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Abstract—Mesh surface denoising is a fundamental problem in geometry processing. The main challenge is to remove noise while

preserving sharp features (such as edges and corners) and preventing generating false edges. We propose in this paper to combine

total variation (TV) and piecewise constant function space for variational mesh denoising. We first give definitions of piecewise constant

function spaces and associated operators. A variational mesh denoising method will then be presented by combining TV and piecewise

constant function space. It is proved that, the solution of the variational problem (the key part of the method) is in some sense

continuously dependent on its parameter, indicating that the solution is robust to small perturbations of this parameter. To solve the

variational problem, we propose an efficient iterative algorithm (with an additional algorithmic parameter) based on variable splitting

and augmented Lagrangian method, each step of which has closed form solution. Our denoising method is discussed and compared to

several typical existing methods in various aspects. Experimental results show that our method outperforms all the compared methods

for both CAD and non-CAD meshes at reasonable costs. It can preserve different levels of features well, and prevent generating false

edges in most cases, even with the parameters evaluated by our estimation formulae.

Index Terms—Mesh denoising, piecewise constant function space, total variation, sharp feature

Ç

1 INTRODUCTION

TRIANGULATED surfaces are widely used in computer
graphics. Compared with other surfaces, such as

parametric and implicit surfaces, mesh surfaces have their
own merits. First, mesh surfaces are quite easy to obtain
and convenient to operate. Second, they can approximate
surfaces with arbitrary topology and geometry. Third, mesh
surfaces are more ready to render on various types of
hardwares.

Meshes are usually generated by digital scanning devices
and triangulation methods with inevitable measurement
errors and algorithm errors. Consequently, most of them
are noisy. Therefore, a fundamental problem is to remove
noise to obtain high-quality meshes before further process-
ing. The main challenge in this problem is to reduce noise
while preserving sharp features (such as edges and corners)
and preventing generating false edges. Both noise and fea-
tures are of high frequency, and they are hard to be distin-
guished. Most existing methods make use of the
neighborhood information to define a weight to detect fea-
tures. These methods blur sharp features, and even remove
small-scale features. The very recent L0 minimization
method [1] adopts the concept of sparsity to remove noise
from meshes. This method can preserve sharp features very
well, but usually generates false edges at smooth regions on
non-CAD meshes, no matter how we adjusted the

parameters in our tests. In other words, typical existing
mesh denoising methods either fail to preserve sharp fea-
tures well, or generate false edges.

In this paper, we propose a variational mesh denoising
method using piecewise constant function space and TV.
TV has been shown very successful in edge-preserving
image processing. We here extend it to mesh denoising.
This extension is not trivial because we need to carefully
choose a proper function space to realize it. So far TV has
been incorporated with piecewise linear function spaces in
computer graphics. In contrast, by considering that the gra-
dient of the face normal field is sparser than that of the ver-
tex normal field, here we define TV rigorously in piecewise
constant function spaces for feature-preserving mesh
denoising. Results show that this new combination produ-
ces much better denoising results than TV incorporated
with piecewise linear function spaces; see Fig. 1. Our
method can remove noise efficiently while preserving both
sharp and small-scale features. It also prevents generating
false edges in most cases by choosing appropriate algorithm
parameters, e.g., the optimal parameters and the parameters
evaluated by the given estimation formulae. Here TV shows
much weaker staircase effect than it applied to image
denoising. The possible reason is that, we use TV to penalize
the normal field of the surface, while in image denoising it
penalizes the image intensity.

2 RELATED WORK

2.1 Total Variation

Total variation regularization was first introduced in [2]
for image denoising. Due to its good edge-preserving
property, TV immediately received much attention. It has
many extensions such as vectorial TV and high order TV;
see, e.g., [3], [4], [5], [6], [7], [8], [9], [10]. TV and its
extensions are widely used in image restoration and
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segmentation problems. In image restoration, they are
demonstrated very successful to preserve image features
such as edges [2], [3], [4], [5], [6], [7], [8]. In image seg-
mentation, TV and vectorial TV play an important role in
convexifying variational image segmentation models [11],
[12], overcoming the main difficulty of variational seg-
mentation problems. Although TV related regularizers
are non-differentiable and thus hard to solve by conven-
tional optimization methods, there have been proposed
very recently many efficient algorithms; see, e.g., [13],
[14], [15], [16], [17], [18]. For more details, readers can
refer to a very recent and interesting review [19].

2.2 Piecewise Linear Function Space and Piecewise
Constant Function Space

In recent years, piecewise linear function space, as a basic
finite element space in numerical PDE [20], has achieved
great successes in many computer graphics applications
like mesh smoothing, image smoothing and segmentation
on meshes, derivation of discrete differential operators and
texture generation; see, e.g., [21], [22], [23], [24], [25], [26],
[10], [27]. In particular, piecewise linear function space
combined with TV has been studied [10] for image restora-
tion and segmentation on meshes. However, we found
that, in feature-preserving mesh denoising, piecewise lin-
ear function space has some limitations, compared to
piecewise constant function space which is related to piece-
wise constant finite element method in numerical PDE. For
clarity, we would like to list the main differences between
these spaces.

� First, the basis functions of these spaces are quite dif-
ferent. See Fig. 2. A basis function of piecewise linear
function space used in [26] and [10] is a hat function,
which is defined vertex-by-vertex. These basis can be
used to interpolate data defined on mesh vertices,
such as vertex color and normal fields. However, a
basis function of piecewise constant function space
is assigned value 1 inside a triangle and 0 otherwise.
This is a triangle-by-triangle definition. These basis
can be used to interpolate data defined on mesh tri-
angles, such as triangle normal field.

� Second, the definitions of the gradient operators of
these function spaces are quite different. See [10] and
Section 3.

