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ABSTRACT
This paper discusses implicitization and parametrization of
quadratic surfaces with one simple base point. The key point
to fulfill the conversion between the implicit and the para-
metric form is to compute three linearly independent moving
planes which we call the weak μ-basis of the quadratic sur-
face. Beginning with the parametric form, it is easy to com-
pute the weak μ-basis, and then to find its implicit equation.
Inversion formulas can also be obtained easily from the weak
μ-basis. For conversion from the implicit into the paramet-
ric form, we present a method based on the observation that
there exists one self-intersection line on a quadratic surface
with one base point. After computing the self-intersection
line, we are able to derive the weak μ-basis, from which
the parametric equation can be easily obtained. A method
is also presented to compute the self-intersection line of a
quadratic surface with one base point.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Curve,
surface, solid, and object representations

General Terms
Algorithms

Keywords
Implicitization, moving plane, parametrization, weak μ-basis

1. INTRODUCTION
In Computer Aided Geometric Design and Geometric Mod-

elling, there are two complimentary ways of representing ge-
ometric objects: implicitly and parametrically, each of which
has different advantages and disadvantages. It is valuable to
have both representations at the same time. Thus conversion
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between parametric and implicit form has been an interest-
ing research topic for the past twenty years. The process of
converting a parametric form into an implicit form is called
implicitization, whereas the reverse process in called param-
eterization. In this paper, we are dedicated to investigating
the implicitization and parametrization of a quadratic sur-
face with one simple base point, which will be referred to as
QSOB in the rest of the paper for brevity.

There is a wealth literature focusing on implicitization
of parametric surfaces in the past two decades, and vari-
ous methods have been proposed to solve the implicitiza-
tion problem. These methods can be mainly classified into
three categories: the resultant based method, the Groebner
bases method and the method of moving surfaces (see [3,
9, 16, 17] and the references therein). The resultant based
method is generally efficient. However, it fails in many sit-
uations, for example, in the presence of base points. On the
other hand, the method based on Groebner bases is com-
putational expensive. The method of moving surfaces pro-
posed by Sederberg and the second author (of this paper)
is generally much more efficient than the methods based on
Groebner bases and resultants, and it even simplifies compu-
tation in the presence of base points. However, the method
of moving surfaces is largely at a experimental stage, and
there is no proof to show that the method of moving sur-
faces always works. A rigorous approach along this direction
is a technique based on syzygies (or μ-basis). The concept
of μ-basis was firstly introduced in [12] to provide a com-
pact representation for the implicit equation of a rational
curve. It was then generalized to rational ruled surfaces and
general rational parametric surfaces [5, 6, 8]. Unfortunately,
the μ-basis doesn’t directly provide an implicit equation for
a general rational surface. In this paper, we will show that
the method of moving surfaces works well for quadratic sur-
faces with one simple base point. Specifically, we will show
that a QSOB has exactly three linearly independent moving
planes which we call the weak μ-basis of the QSOB. From
the weak μ-basis, the implicit equation of the QSOB can be
easily derived.

Since the implicit degree of a QSOB is 22 − 1 = 3, the
implicit representation of a QSOB is a cubic surface. There
are many works discussing the parametrization of nonsin-
gular cubic surfaces [1, 2, 18, 20, 21], and most of these
approaches are based on the properties that a nonsingular
cubic surface contains exactly 27 straight lines and 45 tri-
tangent planes [14]. In [2], Berry and Patterson unified the
parametrization and the implicitization of nonsingular cu-
bic surfaces by using the Hilbert-Burch matrices, which is
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essentially another representation of three moving planes.
However, the cubic surface derived from a QSOB is a sin-
gular surface, which doesn’t have the above properties. In
section 4, we will show that the cubic surface derived from
a QSOB has a self-intersection line. Based on this obser-
vation, an algorithm is presented to derive a weak μ-basis
from the implicit equation of a QSOB, and thus a parametric
equation is obtained.

The remainder of the paper is organized as follows. In
Section 2, we recall some preliminary results about moving
planes and cubic surfaces. In Section 3 and Section 4, we
present techniques for the implicitization and the parametriza-
tion of a QSOB. Singularities of a QSOB are also analyzed
in detail. We conclude the paper in Section 5.

