U∗(i + 1) = 0.5(pre + next);
30: endif
31: i = i + 1;
32: } endwhile
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(a) First step. (b) Second step.

Fig. 5. Approximation of Titanium heat data by our algorithm with MSE = 0.014128. The circles are sample points and the dashed line is the approximated spline by our
method. The triangles in (a) and (b) are marked for the knots optimized by the first step and the second step respectively.
Algorithm 5 G = ClusterClassify (δ,U)

Input: threshold δ, knot vectorU .
Output: group start indexes and end indexes G.

1: k = 1; G(1, 1) = 2;
2: for i = 2 : size(U) − 1
3: ifU(i + 1) − U(i) > δ
4: G(k, 2) = i;
5: G(k + 1, 1) = i + 1;
6: k = k + 1;
7: endif
8: endfor
9: G(k, :) = []; G = reshape(G, 2(k − 1), 1);
return G.

Nowwe are ready to describe the algorithm to fit data points by
a B-spline.

Input data points {(si, Pi)}Ni=1, degree p, initial knot vector U ,
tolerance ε.

Output approximated B-spline c∗(t).
Step 1 Solve optimization problem (12) and the resulting active

knots are denoted byU .
Step 2 Locally adjust the knots in U by Algorithm 1 or

Algorithm 4. The resulting knot vector is regarded as U∗.
Step 3 Solve least squares problem (9) and the approximated

spline is the output c∗(t).

The proposed Algorithm of fitting with B-splines have the
following convergence property.

Theorem 3.2. Suppose the data points are sampled dense enough
from a B-spline of degree p with true knots K = {k1 ≤ · · · ≤ kl}, then
the final knot vector U∗ obtained by the above algorithm is an approx-
imation of the true knots K with the given tolerance tol.More precisely,
for every true knot ki, there is a knot tik ∈ U∗ satisfying |tik − ki| <
tol, where tol is the input parameter in Algorithm 1.

Proof. This is obviously true based on Theorem 3.1 and Algo-
rithm 1. �

Remark 3.2. 1. When the data points are sampled from spline
function, Algorithm 4 is much faster and more effective than
Algorithm 1. For general given data points, the selected knots
by the first step do not have obvious phenomenon of cluster, so
it is better to use Algorithm 1. Above all, if the knots selected by
the first step are separated into several groups obviously, then
Algorithm 4 is preferred.
4. Experimental examples

For all numerical examples in this section, we use cubic
B-splines (p = 3) for least square fitting. The mean squared er-
ror (MSE for short) and the maximum error (ME for short), defined
as MSE =

N
i=1(c(si) − Pi)2/N and ME = maxi=1,...,N ∥c(si) − Pi∥

respectively, are used to measure the fitting equality.
In Section 4.1, the Titanium heat data are fitted by our method

to show the advantage of our method which favors fewer knots. In
Section 4.2, the data points sampled from a Chebyshev polynomial
of degree 10 are approximated by our method to demonstrate the
effectiveness of approximation of functions. In Section 4.3, the pro-
posedmethod is applied to the data pointswhich are sampled from
a B-spline. This example shows the exclusive property of recover-
ing knots of a sampled splinewith enough sampling byourmethod.
We have implemented our algorithm on a PC with four-core In-
tel i5 CPU and 4GB RAM. All computations are done in Matlab
and the CVX [30] package is called for solving sparse optimization
problem (12).

4.1. Titanium heat data

Firstly we consider the Titanium heat data with 49 observa-
tions [31]. The data are hard to fit well by traditional techniques
due to the sharp peak in the data, and have therefore often been
used to test spline fitting algorithms [11,12,31,32]. The data origi-
nally ranged from [595, 1075] and are normalized to [0, 75] in this
paper. The normalization using linear change of scale has no effect
on the optimal knot distribution.

The initial knots are chosen as 101 equidistant knots in [0, 75]
and ε = 0.0017. Fig. 5(a) shows the eight active knots (triangles)
selected in the first step and the corresponding fitted spline
(dashed line). Fig. 5(b) shows the approximated B-spline together
with five interior knots by the second step. The fitting errorMSE of
our fit is 0.014128.