� Third, piecewise linear function spaces are suitable
for processing data defined on mesh vertices, while
piecewise constant function spaces are suitable for
data defined on mesh triangles. When applied to
normal-based mesh denoising, piecewise linear
function space requires the input to be vertex nor-
mals, while the input of piecewise constant function
space is face normals. The vertex normals are aver-
aged from face normals. The gradient of this
smoothed normal field is much less sparse than that
of face normal field. Therefore, it is more appropriate
to apply TV to face normal field.

� Finally, applying TV to these two spaces indeed has
quite different mesh denoising effects. See Fig. 1. The
method using piecewise linear function space in [10]
cannot filter noise effectively and fails in preserving
corners of the meshes.

2.3 Mesh Denoising

There has been much work focusing on mesh denoising
recently. Excellent results and fast speed are key factors to
evaluate mesh denoising methods. No method can be effi-
cient for all meshes so far.

The classical Laplacian smoothing method [28] is simple
and fast. However, it would cause mesh shrinkage while
removing the noise. In order to solve this shrinkage problem,
Taubin [29] proposed a signal processing approach to mesh
denoising. Taubin’s approach uses two filters. One is to
smooth the mesh while the other is to prevent shrinkage. The
method is unstable, if parameters are not chosen properly.
Desbrun et al. [21] introduced the mean curvature flow for
mesh fairing using implicit discretization. The method
rescales themesh to prevent shrinkage. These two approaches
overcome the shrinkage effect of Laplacian smoothing, but
introduce new mesh distortions. Also, these methods can be
understood as isotropic filtering methods, which do not con-
sider the surface features and the directions of the features.

To better keep sharp features, several new types of meth-
ods were proposed recently. The first type is based on non-
linear and anisotropic diffusion as proposed in [23], [22],
[30], [31], [32]. The first four methods consider the sharp fea-
tures such as curvature tensors of meshes. The method in
[32] based on the non-local image denoising schemes pro-
poses a powerful mesh denoising method, which obtains

Fig. 1. Comparison between the proposed method (using piecewise con-
stant function space) and the method in [10] (using piecewise linear
function space) for mesh denoising. (a) Clean meshes. (b) Noisy
meshes (Gaussian noise, standard deviation ¼ 0.2 mean edge length
for Cube; standard deviation ¼ 0.1 mean edge length for Fandisk). (c)
Denoising results by the method in [10]. (d) Denoising results by the pro-
posed method.

Fig. 2. Basis of piecewise linear function space and piecewise constant
function space.
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the new vertex position by the nonlinear weighted mean of
local neighborhood vertices. The method is quite simple.
Yet, its computational cost is a little high.

The second type is based on bilateral filtering, which
extends the bilateral filters in image processing. See, e.g.,
[33], [34]. Bilateral mesh filtering is a one-stage iterative
approach. This type of methods use normals to estimate the
weights in the filters. The weights cannot be estimated accu-
rately due to the noise, even in the method using Gaussian
mollification [34]. Consequently, these methods cannot
always preserve sharp features.

The third type is based on normal filtering and vertex
updating, which is a type of two-stage methods. See [37],
[38], [39], [40], [41], [42], and the third method in [35]. These
two-stage methods first filter the face normals (i.e., triangle
normals) and then update the vertex positions according to
the filtered face normals. They can preserve most of sharp
features. However, most of them filter face normals by aver-
aging neighborhood face normals. As averaging weights
cannot be computed accurately in relatively flat regions,
these methods fail to recover small-scale features and will
blur these features. We mention that this type of methods
are also applied to image denoising in [36].

The fourth type is of one-stage methods, which include
surface reconstruction and decimation by combining both
vertex and normal regularization [43], [44] and [1]. The for-
mer two propose tominimize energies consisting of both ver-
tex position error and normal error. They provide good
surface reconstruction. However, the method in [43] cannot
preserve sharp features well while the method in [44] is too
slow. The latter proposes a newdenoisingmodel,which com-
bines a new defined edge operator and L0 minimization. The
method can get good denoising results. However, it will pro-
duce severe staircase effect, especially for non-CADmeshes.

The final type of methods is based on vertex classification
and applying different regularization to different vertices.
See, e.g., [45] and [46]. The authors of [45] proposed to use
consistent subneighborhoods to classify vertices. For differ-
ent classes of vertices, they chose different denoising meth-
ods. This approach can preserve features very well.
However, it is a little slow. The method of [46] is an iterative
approach combing pre-filtering, feature detection, and
L1-based feature recovery. In each step, it first filters the
noisy mesh to get a base mesh by a global Laplacian denois-
ing scheme. An L1-based optimization is then used to detect
and recover sharp features. The method can recover sharp
features well. However, it sometimes produces wavy edges
and its computational cost is too high.

The mesh denoising method put forward in this paper is
a two-stage approach based on face normal filtering and
vertex updating, like [37], [38], [39]. Therein, the face normal
filtering, as a key step of two-stage approaches, is done by a
minimization problem combing total variation and piece-
wise constant function space.

2.4 Our Contribution and Paper Organization

The contributions of the paper are as follows:

� We give a systematic formulation of piecewise con-
stant function spaces and associated differential
operators on triangulated manifolds.

� We propose a new variational mesh denoising
method based on these operators and TV. It is proved
that the normal filtering variational model has contin-
uous dependency property on its parameter.

� An efficient algorithm based on augmented Lagrang-
ian method (ALM) is presented to solve the pro-
posed variational problem.

� Our method is discussed and compared to typical
existing methods in various aspects including
parameter settings, denoising effects, and computa-
tional efficiency. Two formulae are given to set
parameters automatically for meshes corrupted by
Gaussian noise. Our method outperforms existing
methods for both CAD and non-CAD meshes at rea-
sonable CPU costs. Also, our algorithm is much
more robust to small perturbations of parameters,
compared to the recent L0 minimization method.