2. PRELIMINARIES
Let R[s, t] be the ring of bivariate polynomials in s, t over

some infinite field F . A rational parametric surface in ho-
mogeneous form is defined as follows:

P(s, t) =
(
a(s, t), b(s, t), c(s, t), d(s, t)

)
, (1)

where a, b, c, d ∈ R[s, t] are polynomials with gcd(a, b, c, d) =
1.

A base point of a rational surface P(s, t) is a parameter
pair (s0, t0) such that P(s0, t0) = (0, 0, 0, 0). Here s0 and t0
lie in the algebraically closed extension filed of F . A QSOB
is a rational quadratic parametric surface with one simple
base point. The total degree of a QSOB in s, t is 2 and
its implicit degree is 22 − 1 = 3. In this paper, we will
provide an efficient and rigorous method for implicitization
and parametrization of a QSOB using the method of moving
planes.

A moving plane is a family of planes with parameter pair
(s, t):

L(X; s, t) := A(s, t)x + B(s, t)y + C(s, t)z + D(s, t)w = 0,
(2)

where X = (x, y, z, w) and A(s, t), B(s, t), C(s, t), D(s, t) ∈
R[s, t]. Sometimes, we write it in a vector form: L(s, t) :=(
A(s, t), B(s, t), C(s, t),D(s, t)

)
. A moving plane L(s, t) is

said to follow the rational surface P(s, t) if

L(s, t) · P(s, t) =a(s, t)A(s, t) + b(s, t)B(s, t)+

c(s, t)C(s, t) + d(s, t)D(s, t) ≡ 0.
(3)

For a QSOB, there are exactly three independent moving
planes of degree 1 in s, t, and these three moving planes
serve as the connection between the parametric form and
the implicit form of the QSOB.

Since the implicit degree of a QSOB is three, the following
result is useful for analyzing the singularities of QSOBs.

Proposition 2.1. [15] If a cubic surface has finitely many
singular points, then the number of singular points is less
than or equal to four. Moreover, the cubic surface contain-
ing precisely 4 singular points is unique up to linear isomor-
phism.

3. IMPLICITIZATION
In this section, we temporarily switch the parameters s, t

to homogeneous parameters s, t, u. Then the parametric sur-
face P(s, t) becomes

P(s, t, u) = (a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u)).

For a quadratic surface P(s, t, u) with one base point (s0,
t0, u0) �= (0, 0, 0), there exist a nonsingular matrix B ∈
F 3×3 such that (s0, t0, u0) = (0, 1, 0) · B. Let (s, t, u) =
(s̃, t̃, ũ) ·B, then we get a new parametric representation for
the quadratic surface:

P̃(s̃, t̃, ũ) =
(
ã(s̃, t̃, ũ), b̃(s̃, t̃, ũ), c̃(s̃, t̃, ũ), d̃(s̃, t̃, ũ)

)
which has the same implicit representation as P(s, t, u).

Since P̃(s̃, t̃, ũ) contains the base point (0, 1, 0), it doesn’t
contain the term t2. Therefore, without loss of general-
ity, we may assume that, in non-homogeneous variables, the
quadratic surface P(s, t) has the form

P(s, t) = PT
1 + PT

s s + PT
t t + PT

s2s2 + PT
stst, (4)

where P1, Ps, Pt, Pst and Ps2 are all column vectors in
F 4.

Before going on, we give a simple method to detect if a
given quadratic parametrization is a QSOB or not.

Let {
A1x + B1y + C1z + D1 = 0

A2x + B2y + C2z + D2 = 0

be an arbitrary line. The intersection of this line with the
parametric equation (1) of a QSOB is determined by{

f(s, t) := A1a(s, t) + B1b(s, t) + C1c(s, t) + D1d(s, t) = 0

g(s, t) := A2a(s, t) + B2b(s, t) + C2c(s, t) + D2d(s, t) = 0

Let h be the resultant of f and g with respect to s (or t). If
deg(h) = 3, then the quadratic parametrization is a QSOB.

A major observation about QSOBs is the following theo-
rem.

Theorem 3.1. For a QSOB, there are exactly three lin-
early independent moving planes with degree one in s, t that
follow it.

Proof. Let

L(s, t) = Lss + Ltt + L1

be a moving plane with total degree 1 in s, t that follows
P(s, t). Here L1, Ls and Lt are row vectors in F 4.