Table 1 lists the interior knots and residual error of the approx-
imated spline using our method and other two works [21,22]. The

residual error is defined by (
N

i=1 wi(c(si)−Pi)2

N−1 )1/2 with w1 = wN =

1/2, wi = 1, i = 2, . . . ,N − 1. From the comparisons in Ta-
ble 1, we can see that the second step of our method indeed re-
duces redundant knots and favors one less knot comparing to the
other two methods [21,22], which indicates the significance of the
second step. Additionally, the five knots calculated by our method
are very close to the five knots selected by Jupp’s method [11] in
which it has been identified that the five interior knots are opti-
mal when the knots number is 5. However, the knots number is
fixed in advance by Jupp’s method while is found automatically by
our method. The last line in Table 1 shows the five optimal knots
selected by Jupp’s method.
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(a)ME = 1.7258e−2. (b)ME = 3.7530e−2.

Fig. 6. From (a) to (b): approximation of the Chebyshev polynomial T10 using our method and the method in [20] respectively.
Table 1
Comparisons of approximation performance for Titanium heat data.

Interior knots Residual error

Iteration Algorithm [21] (38.25, 39.00, 43.50, 46.50, 47.25, 51.00) 1.4066e−2
Adaptive Algorithm [22] (18.00, 39.34, 44.82, 46.61, 50.13, 58.33) 1.7695e−2
Proposed algorithm (38.41, 43.50, 47.04, 51.00, 58.09) 1.4128e−2
Jupp’s algorithm [11] (37.65, 43.97, 47.37, 50.12, 59.20) 1.2270e−2
4.2. Sampled from a function

In this subsection, we approximate the Chebyshev polynomial
T10 of degree 10 on the interval [−1, 1] which has been consid-
ered by T. Lyche and K. Mørken [20]. The data points are sam-
pled from T10 at 401 uniformly spaced points. In the paper [20],
firstly the knot removal strategy was used for the linear interpo-
late of the data points, then the knot removal strategy was used
again for the cubic splinewhichwas transformed from the reduced
linear interpolate. We recompute the approximated cubic spline
by the method in [20] which has built in SISL package (https://
github.com/SINTEF-Geometry/SISL) and the approximated spline
together with 13 interior knots is shown in Fig. 6(b), where the
knots are marked by triangles.

Fig. 6(a) shows the approximated spline together with 14 in-
terior knots calculated by our method. The 14 interior knots are
marked by triangles and the fitting error isMSE = 3.4745e−5. The
initial knots are chosen uniformly 25 equidistant points in [−1, 1]
and the parameter is chosen as ε = 0.003. By the way, for this
function, the second step is not performed. The final fourteen in-
terior knots of the approximated spline are selected automatically
only by the first step.

The approximated errorME computed by our algorithmwith 14
interior knots is 0.017258 compared with 0.037530, which is com-
puted by the knot removal algorithm [20]with 13 interior knots. As
seen from Fig. 6(a), the one more knot by our algorithm is around
zero and contributes to the smaller approximated error ME com-
paring to the algorithm in [20]. And the interior knots calculated by
our method distribute regularly in the domain [−1, 1] and are se-
lected adaptively according to the underlying curvature structures
of the unknown function. By theway, as the SISL algorithmwas de-
velopedwith a great deal of optimization, the SISL implementation
is faster than our algorithm.

4.3. Sampled from a B-spline function

In this subsection, we consider a B-spline function with the
following knots:

(0.0439, 0.0653, 0.2293, 0.2367, 0.4821,
0.4907, 0.5408, 0.5408, 0.6209, 0.7051, 0.9407),

where 0.5408 is a double knot. Fig. 7(a) shows this spline function.
The data points are sampled uniformly 1001 points from this
B-spline function. The parameter ε is set to be 2.0e − 5 and the
initial knots are chosen uniformly 501 equidistant points in [0, 1].

Fig. 7(b) shows the approximated B-spline function (red curve)
together with the active knots (blue triangles) selected by the first
step. Notice that the active knots are clustered into several groups
and especially around the double knot 0.5408. Fig. 7(c) shows the
knots of the approximated B-spline function after the second step.
The MSE of our fit is 3.7596e − 6. The obtained interior knots are

(0.043969, 0.065281, 0.229406, 0.236594,
0.482094, 0.490906, 0.496031, 0.540859,
0.540859, 0.620969, 0.705031, 0.940844).