The remainder of the paper is organized as follows.
Section 3 gives the definitions of the operators and TV semi-
norms on piecewise constant function spaces. In Section 4
we present a variational mesh denoising method. The solu-
tion of the normal filtering variational model is shown con-
tinuously dependent on its parameter. We also propose an
iterative algorithm to solve the model. In Section 5 our
denoising method is discussed and compared to typical
existing methods in various aspects including parameter
settings, denoising effects, and computational efficiency.
Conclusion and future work are given in Section 6.

3 PIECEWISE CONSTANT FUNCTION SPACES

AND OPERATORS

In this section, we introduce some notations followed by
definitions of piecewise constant function spaces and associ-
ated differential operators on triangulated surfaces.

3.1 Notations

AssumeM � R3 to be a compact triangulated surface of arbi-
trary topology with no degenerate triangles. The set of verti-
ces, edges and triangles of M are denoted as fvi : i ¼ 0;
1; . . . ;V� 1g, fei : i ¼ 0; 1; . . . ;E� 1g and fti : i ¼ 0; 1; . . . ;
T� 1g, respectively. HereV,E andT are the numbers of ver-
tices, edges and triangles, respectively. If v is an endpoint of
an edge e, then we denote it as v � e. Similarly, that e is an
edge of a triangle t is denoted as e � t; that v is a vertex of a
triangle t is denoted as v � t. Let D1ðiÞ be the 1-disk of the
vertex vi.D1ðiÞ is the set of triangles containing vi.

We further introduce the relative orientation of an edge e
to a triangle t, which is denoted by sgnðe; tÞ as follows.
Assume first that all the triangles are with anticlockwise ori-
entation and all edges are with fixed orientations which are
randomly chosen. For an edge e � t, if the orientation of e is
consistent with the orientation of t, then sgnðe; tÞ ¼ 1; other-
wise sgnðe; tÞ ¼ �1.

3.2 Piecewise Constant Function Spaces
and Operators

We define the space V M ¼ RT, which is isomorphic to the
piecewise constant function space over M. For example,
u ¼ ðu0; u1; . . . ; uT�1Þ 2 V M . It means that the value of u
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restricted on the triangle t is ut, which is written as ujt
sometimes.

For any u1; u2; u 2 V M , we define the inner product and
norm as follows:

ðu1; u2ÞVM
¼

X
t

u1jtu2jtst; kukVM
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu; uÞVM

q
; (1)

where st is the area of triangle t.
For any u 2 V M , we define the jump of u over an edge e

as

½u�e ¼
P

e�t ujtsgnðe; tÞ; e ~ @M

0; e � @M:

�
(2)

Due to the piecewise constant function space, the gradi-
ent operator can be defined as

r : u ! ru; ruje ¼ ½u�e; 8e; for u 2 VM:

It can be regarded as the signed amplitude of the usual
vector definition of the gradient. However, in real compu-
tation this simplified definition is enough. In the vector
definition, one need choose a tangent space at an edge.
This tangent space (at an edge) is ambiguous. A discussion
on this can be found in the supplemental file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2015.2398432.

We then denote the range of r by QM , i.e.,
QM ¼ RangeðrÞ. The QM space is equipped with the follow-
ing inner product and norm:

ðp1; p2ÞQM
¼

X
e

p1
��
e
p2
��
e
le; kpkQM

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp; pÞQM

q
(3)

for p1; p2; p 2 QM , where le is the length of the edge e. The
divergence operator, div : QM ! VM , as the adjoint opera-
tor of �r, has the following form:

ðdivpÞjt ¼
�1

st

X
e�t;e~@M

lepjesgnðe; tÞ; for p 2 QM: (4)

Given u 2 VM , the total variation of u is thus

RtvðruÞ ¼ ðTVÞðuÞ ¼
X
e

lejðruÞjej ¼
X
e

lej½u�ej: (5)

Note that including the edge length le in the above formulae
meets the perimeter formulae defined using total variation
of the characteristic function. This is a rigorous definition of
total variation.

In many applications we need to handle vectorial data.
We now extend the above definitions to vectorial case. Two
spaces VM ,QM are defined as follows:

VM ¼ VM � 	 	 	 � VM|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N

;QM ¼ QM � 	 	 	 �QM|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
N

forN-channel data.
For u1;u2;u 2 VM , p1;p2;p 2 QM , the inner products

and norms in VM andQM are as follows:

ðu1;u2ÞVM
¼

X
1
i
N

�
u1
i ; u

2
i

�
VM

; kukVM
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu;uÞVM

q
;

ðp1;p2ÞQM
¼

X
1
i
N

�
p1i ; p

2
i

�
QM

; kpkQM
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp;pÞQM

q
:

ru and divp are computed channel by channel. For u 2 VM ,
the vectorial total variation is

RvtvðruÞ ¼ ðTVÞðuÞ ¼
X
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

j½ui�ej2
vuut le: (6)

These spaces and operators can be used in mesh denois-
ing, facet-based segmentation and simplification. In this
paper we focus on the application in mesh denoising.

4 MESH DENOISING USING TOTAL VARIATION AND

PIECEWISE CONSTANT FUNCTION SPACE

As mentioned before, the key difficulty in mesh denoising
is, while removing the noise, to preserve surface features
(such as sharp edges) without generating false features.
Most existing methods are either based on vertex smooth-
ing directly or based on face normal filtering using
weights for feature detection. Since small-scale features
are hard to detect accurately on noisy meshes, these
methods fail to preserve small-scale features; see Figs. 8b,
8c, 8d, and 8e. The very recent L0 minimization method
can preserve sharp edges well, but usually generates false
edges even with optimal parameters; see the bunny exam-
ple in Fig. 15. The L0 minimization seems to produce
over-sparse solutions. By piecewise constant function
space and TV (TV is in some sense an L1 minimization
and the solution is less sparse than L0 minimization),
here we propose a variational mesh denoising method to
try to overcome these problems.