From

L(s, t) · P(s, t) ≡ 0,

one obtains

(Ls,Lt,L1) · Q = 0, (5)

where Q is the 12 × 9 matrix

Q =

⎛
⎝ 0 P1 0 Ps Pt 0 Ps2 Pst 0

0 0 P1 0 Ps Pt 0 Ps2 Pst

P1 Ps Pt Ps2 Pst 0 0 0 0

⎞
⎠ . (6)

We first note that the rank of the set of vectors {P1,Ps,
Pt, Ps2 ,Pst} must be four, otherwise the implicit represen-
tation of P(s, t) is a plane. Now we claim that rank(Q) = 9,
which would imply that there are exactly three linearly inde-
pendent moving planes of degree one in s, t following P(s, t).

Suppose on the contrary that the columns Ci of Q are
linearly dependent. Then there exist constants k1, k2 . . . , k9,
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at least one of them are nonzero, such that

9∑
i=1

kiCi = 0.

The above equation is equivalent to

(P1,Ps,Pt, Ps2 ,Pst) · K = 0,

where

K =

⎛
⎜⎜⎜⎝

k1 k2 k3

k2 k4 k5

k3 k5 k6

k4 k7 k8

k5 k8 k9

⎞
⎟⎟⎟⎠ .

Since rank(P1,Ps,Pt,Ps2 ,Pst) = 4, we conclude that
rank(K) = 1. We assume that at least one of k1, k2, k3, k4, k5

is nonzero (the other cases can be treated similarly and hence
are omitted), then there exist constants λ and μ such that

k2 = λk1, k4 = λk2, k5 = λk3,

k7 = λk4, k8 = λk5,

k3 = μk1, k5 = μk2, k6 = μk3,

k8 = μk4, k9 = μk5.

Hence

k1 �= 0, k2 = λk1, k3 = μk1, k4 = λ2k1, k5 = λμk1.

Therefore

P1 + λPs + μPt + λ2Ps2 + λμPst = 0,

which means that P(s, t) has another base point (λ, μ, 1)
apart from (0, 1, 0), a contradiction. Hence, rank(Q) = 9
and there exist three linearly independent moving planes
following P(s, t).

Remark 3.1. The three moving planes in Theorem 3.1
are called a weak μ-basis of the QSOB. Since a weak μ-basis
corresponds to a basis of the solution space of the linear sys-
tem of equations (5), two different weak μ-bases differ by
the multiplication of a 3 × 3 invertible matrix. Therefore,
the weak μ-basis of a QSOB is unique in the sense that it is
the same under an invertible linear transformation.

The weak μ-basis provides a direct method to implicitize
a QSOB.

Theorem 3.2. Let

Li(X; s, t) = Li1(X)s + Li2(X)t + Li3(X),

i = 1, 2, 3 be a weak μ-basis of P(s, t). Here Lij(X) is a
linear function in x, y, z, w, i, j = 1, 2, 3. Then the implicit
equation of P(s, t) is given by f(X) := det(M) = 0. Here

M =

⎛
⎝L11(X) L12(X) L13(X)

L21(X) L22(X) L23(X)
L31(X) L32(X) L33(X)

⎞
⎠ . (7)

Proof. Firstly, we will prove that the three moving planes
L1, L2 and L3 are R[x, y, z, w]-linearly independent, or equiv-
alently, f(X) is not identically zero.

We first point out several basic facts.

(i) Let Q = (qij)4×4 be an invertible matrix, and let

P̃(s, t) := (ã(s, t), b̃(s, t), c̃(s, t), d̃(s, t))T

= Q (a(s, t), b(s, t), c(s, t), d(s, t))T .

Suppose that the implicit equation of P̃(s, t) is f̃(X) =

0. Then the implicit equation of P(s, t) is f̃(X ·QT ) =
0.

(ii) P1, Pt, Pst and Ps2 are all non-zero vectors. In fact,
Pt = 0 or Pst = 0 indicates that (0, 1, 0) is a double
base point of P(s, t). P1 = 0 implies (0, 0, 1) is a base
point of P(s, t). Similarly, Ps2 = 0 means (1, 0, 0) is
also a base point of P(s, t). But P(s, t) has only one
base point (0, 1, 0).