Ifwe remove the knot 0.496031which is not in the true knot vector,
the fitting errorMSE increases to 1.469837e−4.

We compared our method with the three methods in the
work [20–22]. Fig. 7(d) shows the approximated B-spline function
together with the knots using the method in [20]. The resulting
spline has 28 interior knots (0.49 is a double knot and0.54 is a triple
knot) and themaximum fitting errorME is 1.49802e−2. The fitting
error of our fit is ME = 1.2769e−2 which is smaller than that of
the method in [20] and also the knots number determined by our
method is fewer than that of the method in [20]. Fig. 8 illustrates
the fitting result using the method in [21,22]. It can be seen that
there are still much redundant knots in the approximated spline
function, especially the redundant knots around the double knot
0.5408.

From the above comparison, for the data points sampled from
a spline function, our method shows a significant superiority of
removing redundant knots and recovering the true knots of the
given spline.

Finally we discuss the effect of non-uniform sampling on recov-
ering the true knots of a given spline function. We take the above
ground truth as an illustration. Fig. 9 shows the fitting result when
the data points are sampled randomly. The final interior knots are

(0.043969, 0.065282, 0.229406, 0.236598, 0.482031, 0.490906,
0.531969, 0.537969, 0.537969, 0.620099,
0.705406, 0.940531).

It can be seen that now the true double knot 0.5408 is recov-
ered with a larger error than that of the uniform sampling. The
worst case of non-uniform sampling is some of the true knots es-
pecially the multiple knots cannot be recovered. The reason can be

https://github.com/SINTEF-Geometry/SISL
https://github.com/SINTEF-Geometry/SISL
https://github.com/SINTEF-Geometry/SISL
https://github.com/SINTEF-Geometry/SISL
https://github.com/SINTEF-Geometry/SISL
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(a) Original function. (b) First step.

(c) Second step. (d) The method in [20].

Fig. 7. Approximation of a B-spline function with a double knot 0.5408 using our method and the method in [20].
(a)MSE = 4.0041e−7. (b)MSE = 4.6633e−4.

Fig. 8. From (a) to (b): approximation of a B-spline function with a double knot 0.5408 by the method in [21,22] respectively.
explained as in Remark 3.1. The random sampling results in
nonuniformdistribution of data points in an interval, consequently
some of the candidate intervals cannot be found exactly in the sec-
ond step, leading to some true knots omitted.

Remark 4.1. 1. The code of our algorithm is not optimized thor-
oughly. Therefore the time cost is expensive. The time cost of
the first step is about 0.22 s while the time cost of the second
step is about 40 s for the above three examples. It can be seen
that the time cost of first step is much smaller than that of the
second step. Generally speaking, the time cost of the first step
depends on the given data points and the time cost of the sec-
ond step depends on the number of input active knots.

5. Conclusions

In this paper, we propose a framework for computing knots
number and position in curve fittingwith splines based on a sparse
optimization model. The knots number and position can be found
automatically by two steps. In the first step, several knots are
selected from the initial knots by solving a sparse optimization
Fig. 9. Approximation of a given B-spline with random sampling.

problem. There are still much more redundant knots after the first
step. We further remove redundant knots and adjust the positions
of active knots to obtain the final knot vector. So the resulting knot
vector in the second step is not a subset of the initial knot vec-
tor given in the first step any more. This is the main difference
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between our method and the two methods in [21,22]. Our exper-
iments show that the approximation spline curve obtained by our
approach has less number of knots compared to existing methods.
Particularly, when the data points are sampled dense enough from
a spline, our algorithm can recover the ground truth knot vector
and reproduce the spline.

There are a few problems worthy of further investigation. First,
the time cost now is expensive and the method can only handle
datawith small noise.Wewill investigate how to optimize the code
to decrease the time cost and how to add penalty term in the sparse
optimization model to deal with noisy data. Second, how to design
a much more effective strategy to deal with multiple knots? A
possible way is to estimate the derivatives information from given
data points to locate the multiple knots. Third, how to extend the
idea to parametric curves and surfaces will be an interesting but a
challenging problem.
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