4.1 Variational Denoising Method

Similar to most approaches based on face normal filtering,
our method also has two stages, i.e., face normal filtering
followed by vertex updating. Therein face normal filtering
is the key step.

Given a noisy mesh Min, its face normals are also noisy,

and we denote the noisy face normals as Nin. In the first

step of our method, we filter Nin through our variational
model which is solved by augmented Lagrangian method.
In the second step, we update the vertex positions from the
filtered face normals.

4.1.1 Normal Filtering

To filter the noisy face normals Nin, we propose the follow-
ing variational model:

min
N2CN

RwvtvðrNÞ þ a

2
kN�Nink2VM

n o
; (7)

where

RwvtvðrNÞ ¼
X
e

we

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼1

j½Ni�ej2
vuut le;
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CN ¼ fN 2 VM : kNtk2 ¼ 1; 8tg;

with we as a weight to be detailed below. This constrained
problem is equivalent to

min
N2VM

RwvtvðrNÞ þ a

2
kN�Nink2VM

þ xðNÞ
n o

; (8)

where

xðNÞ ¼ 0; N 2 CN

þ1; N =2 CN:

�

The first term in (8) is a weighted vectorial total variation
of the face normals for regularization. The reason to use TV
of the face normals as regularization is that the sharp fea-
tures are sparse on a clean mesh. The gradient of the face
normal field is a proper quantity to measure this sparsity.
The weight we is defined as

we ¼ exp
�� kNe;1 �Ne;2k4

�
; (9)

where Ne;1 and Ne;2 are normals of the faces sharing a com-
mon edge e. This weight can improve preserving sharp fea-
tures, since it penalizes these features less than smooth
regions of the surface [47]. The third term is to constrain the
normal vectors to be unit vectors. The second term of ð8Þ is
a data fidelity term, guaranteeing that the resulted normal

N is not too far away fromNin. a is a positive parameter bal-
ancing these two terms. If a ¼ 0, the solution is any constant

vector field. If a ¼ þ1, the solution is Nin. For a, we have
the following theorem (See the supplemental file for a proof,
available online).

Theorem 1. Let EaðNÞ ¼ RwvtvðrNÞ þ a
2 kN �Nink2VM

þ
xðNÞ and N a ¼ fNa : EaðNaÞ ¼ minNEaðNÞ ¼ E�

ag. Then
8Naþda 2 N aþda, any cluster point of Naþda as da ! 0 is in
N a.

This means that the solution of (8) is in some sense continu-
ously dependent on a. When a changes little, each new solu-
tion will be around one of the old solutions (Note that the
solution of (8) is usually not unique due to the non-convex-
ity). Hence the denoising results can be expected not sensi-
tive to small perturbations of a; see Fig. 16.

4.1.2 Vertex Updating

After optimizing the face normals through (8), we update
the vertex positions using the iterative updating method
proposed by Sun et al. [37]. The iteration number is fixed as
35 in our experiments. Since this is not our contribution, we
leave the discussion on the influences of the iteration num-
ber to the supplemental file, available online.

4.2 Augmented Lagrangian Method for Solving the
Normal Filtering Model (8)

Like the absolute value function, the first term in (8) is non-
differentiable. Consequently, it is difficult to solve by con-
ventional methods. Recently, variable splitting and aug-
mented Lagrangian method [48] have been shown very
successful for such problems [18], [10]. It should be men-
tioned that many other related methods for solving this

type of problems can be found in [18]. In the following, we
apply ALM to our problem (8).

We first introduce a new variable p 2 QM and rewrite the
problem (8) as

min
N2VM;p2QM

RwvtvðpÞ þ a

2
kN�Nink2VM

þ xðNÞ
n o

s:t: p ¼ rN:
(10)

For this constrained optimization problem, we then
introduce the following augmented Lagrangian function:

LwvtvðN;p;�Þ ¼RwvtvðpÞ þ a

2
kN�Nink2VM

þ xðNÞ

þ ð�;p�rNÞQM
þ r

2
kp�rNk2QM

;
(11)

where � is a Lagrange multiplier and r is a positive real
number.

The augmented Lagrangian method is an iterative
method; see [48], [18], [10]. In each iteration we need to
solve a minimization problem for a fixed multiplier (For
computational efficiency the weight we is specially treated;
see the following remark). This minimization problem can
be separated into two subproblems:

� TheN-sub problem: for a given p,

min
N2VM

a

2
kN�Nink2VM

� ð�;rNÞQM
þ r

2
kp�rNk2QM

þ xðNÞ:
(12)

� The p-sub problem: for a givenN,

min
p2QM

RwvtvðpÞ þ ð�;pÞQM
þ r

2
kp�rNk2QM

: (13)

The N-sub problem (12) is a quadratic programming if
we ignore xðNÞ. Therefore, we solve

min
N2VM

a

2
kN�Nink2VM

� ð�;rNÞQM
þ r

2
kp�rNk2QM

; (14)

first and then normalize the solution. The solution of the
above problem can be achieved by a sparse linear system.
There are many existing libraries such as MKL, Taucs and
Eigen for solving linear systems. We remark that this strat-
egy can only approximate the solution of the original N-sub
problem (12). However, due to the non-convexity of the (8)
and the iterative algorithm, it seems no need to solve the
N-sub problem exactly. Experiments show that our simple
strategy does work.