(iii) By elementary row operations, the 4×5 matrix (P1,Ps,
Pt,Ps2 ,Pst) can be reduced into

(P̃1, P̃s, P̃t, P̃s2 , P̃st) =

⎛
⎜⎜⎝

1 e1 0 0 0
0 e2 1 0 0
0 e3 0 1 0
0 e4 0 0 1

⎞
⎟⎟⎠ (8)

(iv) e1e3 − 1 = 0 and e1e4 + e2 = 0 can’t hold simultane-
ously. Here ei, i = 1, 2, 3, 4 are elements in the matrix
(8). Indeed, suppose towards contradiction that both
equalities hold. Then the parametric surface

P̃(s, t) = P̃1 + P̃ss + P̃tt + P̃s2s2 + P̃stst (9)

has a base point (−1, e2, e1), which contradicts the fact

that P̃(s, t) has just one base point.

Now we may assume that e1e3 − 1 �= 0 (the case when
e1e4 + e2 �= 0 is similar and hence is omitted). One can

easily compute that a weak μ-basis of P̃(s, t) is

L1(X) := βz − αw + (−γx + αy)s,

L2(X) := −αy + βe1z − αe1w − βxs + αxt,

L3(X) := e4z − e3w − ws + zt,

where α = e1e3 − 1, β = e1e4 + e2, γ = e2e3 + e4. It can be
easily seen that

f(X) :=

∣∣∣∣∣∣
−γx + αy 0 βz − αw

−βx αx −αy + βe1z − αe1w
−w z e4z − e3w

∣∣∣∣∣∣
contains the term α2y2z. Thus f(X) �≡ 0.

Secondly, for any parameter values (s0, t0), let X0 =
(a(s0, t0), b(s0, t0)), c(s0, t0), d(s0, t0)). We want to show that
f(X0) = 0. From Li(X0, s0, t0) = 0, i = 1, 2, 3, we have⎛

⎝L11(X0) L12(X0) L13(X0)
L21(X0) L22(X0) L23(X0)
L31(X0) L32(X0) L33(X0)

⎞
⎠

⎛
⎝s0

t0
1

⎞
⎠ = 0. (10)

Therefore,

f(X0) = 0.

Since the degree of f(X) is three, we can conclude that
f(X) = 0 is the implicit form of P(s, t).

Remark 3.2. In [4], the authors proved that the moving
planes and moving quadrics method works for general ratio-
nal surfaces in the presence of base points if the rational sur-
faces satisfy certain conditions (BP1-BP5). It can be shown
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that a QSOB satisfies the BP1-PB5 conditions. Thus The-
orem 3.2 can be looked as a special case of Theorem 3.6 in
the paper [4].

Based on the results of Theorem 3.1 and 3.2, a simple
algorithm can be devised to implicitize a QSOB.

Algorithm IMPLICITIZATION-QSOB
Input: The parametric equation of a QSOB.
Output: The implicit eqaution of the QSOB.
Procedure:

1. Solve the linear system of equations (5) to obtain the
weak μ-basis of the QSOB.

2. Compute the determinant of the matrix (7) formed by
the weak μ-basis. The determinant gives the implicit
equation of the QSOB.

Remark 3.3. To improve the efficiency, one may first
perform row reductions on the matrix (P1,Ps,Pt,Ps2 , Pst)
and transform it into the simplest form, i.e., four of the col-
umn vectors are transformed into (1, 0, 0, 0)T , (0, 1, 0, 0)T ,
(0, 0, 1, 0)T and (0, 0, 0, 1)T . Then we compute the weak μ-
basis and the implicit equation of the corresponding surface
P̃(s, t) after the transformation. The implicit equation of
the surface P(s, t) is obtained by the same transformation

of the variables from the implicit equation of P̃(s, t).

We illustrate the algorithm with an example.

Example 1. Let the quadratic parametric surface be

P(s, t) = (s, t2, st − 3, s − st)

with (1, 0, 0) being a base point. A weak μ-basis of P(s, t)
is

(L1, L2, L3) = (s, t, 1)

⎛
⎝ 0 x − z − w y

−x −3x −x + w
x − w −3w 0

⎞
⎠ .

Then the implicit equation of P(s, t) is

f(X) :=

∣∣∣∣∣∣
0 x − z − w y
−x −3x −x + w

x − w −3w 0

∣∣∣∣∣∣
= −x3 + 3 x2y + x2z + 3 x2w − 2xzw − 3xw2

+ zw2 + w3 = 0.

The weak μ-basis also provides a simple inversion formula
for a QSOB. Suppose X0 is a point on a QSOB, the corre-
sponding parameter values (s0, t0) can be solved from (10):⎧⎪⎪⎨

⎪⎪⎩
s0 =

L12(X0)L23(X0) − L13(X0)L22(X0)

L11(X0)L22(X0) − L12(X0)L21(X0)
,

t0 =
L13(X0)L21(X0) − L11(X0)L23(X0)

L11(X0)L22(X0) − L12(X0)L21(X0)
.