The p-sub problem (13) is separable and can be reformu-
lated as an edge-by-edge problem. That is, for an edge e, we
have the following simplified form:

min
pe

wejpej þ ð�e;peÞ þ
r

2
jpe � ðrNÞej2;

which has a closed form solution as

pe ¼
ð1� we

rjwejÞwe; jwej > we
r

0; jwej 
 we
r ;

�
(15)
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where

w ¼ rN� �

r
:

Remark. In each iteration of augmented Lagrangian
method, we is computed by the normal N evaluated at
previous step.

The overall algorithm is detailed in Algorithm 1.

Algorithm 1. ALM for mesh denoising

1. Normal filtering;
Initialization: �0 ¼ 0;p�1 ¼ 0;N�1 ¼ 0;

k ¼ �1;K ¼ 70; � ¼ 1e� 5;
Repeat
(a) N-sub problem

For fixed ð�k;pk�1Þ solve
three sparse linear systems by ð14Þ;
normalize(Nk);

(b) p-sub problem
For fixed ð�k;NkÞ compute pk by ð15Þ;
Compute we through ð9Þ;

(c) Update Lagrange multipliers;
�kþ1 ¼ �k þ rðpk �rNkÞ;

Until(kNk �Nk�1k2VM
< � or k � K)

2. Update the vertex position;

5 EXPERIMENTS AND DISCUSSION

In this section, we present numerical experiments on both
synthetic and real data. The synthetic data are generated by
clean meshes with additive Gaussian noise (zero-mean
Gaussian functions with different deviations s’s multi-
plied by mean edge length of the input mesh) or taken
from the test data of [39]. The clean meshes for synthetic

data are listed in Fig. 3; See Table 1 for mesh sizes. The
real data are downloaded from the internet. All these
meshes are normalized before test. We implemented all
the algorithms tested in this paper (except Wang et al.
[46]) by Microsoft Visual Studio 2010. All the examples
(except the results of Fig. 11 Column 3) are tested on a
laptop with Intel Corei3 and 4 GB RAM and all models
are rendered using flat shading. We will discuss our algo-
rithm from various aspects, including influences of
parameters and computational efficiency. In particular,
we can find two formulae to automatically compute the
parameters of our algorithm for Gaussian noise removal
by fitting the parameter values in lots of experiments.
Our method is also compared to previous techniques by
visual effects and quantitative errors.

5.1 Parameters

To our knowledge, most denoising algorithms have at least
two parameters, which need to be manually tuned except [1].
Our algorithm also has two parameters: a and r. Since the
main computational cost of our algorithm is the step 1(a) of
Algorithm 1, we keep a and r unchanged during the iteration
and hence the coefficient matrix is fixed. To study the influ-
ence of the parameters, we did the experiments on almost all
synthetic mesh surfaces used in mesh denoising papers. The
conclusions on parameter tests are summarized as follows.

First, a controls the denoising effect and smoothness of
the result surface. The smaller the a is, the smoother the
denoising result is. If a is too large, the algorithm fails to
remove noise. If a is too small, the mesh will become over-
smoothed and some features will be lost. Fig. 4 shows an
example of the results of different a with fixed r. We can
discover that the details of the dragon mesh disappear
when a decreases. For each noisy mesh, there exist a range
of a for our algorithm giving good denoising results, which
is an interval around the optimal value (giving visually opti-
mal denoising result).

Second, r also controls the denoising effect. The larger r is,
the more staircase effect (with false edges) the result has. If r
is too large, the surface will be smoothed. If r is too small,
there are some noise left on the surface. Fig. 5 presents some
denoising results of different r with fixed a. Again, for each
noisy mesh, there exist a range of r for our algorithm giving
good denoising results, which is an interval around the opti-
mal value (giving visually optimal denoising result).

Third, the parameters for our algorithm giving visually
optimal denoising result depend on the input noisy mesh.
These optimal parameters usually need to be tuned manu-
ally. Here we provide two estimation formulae to automati-
cally compute them, which give quite promising results for
meshes corrupted by Gaussian noise and for real mesh
data. The formulae are obtained by summarizing lots of

Fig. 3. The clean meshes tested in the paper. (a) Fandisk. (b) Prism.
(c) Cube. (d) Dodecahedron. (e) Doubletorus. (f) Crank. (g) Head.
(h) Bunny. (i) Dragon.

TABLE 1
The Number of Vertices and Triangles of Meshes in Fig. 3

Mesh (a) (b) (c) (d) (e) (f) (g) (h) (i)

V 6,475 4,562 2,402 4,610 2,628 50,012 30,942 34,817 422,631
T 12,946 9,120 4,800 9,216 5,376 100,056 61,880 69,630 845,478
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experimental data. We tested almost all synthetic mesh sur-
faces used in mesh denoising papers with noise level
½0:1; 0:3� and found optimal values for a and r. By “optimal
value” here, we mean that the proposed algorithm with
these parameter values gave visually best denoising results.
According to our observation, these parameter values

depend on E
tvEnergy, where E is the number of edges and

tvEnergy is the TV of the noisy mesh defined in (6). These

values are used to construct fitting functions of E
tvEnergy. Tak-

ing into account that CAD meshes and non-CAD meshes
usually have different features, we consider to use spline
functions to fit the optimal parameter values. Almost all

noisy CAD mesh models tested here have E
tvEnergy 
 350

while other models have E
tvEnergy � 350. We choose to use

piecewise continuous polynomials of degree 3 as the fitting
function with 350 as the common end point of the argu-
ment of the two polynomials. Fig. 6 shows the correspond-
ing fitting curves by 32 models with different levels of
Gaussian noise. The concrete formulae for computing a

and r are presented in (16) and (17). We used these formu-
lae to determine the parameter values in the examples
shown in this paper except those especially mentioned. As
one can see, these parameter values give quite promising
denoising results.

a ¼
2:4821014� 10�5x3 � 0:00791059836x2

þ1:42844258x� 4; x 
 350
�5:81273391� 10�7x3 þ 0:00226508x2

�0:2783605xþ 436; x � 350

8>><
>>:

(16)

r ¼
�5:09� 10�7x3 � 2:85422456� 10�4x2

�0:0553458x� 6:1; x 
 350
�2:51922� 10�10x3 þ 1:3952� 10�6x2

�0:0011917xþ 0:3408; x � 350:

8>><
>>:

(17)

Finally, the denoising result seems in some sense continu-
ously dependent on the parameters. On one hand, we have
theoretically proved in Theorem 1 the continuous depen-
dency of the solution on a. On the other hand, according to

Fig. 4. Denoising results for different a with r computed by Eq. (17). Gaussian noise, standard deviation¼ 0.1 mean edge length.