(11)

For the QSOB in Example 1, the inversion formula is

s =
3x

x − z − w
, t =

x − w

x
.

The weak μ-basis has some nice algebraic properties. For
example, one has

Theorem 3.3. Let Li(X, s, t), i = 1, 2, 3 be a weak μ-
basis of a QSOB P(s, t), and f(X) = 0 be the implicit equa-
tion of P(s, t). Then

〈L1, L2, L3〉 ∩ R[x, y, z, w] = 〈f〉.
Here R[x, y, z, w] is the ring of polynomials in variables x, y,
z, w over the field F .

Proof. Let (h1, h2, h3) = (L12, L22, L32)×(L13, L23, L33).
By Theorem 3.2, it is easy to show that f = h1L1 + h2L2 +
h3L3. Hence f ∈ 〈L1, L2, L3〉.

On the other hand, for any g(x, y, z, w) ∈ 〈L1, L2, L3〉 ∩
R[x, y, z, w], there exist polynomials hi, i = 1, 2, 3 such that

g = h1L1 + h2L2 + h3L3.

Since Li, i = 1, 2, 3 are moving planes following P(s, t),
g(a, b, c, d) ≡ 0, i.e., g vanishes on P(s, t). Since f also
vanishes on P(s, t) and it is irreducible, f |g. Hence g ∈ 〈f〉.
This completes the proof.

4. PARAMETRIZATION
A QSOB represents a cubic surface in implicit form. Com-

pared to non-singular cubic surfaces parameterized by cubic
parametric surfaces with six generic base points, it has some
special properties.

4.1 Singular locus of a QSOB
We first give two simple lemmas regarding the singular

points of a cubic surface.

Lemma 4.1. Let P1 and P2 be two singular points of a
cubic surface. Then the line joining the two singular points
is contained in the surface.

Proof. Notice that any line intersects with a cubic sur-
face at three points if the line is not contained in the cubic
surface. Since the line joining P1 and P2 intersects with the
cubic surface at four points (counting multiplicity), the line
must be contained in the surface.

Lemma 4.2. An irreducible cubic surface either has a self-
intersection line, or has at most four singular points.

Proof. If the cubic surface contains a non-planar space
curve as its singular locus, then the line joining any two
points on the space curve is contained in the surface by
Lemma (4.1). Consequently some three-dimensional set is
contained in the surface, an impossibility.

If the cubic surface contains a plane curve (not a line) as
its locus, then the plane containing the plane curve is a part
of the surface. This is impossible since the cubic surface is
irreducible.

If the cubic surface contains a line l and a point P not on
the line as its singular locus, then the plane determined by
the point P and the line l is also contained in the surface,
again a contradiction with the irreducibility of the cubic
surface.

Finally, if the surface has only finite number of singular
points, it has at most four singular points by Proposition
2.1.

Theorem 4.3. [10] The cubic surface parametrized by a
QSOB is a singular surface. The singular locus is a self-
intersection line.
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Proof. Coffman et al. ([10]) provide a proof based on
matrix algebra. In this paper, we give a simple proof by
using the weak μ-basis of the QSOB.

Without of loss of generality, we assume that the quadratic
parametric surface has the simplified form (9). Let M̃ be the

matrix formed by the weak μ-basis of P̃(s, t), i.e.,

M̃ :=

⎛
⎝−γx + αy 0 βz − αw

−βx αx −αy + βe1z − αe1w
−w z e4z − e3w

⎞
⎠ .

It is easy to show that rank(M̃) = 1 if and only if βz −
αw = 0 and −γx+αy = 0. That is, for any point (x, y, z, w)
satisfying the two equations, it corresponds to at least two
parameters, and thus corresponds to a singular point. So the
intersection line of two planes βz−αw = 0 and −γx+αy = 0
is a double line of P(s, t). By Lemma 4.2, there are no other
singular points on P(s, t).

Based on the proof of Theorem 4.3, a simple method is
derived to compute the self-intersection line of a QSOB pa-
rameterized by P(s, t).