Fig. 5. Denoising results for different r with a computed by Eq. (16). Gaussian noise, standard deviation¼ 0.1 mean edge length.

Fig. 6. Fitting parameter a and r using cubic spline.
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our tests, the denoising result of our algorithm changes little
when the parameters have small perturbations. See Figs. 7
and 16. This is important, because continuous dependency is
helpful for controlling the parameter tuning procedure. In
contrast, the very recent L0 minimization method [1] seems
not having this property and its result is quite sensitive to
parameter perturbations; see Fig. 16.

5.2 Examples and Comparisons to Other
Algorithms

In this section, we present some examples and compare our
algorithm with other typical existing algorithms both visu-
ally and quantitatively. In particular, we compare our
method to fuzzy vector median filter (FVM) [38], Sun et al.
[37], Local algorithm in Zheng et al. [39], Global algorithm
in Zheng et al. [39], L0 minimization [1], Bilateral filtering
method [33] and Wang et al. [46]. These methods are some-
times abbreviated as Ours, FVM [38], Sun [37], ZhengLa
[39], ZhengGa [39], L0 [1], Bilateral [33] and Wang [46] in
the following. All these methods have parameters, which
were set by the following criterion except those in Figs. 12
and 15. For our method, the parameters were computed
through Eqs. (16) and (17). For L0[1], we obtained the
parameters by the default formulae given in [1]. The results
of Wang[46] were provided by its authors. For the other five
methods, we tuned the parameters to get visually best
denoising results. All the parameters in Figs. 12 and 15 were
tuned carefully to get visually best results, except Fig. 12h.

In Fig. 8 we show and compare the denoising results for
models containing sharp features including small-scale

features. As we can see from Fig. 8, all six algorithms can
preserve most sharp edges and corners well. However, the
first four algorithms fail in keeping the shallow edge, while
our method and L0 minimization method [1] can preserve it
very well; see the zoomed view in Fig. 8. Furthermore, from
(f) in Fig. 8, an important thing is that L0 minimization [1]
produces false edges in smooth regions. This phenomenon
can also be found in Figs. 10 and 13. The reason may be as
follows. The first four methods use weights to detect fea-
tures. As far as we know, both features and noise belong to
high frequency parts. These weights cannot distinguish
noise from small-scale features, and thus their methods will
treat small-scale features as noise and blur them finally. The
method in [1] incorporates the sparse L0 norm into mesh
denoising and our method employs total variation. Both
methods have good feature preserving property. However,
the high sparsity requirement of L0 norm in [1] is more
prone to produce false edges than total variation.

In Fig. 9 we show denoising results for mesh models with
only sharp edges and higher-level noise. According to our
tests, the first four algorithms can yield good results for this
type of meshes when the noise level is low. Yet, when the
noise level is slightly higher, they fail to keep sharp features
well. The L0 minimization method [1] produces better
results than the first four algorithms, but worse results than
our method. Both can generate even better results if the
parameters are tuned carefully, which will be compared in
Section 5.2.1.

Fig. 10 shows results of meshes with few sharp features.
Results indicate that our method can also deal with this

Fig. 7. Influence of small perturbations of parameter r by estimation formulae.

Fig. 8. Denoising results of Prism (Gaussian noise, standard deviation ¼ 0.2 mean edge length) and Fandisk (Gaussian noise, standard deviation ¼
0.1 mean edge length). The third row shows zoomed view of a shallow edge on Fandisk.
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kind of models well. However, the L0 minimization
method in [1] causes staircase effect which can also be
found through Fig. 13. One can also find that the first four
methods produce over smooth effects by the zoomed view
in Figs. 10 and 13.

In Fig. 11, we show comparisons between bilateral filter-
ing method [33], Wang et al. [46] and our method. Both Bilat-
eral [33] and Wang [46] directly smooth the surface vertices
(in local or global manners) incorporating vertex normals.
The more thing done in Wang [46] is to separate the feature
points and specially treat them. Results show that Bilateral
[33] cannot preserve sharp feature well. The special treat-
ment of feature points in Wang [46] helps keeping sharp fea-
tures. However, it generates wavy edges and over smooth
small-scale features due to the inaccuracy of detection. In
contrast, our method keeps both sharp and small-scale fea-
tures verywell, and does not generate anywavy edges.

Fig. 12 presents results and comparisons for filtering
impulsive noise. Therein, Figs. 12b, 12c, 12d, 12e, 12f and
12g are results of algorithms with carefully tuned

parameters, while (12h) is the result of our method with
estimated parameters by Eqs. (16), (17). As can be seen, our
algorithm with optimal parameters still outperforms others.
Our result with estimated parameters shows a little stair-
case effect, because of that the estimation formulae were
obtained by fitting results for removing Gaussian noise.

We also present Fig. 13 for a comparison between our
method with other five methods applied to a real scanned
model. The zoomed view of Fig. 13 shows that our algo-
rithm can preserve more features than other methods; see
the hand in the zoomed view. Fig. 14 shows our results for
three more real scanned meshes. Our method yields very
promising results.