Algorithm SELF-INTERSECTION-QSOB-I
Input: The parametric equation P(s, t) of a QSOB.
Output: The self-intersection line of the QSOB.
Procedure:

1. Compute the base point of P(s, t), and change the
parametric equation into the form (4).

2. Compute a weak μ-basis Li(X) = Li1(X)s+Li2(X)t+
Li3(X), i = 1, 2, 3 of P(s, t).

3. Perform row operations to the matrix M as defined
in (7), such that one element of the second column
is zero (say L12(X) = 0). This can happen because
Li2(Pt) = 0 and Li2(Pst) = 0, i = 1, 2, 3. We still use
the same notation for the matrix after row reduction.

4. The intersection of the two planes L11(X) = 0 and
L13(X) = 0 is the self-intersection line of P(s, t).

For the quadratic parametric surface in Example 1, the
self-intersection line is defined by x − w = 0 and x = 0, or
equivalently x = 0 and w = 0.

For a QSOB defined by an implicit equation f(x, y, z, w),
how does one compute its self-intersection line? A standard
way is to solve the system of equations:

fx(x, y, z, w) = 0, fy(x, y, z, w) = 0,

fz(x, y, z, w) = 0, fw(x, y, z, w) = 0.
(12)

Or equivalently, to compute the intersection of four quadric
surfaces. Computing the intersection of two quadric surfaces
is not an easy task (see [22] and the references therein). In
the following, we provide a method to detect if an irreducible
cubic surface has a self-intersection line, and if it has, how
to compute the self-intersection line.

We consider the intersection of the cubic surface with an
arbitrary plane. First, we have the following lemma.

Lemma 4.4. Let P be a singular point of a cubic surface,
and π be a plane passing through P . Then P is also a singu-
lar point of the curve which is the intersection of the cubic
surface and the plane π.

Proof. Without loss of generality, we may assume that
the plane π is defined by the equation z = p1x + p2y +
p3w. Then the intersection curve of the plane π and the
cubic surface f(x, y, z, w) = 0 is defined by g(x, y, w) :=
f(x, y, p1x + p2y + p3w, w) = 0. If P is a singular point of
the cubic surface, then fx(P ) = fy(P ) = fz(P ) = fw(P ) =
0. So gx(P ) = fx(P ) + fz(P )p1 = 0. Similarly, gy(P ) =
gw(P ) = 0. Thus P is also a singular point of g(x, y, w) =
0.

Note that the converse of the above lemma is not true.

Now based on previous analysis, we can devise an algo-
rithm to detect and compute the self-intersection line of a
cubic surface.

Algorithm SELF-INTERSECTION-QSOB-II

Input: Implicit equation of an irreducible cubic surface.
Output: Detect if the cubic surface has a self-intersection

line, and if yes, compute it.
Procedure:

1. Choose five random planes, and compute the intersec-
tion curves of the cubic surface with the five planes.

2. Compute the singular point (if any) of each intersec-
tion curve by the method in [7].

3. Verify if the singular points of the intersection curves
are singular points of the cubic surface;

4. If we obtain 5 or more singular points of the cubic
surface, then these singular points are all on a single
line, and the line is the self-intersection line of the cubic
surface. Otherwise, the cubic surface doesn’t have a
self-intersection line.

Remark 4.1. To detect if a cubic surface is a QSOB or
not, one can simply find a random plane to intersect the
surface, and check if the intersect curve contains a singular
point or not.

4.2 Parametrization method
Suppose we are given the implicit equation f(x, y, z, w) =

0 of a cubic surface parameterized by a QSOB. After we
have computed the self-intersection line, a direct method
to parameterize the surface is as follows. We find an arbi-
trary plane passing through the self-intersection line, and
the plane intersects the cubic surface at a line l′ besides the
self-intersection line. The line l′ gives a parametrization of
the cubic surface. Unfortunately, such a parametrization is
in general cubic instead of quadratic. To get a quadratic
parametrization, we would like to seek the aid of a weak
μ-basis.

To begin with, we choose two distinct planes p1 = 0, p2 =
0 passing through the self-intersection line l of the cubic
surface. The plane pi = 0 intersects with the cubic surface
at l (a double line) and another line li, i = 1, 2. Thus, if
we solve for one variable (say z) from p1 = 0 to get z =
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z1(x, y, w), and substitute it into f(x, y, z, w), then one gets
f(x, y, z1(x, y,w), w) = m2n1. Here m, n1 are linear func-
tions in x, y, w. Similarly, f(x, y, z2(x, y, w), w) = m2n2.
Here z2(x, y,w) is solved from p2 = 0 and n2 is a linear
function in x, y,w.