The above comparisons visually show that our method
has best denoising results among all the methods. In the fol-
lowing, we quantitatively compare our method to other
approaches by numerical errors. For quantitative compari-
sons, we can only use synthetic data. The following three
metrics will be used to measure the distance between the
denoising results and the clean mesh.

Fig. 9. Denoising results of Dodecahedron and Doubletorus (Gaussian noise, standard deviation ¼ 0.3 mean edge length). The third row shows
zoomed view of Doubletorus.

Fig. 10. Denoising results of Head (Gaussian noise, standard deviation ¼ 0.1 mean edge length) and Bunny (Gaussian noise, standard deviation ¼
0.2 mean edge length). The third row shows zoomed view of Bunny.
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� Mean square angular error (MSAE):

MSAE ¼ E½ffðn0;nÞ�; (18)

where E is the expectation operator and ffðn0;nÞ is
the angle between n0 (the normal of the denoised
result) and n (the normal of the clean mesh).

� The L2 vertex-based mesh-to-mesh error:

Ev;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
P

t st

XV�1

i¼0

X
t2D1ðiÞ

st

0
@

1
Adistðv0i;MÞ2

vuuut ; (19)

where distðv0i;MÞ is the distance between the filtered

new vertex v
0
i and a triangle of the origin mesh M

which is closest to v
0
i.

� The L1 vertex-based mesh-to-mesh error (vertex-
based Hausdorff distance):

Ev;1 ¼ maxidistðv0i;MÞ (20)

where distðv0i;MÞ is defined as above.
These error metrics were computed for the examples

shown in Figs. 8, 9 and 10, which are listed in Tables 2, 3,
4. As can be seen, the denoising results by our method
have least errors in most cases, especially in the sense of
L1 vertex-based mesh-to-mesh error (vertex-based Haus-
dorff distance).

Qualitative (visual) and quantitative comparisons
show that our denoising method outperforms typical
existing methods. It is also observed that, the L0[1]
works better for CAD meshes than non-CAD meshes,
while their other methods work better for non-CAD
meshes than CAD meshes. For both types of meshes, our
method outperforms all the methods compared in this
paper.

Fig. 12. Denoising results of Fandisk with impulsive noise. 30 percent
vertices were corrupted, standard deviation ¼ 0.3 mean edge length.
Here “Ours-Fit” and “Ours-Opt” mean our results with fitting parameters
(computed by Eqns. (16)(17)) and optimal parameters, respectively.

Fig. 11. Comparison between Bilateral [33], Wang [46] and our method.
Gaussian noise, from top to bottom, the standard deviation is 0.1,0.3,0.2
mean edge length, respectively.

Fig. 13. Denoising results of a real scanned model. The second row shows zoomed view.
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5.2.1 Our Method vs L0 Minimization Method in [1]

It is necessary to explain further more on the differences
between our method and L0 minimization method in [1].
Both our method and L0[1] are variational methods. Our
methodminimizes TVwhich is, in some sense, anL1 minimi-
zation, while themethod in [1] usesL0 minimization. Experi-
ments have demonstrated that the two norms produce
different results. The L0 minimization method in [1] works
better for CAD models, especially polyhedron surfaces
(Fig. 8 Row 1 and Fig. 9). For non-CAD models, it causes
staircase effects as shown in Figs. 10 and 13. In contrast, the
TV regularization used in this paper gives more satisfying
results for all types of meshes. It prevents generating false
edges for Gaussian noise elimination by choosing appropri-
ate algorithm parameters, e.g., the parameters evaluated by
the given estimation formulae. In other words, the L0 mini-
mization produces results whose gradients of normal fields
are sparser than TV minimization. So far our method and L0

minimization method in [1] are compared using suggested
parameters, i.e., the formulae in [1] and Eqs. (16) and (17),
respectively. We now give an example for both methods
using optimal parameters respectively. See Fig. 15. It is
shown that both methods have excellent denoising results
for polyhedron surfaces (the second row). For the bunny sur-
face, the L0 minimization method cannot produce satisfying
results nomatter how to adjust the parameters (the first row).

We now explain another difference between our method
and L0 minimization method. Our method uses TV which is
a continuous function, while the L0 term used in [1] is a dis-
continuous function. This would affect the sensitivity of
denoising results on the parameters, i.e., the � in Eq. (4) in
[1] and a in Eq. (8) of our method (it can be theoretically

understood as 1
a
for the TV term). In Fig. 16 we show how

the denoising results are affected by small perturbations of
parameters. The noisy cube is shown in column 16a. From
column 16b to 16f, the first row shows the denoising results
of L0 minimization method; while the second row shows
the results of our method. The results in column 16b are
computed with parameters suggested by the parameter for-
mulae, indicating good denoising effect of both methods. In
columns Figs. 16c, 16d, 16e and 16f, we show the denoising
results obtained with slightly perturbed parameters. This
example demonstrates that our method is much more
robust to parameter perturbations than the L0[1]. This can
also be verified from Theorem 1.

Fig. 14. Our results for three real scanned meshes.