Theorem 4.5. Let the notation be as above. Then the
implicit equation of the cubic surface parameterized by a
QSOB can be written as f(x, y, z, w) = det(G), where

G =

⎛
⎝ p1 0 m

0 p2 m
−k1n1 −k2n2 h0(x, y, z, w)

⎞
⎠ , (13)

k1, k2 are undetermined coefficients, and h0(x, y, z, w) is a
undetermined linear function.

Proof. The proof is similar to the proof of Theorem 5 in
[2]. We sketch it as follows.

Since f(x, y, z, w) vanishes on the self-intersection line l
and the other two lines l1, l2, f(x, y, z, w) must be contained
in the radical ideal

J = 〈p1, p2〉 ∩ 〈p1, n1〉 ∩ 〈p2, n2〉.
It is easy to show that

J = 〈p1p2, p1n2, p2n1〉.
So f(x, y, z, w) can be expressed as

h0p1p2 + h1p1n2 + h2p2n1,

where h0, h1, h2 are homogeneous polynomials in R[x, y, z, w].
Next from f(x, y, z, w) ∈ 〈p1, m〉 ∩ 〈p1, n1〉, one obtains

that m|h2. Similarly, we can get that m|h1. Thus

f(x, y, z, w) = h0p1p2 + k1p2mn1 + k2p1mn2,

where h0 is a linear polynomial in x, y, z, w. Thus f(x, y, z, w)
can be expressed as the required form (13).

In Eq.(13), the unknown coefficients k1, k2 and the un-
known linear function h0 can be solved by undetermined
coefficients. Thus the implicit equation of a QSOB can be
written as the determinant of a three by three matrix in
which the entries are linear with x, y, z, w. The three by
three matrix provides us a method to parameterize the cu-
bic surface.

Let

(L1, L2, L3) := (s, t, 1) · G, (14)

then (L1, L2, L3) can be rewritten as

(L1, L2, L3) = (x, y, z, w) · H, (15)

where H = (Lij(s, t))4×3 with Lij(s, t) ∈ R[s, t]. L1, L2, L3

will serve as the weak μ-basis of the parameterizaton of the
cubic surface f(x, y, z, w) = 0.

Theorem 4.6. Let Lij(s, t) be given as above, and let
Li = (L1i, L2i, L3i, L4i)

T , i = 1, 2, 3. Then

P(s, t) := [L1,L2,L3]

gives a quadratic parametrization of the cubic surface f(x, y,
z, w) = 0. Here [L1,L2,L3] is the outer product of L1,L2,L3,

i.e.,

[L1,L2,L3] :=⎛
⎝

∣∣∣∣∣∣
L21 L31 L41

L22 L32 L42

L23 L33 L43

∣∣∣∣∣∣ ,−
∣∣∣∣∣∣
L11 L31 L41

L12 L32 L42

L13 L33 L43

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
L11 L21 L41

L12 L22 L42

L13 L23 L43

∣∣∣∣∣∣ ,−
∣∣∣∣∣∣
L11 L21 L31

L12 L22 L32

L13 L23 L33

∣∣∣∣∣∣
⎞
⎠ .

(16)

Proof. Without loss of generality, we assume that the
self-intersection line l coincides with x-axis, i.e., l is defined
by y = z = 0.

We first prove that L1,L2,L3 are R[s, t]-linearly indepen-
dent, i.e., the outer product of L1,L2,L3 is not a zero vector.

Consider two planes p1 := y−λ1z = 0 and p2 := y−λ2z =
0 passing through x axis, here λ1 �= λ2. Then f(x, y, z, w) =
det(G) with

G =

⎛
⎝y − λ1z 0 z

0 y − λ2z z
h1 h2 h3

⎞
⎠ .

where h1 = h11x + h13z + h14w, h2 = h21x + h23z + h24w,
h3 = h31x+h32y+h33z+h34, and hij , i = 1, 2, 3, j = 1, 2, 3, 4
are constants. Furthermore, at least one of h11, h21, h31 is
nonzero.

From (14) and (15), we get

H =

⎛
⎜⎜⎝

h11 h21 h31

s t h32

−λ1s + h13 −λ2t + h23 s + t + h33

h14 h24 h34

⎞
⎟⎟⎠ .