TABLE 2
Normal Error Comparison ð�10�3Þ

Mesh FVM
[38]

Sun
[37]

Zheng
La [39]

Zheng
Ga [39]

L0[1] Ours

Fig. 8 Row 1 21 27 26 26 6:45 6.8
Fig. 8 Row 2 5.9 3.9 2.14 2.1 2.78 1:5
Fig. 9 Row 1 52 55 50 44 1:36 5.7
Fig. 9 Row 2 100 77 80 90 14.5 13:5
Fig. 10 Row 1 16.6 9:5 13.9 9:5 19 11
Fig. 10 Row 2 25 21 22 18 25 17:8

TABLE 3
L2 Vertex-Based Error Comparison ð�10�4Þ

Mesh FVM
[38]

Sun
[37]

Zheng
La [39]

Zheng
Ga [39]

L0[1] Ours

Fig. 8 Row 1 21.44 42.82 44.7 40.57 7:82 9.3
Fig. 8 Row 2 6.489 6.86 5.23 5.25 6.57 1:55
Fig. 9 Row 1 17.12 16.83 15.42 21.7 8.38 7:76
Fig. 9 Row 2 19.35 19.33 12.3 30.1 9.95 9:87
Fig. 10 Row 1 16.9 5.9 7.25 5.23 5.9 4:94
Fig. 10 Row 2 12.7 12.1 9.8 8.7 8.54 8:2

TABLE 4
L1 Vertex-Based Error Comparison ð�10�3Þ

Mesh FVM
[38]

Sun
[37]

Zheng
La [39]

Zheng
Ga [39]

L0[1] Ours

Fig. 8 Row 1 10.83 11.43 17.89 11.97 5.84 2:20
Fig. 8 Row 2 1.73 1.69 0:97 1.01 1.85 1.03
Fig. 9 Row 1 9.9 10.36 10.23 10.95 5 2:58
Fig. 9 Row 2 8.22 11.39 7.77 14.7 8.81 3:01
Fig. 10 Row 1 17.85 2.14 2.54 2.43 3.14 1:72
Fig. 10 Row 2 6.76 6.24 2.58 2.83 2.71 2:40

Fig. 15. Comparison between L0 minimization [1] and our method with
optimal parameters respectively.
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Finally, our method is much faster than the L0 minimiza-
tion method [1]. Our objective function is much simpler and
has very efficient solvers. See Table 5 for a comparison on
CPU costs.

5.3 Computational Cost

We now discuss the computational costs. Overall, our algo-
rithm is quite simple. The main step requiring CPU and
memory costs is solving the N�sub problem. Fortunately,
the coefficient matrix keeps unchanged in our iterative algo-
rithm. It can be pre-factored and thus the whole algorithm
is quite efficient. However, for large meshes, pre-factoring a
matrix consumes too much memory and thus iteration
methods such as preconditioned bi-conjugate gradient
(PBCG) are used for solving the N�sub problem. In our
implementation and test platform, we can use the pre-fac-
toring method for meshes with vertex number up to 500 K.
All the examples in this paper were computed by the former
method except the lion surface in Fig. 14, which has about
650 K vertices. In our tests, we found that the parameter r
affects the algorithm efficiency. When r is small, our algo-
rithm is slow. The level of noise has also impact on the
speed of our algorithm. The more noise are, the slower the
algorithm is.

The CPU costs of these algorithms (except Bilateral [33]
and Wang [46] in Fig. 11) are summarized in Table 5. As can
be seen, Sun et al. method [37] is the fastest algorithm, while
the L0 minimization method is the slowest. The other 4 algo-
rithms have similar CPU costs. Our method can obtain bet-
ter denoising results than all the other methods at
reasonable CPU costs.

5.4 Limitations

Our algorithm has been demonstrated outperforming typi-
cal existing methods, but it still has some limitations. Like
many algorithms, we cannot prove the convergence at pres-
ent. Besides, our algorithm cannot deal with noisy meshes
with complex features and extreme triangulation; see
Fig. 17 for a such example. Actually for this case, no meth-
ods have been found producing good results. Our result
seems better than other two results.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a variational method for feature-
preserving mesh denoising using piecewise constant func-
tion space and total variation. For the proposed variational
problem, which is the key part of the method, it was proven
that the solution is in some sense continuously dependent
on its parameter, indicating that the solution is robust to
small perturbations of this parameter. Augmented Lagrang-
ian method was then applied to solve this non-differentiable
optimization problem, yielding an efficient iterative algo-
rithm with closed-form solutions to subproblems. We
finally discussed and compared our method to several typi-
cal previous methods from various aspects, including
parameter setting, denoising effects, and computational
efficiency.

Experimental results show that our method outperforms
all the compared methods for both CAD and non-CAD
meshes at reasonable costs. It can preserve different levels
of features well and prevent generating false edges in most
cases, even with the parameters evaluated by the parameter
estimation formulae. The staircase effect of TV almost dis-

TABLE 5
Time Comparison (in Seconds)

Mesh FVM
[38]

Sun
[37]

Zheng
La [39]

Zheng
Ga [39]

L0[1] Ours

Fig. 8 Row 1 7 0:17 0.7 0.3 19 0.3
Fig. 8 Row 2 0.52 0:15 0.3 0.7 27 0.34
Fig. 9 Row 1 3 0:13 0.5 0.5 21 0.5
Fig. 9 Row 2 4 0:1 0.5 0.23 11 0.2
Fig. 10 Row 1 2.5 1 1.5 5 150 6
Fig. 10 Row 2 3 1:2 2.3 5.6 180 7

Fig. 16. Comparison between L0 minimization in [1] and our method by small perturbations of default parameters by estimation formulae. The first
row shows L0 minimization [1] results. The second row shows our results.

Fig. 17. Denoising results for Crank with complex features (Gaussian
noise, standard deviation¼ 0.2 mean edge length).
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appears due to appropriate parameter settings (e.g., our
parameter estimation formulae) and possibly that it is
applied to penalize the normal field of the surface (instead
of the image intensity in image denoising). The previous
methods either fail to preserve sharp features especially
small-scale features, or generate false edges for non-CAD
models, no matter how we adjusted their parameters.

There are some problems in future work. First, although
the parameter estimation formulae provided here work
quite well for meshes with Gaussian noise, approximation
formulae for other kinds of noise are unknown. Second,
algorithms for filtering high level noise remain to be
designed. Finally, mesh segmentation and simplification
using our piecewise constant space framework will be
reported subsequently with more details.
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