Thus

L1 = (h11, s,−λ1s + h13, h14),

L2 = (h21, t,−λ2t + h23, h24),

L3 = (h31, h32, s + t + h33, h34).

One can verify directly that [L1,L2,L3] can’t be identi-
cally the zero vector (otherwise h11 = h21 = h31 = h14 =
h24 = h34 = 0, which implies that f involves only y, z, an
impossibility), and it thus gives a parametrization of the cu-
bic surface. Furthermore, it is easy to see that the total
degree of the parametrization is two. This completes the
proof.

Based on the above theorem, we can devise an algorithm
to compute a quadratic parametrization of a cubic surface
with a self-intersection line.

Algorithm PARAMETRIZATION-QSOB
Input: The implicit equation f(x, y, z, w) = 0 of a QSOB.
Output: The parametric equation of the QSOB.
Procedure:

1. Detect whether the cubic surface f(x, y, z, w) = 0 has
a self-intersection line or not by the algorithm SELF-
INTERSECTION-QSOB-II. If there exists a self-inter-
section line, compute it and denote it as l. Otherwise,
Stop.

2. Choose any two distinct planes p1, p2 passing through
the line l. Substituting the equation of each plane
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into f(x, y, z, w) = 0, we will get a factorization as
m2n1 and m2n2 respectively. Here m, n1, n2 are linear
functions in x, y, z, w.

3. Solve for unknown coefficients k1, k2, k3, k4, k5, k6 from

f(x, y, z, w) =

∣∣∣∣∣∣
p1 0 m
0 p2 m

k1n1 k2n2 k3x + k4y + k5z + k6w

∣∣∣∣∣∣
4. Construct the weak μ-basis as in the form (15). Com-

pute the outer product of the weak μ-basis. The re-
sult is a quadratic parametrization of the cubic surface
f(x, y, z, w) = 0.

We give an example to illustrate the above algorithm.

Example 2. The implicit equation of P(s, t) in Example
1 is

f(x, y, z, w) := − x3 + 3 x2y + x2z + 3 x2w

− 2xzw − 3 xw2 + zw2 + w3 = 0.

and the singular locus of the cubic surface is (x, y, z, w) =
(0, y, z, 0). Choosing the planes x − w = 0, x = 0 passing
through the self-intersection line, we can get the following
factorization of f(x, y, z, w):

f(x, y, z, w) =

∣∣∣∣∣∣
x − w 0 w

0 x w
−3y z + w −x + 3y + z + 2w

∣∣∣∣∣∣ .

The weak μ-basis is thus(
sx − sw − 3y, tx + z + w, (s + t)w − x + 3y + z + 2w

)
,

or in vector form

L1 = (s,−3, 0,−s), L2 = (t, 0, 1, 1),

L3 = (−1, 3, 1, s + t + 2).

Thus the outer product of L1,L2, L3 gives a parametriza-
tion of the cubic surface:

P(s, t) = (−3t − 3, −s2, 3t2 − 3s + 6t + 3, 3s − 3t − 3).

Example 3. Consider the cubic surface

f(x, y, z, w) := xz2 + y2z + 2y2w + yzw = 0.

The self-intersection line of f = 0 is (x, y, z, w) = (x, 0, 0, w).
Choosing two planes y − z = 0, y = 0 passing through the
self-intersection line, we obtain

f(x, y, z, w) =

∣∣∣∣∣∣
y − z 0 z

0 y z
−x − z − 3w x z + 2w

∣∣∣∣∣∣ .

The weak μ-basis is

L1 = (−1, s,−s − 1,−3), L2 = (1, t, 0, 0),

L3 = (0, 0, s + t + 1, 2).

Thus the parametrization of the cubic surface is given by

P(s, t) = (−st−3t2−t, s+3t+1,−2s−2t, s2+2st+t2+s+t).

5. CONCLUSION
In this paper, we have unified the implicitization and

parametrization of a quadratic surface with one simple base
point (QSOB) by using the weak μ-basis of the QSOB. Sim-
ple and efficient algorithms are derived to realize the con-
version between implicit form and parametric form. We also
provide a method to detect and compute the self-intersection
line of a QSOB, either in parametric form or in implicit form.
The singular locus of the QSOB is important for the compu-
tation of the weak μ-basis of a cubic surface derived from a
QSOB. Examples are provided to illustrate the algorithms.

It would be interesting to generalize the moving plane
method to handle the conversion between implicit form and
parametric form of higher degree surfaces.
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