RF-Search: Searching Unconscious Victim in Smoke

Scenes with RF-enabled Drone

Bin-Bin Zhang, Dongheng Zhang, Ruiyuan Song, Binquan Wang, Yang Hu, Yan Chen*
School of Cyber Science and Technology, University of Science and Technology of China
Research Center from Data to Cyberspace, University of Science and Technology of China
Key Lab of Cyberspace Cultural Content Cognition, Communication and Detection, Ministry of Culture and Tourism

ABSTRACT

Toxic gases inhalation is the most common cause of death in
fire scenes, which can make people unconscious and unable
to save themselves. Hence, discovering the unconscious vic-
tims is crucial to improve their survival rate. In this paper,
we propose RF-Search, a victim searching system with RF
device mounted on the drone. The challenge mainly comes
from the fact that drone motion would overwhelm the subtle
vital signs utilized for victim identification. To resolve this
problem, we have noted that the physical signature of drone
motion has been encoded in stationary object reflections.
Leveraging this unique physical signature, we propose to
identify the unconscious victim through the spatio-temporal
correlation between signals reflected from the victim and
the surrounding stationary objects. To extract respiration in-
formation of the victim, we propose a motion segmentation
module and a motion compensation module to suppress the
signal variation caused by drone movement. Extensive ex-
periments have demonstrated that our system could achieve
an accuracy of 92.5% for victim identification.
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1 INTRODUCTION

According to the International Association of Fire and Res-
cue Services World Fire Statistics, thousands of people die in
house fires every year [12], where most fatalities are not due
to burns, but a result of inhalation of toxic gases produced
during combustion [4, 39]. People soon slip into comas when
they inhale toxic gases during fires, which causes unneces-
sary casualties due to lack of timely discovery and treatment
[3, 19]. Therefore, finding the unconscious victim in smoke
scenes timely is very critical for rescue. Traditionally, such a
mission is completed by the firefighters. However, the high
temperature, toxic gases, chaotic and burnt debris, make
firefighters in dangerous situations when searching for the
victims. Thus, there is an urgent need for the development
of mechanical searching systems.

The drone-based search and rescue systems have been
widely used due to the maneuverability and flexibility [29,
30, 37]. Equipped with visual cameras [24, 36, 41, 45] and
LiDAR [31, 65], these systems can achieve promising per-
formance in ordinary scenarios. However, they cannot be
applied in fire scene due to the dense smoke produced by the
fire. Recent advancement in the millimeter wave (mmWave)
radar makes it a popular sensor in many sensing applications.
The mmWave has some very nice and unique characteristics,
such as it is non-intrusive and could work under the dense
smoke and high temperature conditions. It is thus a natural
idea to empower the drone-based search and rescue systems
with the mmWave sensing capability.

However, building such as a system is non-trivial. The
main challenge is to identify human reflections in the dense
smoke scene. Specifically, the reflections from stationary
objects in the environment tend to be much stronger than
human reflections, which makes it challenging to detect hu-
man from raw radar echoes. It has been noted that human
respiration would affect the propagation of mmWave signal
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Figure 1: The proposed RF-Search consists of four components: data preprocessing, victim identification, segmen-
tation of motion direction, and respiratory monitoring. RF-Search first processes the raw signals to generate the
range-angle-time representation, then identifies the victim from multiple stationary objects based on the Pearson
coefficient. After that, RF-Search segments the drone moving process into multiple time intervals where the
motion direction remains unchanged in each interval. Finally, to cancel out the effect of drone motion, RF-Search
estimates the compensation coefficient by utilizing a new motion compensation method.

and make it vary over time, while the reflections from station-
ary objects keep time-invariant as shown in Figure 2. Such
phenomenon has been widely utilized by existing rescue
radar systems. However, in our case, this phenomenon no
longer holds due to the motion of the radar itself introduced
by the drone. What is worse, the respiratory micro-motion
would be overwhelmed by the intense and complex drone
motion as shown in Figure 3, which makes it difficult to
distinguish the victim from stationary objects.

To resolve this challenge, we observe that the time varia-
tion of echoes from stationary objects are only determined
by the motion of the drone. In other words, the physical sig-
nature of drone motion has been encoded in stationary object
reflection. As a result, the echoes from different stationary
objects are highly correlated even when they are spatially
separated. By contrast, the motion caused by human respira-
tion can also modulate the echoes, which destroys the drone
motion signature and degrades the correlation of reflections
among human and stationary objects. This observation mo-
tivates us to identify human reflections by leveraging the
signature of drone motion encoded in stationary object re-
flection.

In this paper, we introduce a novel RF-based drone search
and rescue system, RF-Search, which is capable of finding
the unconscious victims and monitoring the respiration in
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complex smoke scene. RF-Search consists of four core compo-
nents: Data preprocessing, Victim identification, Segmentation
of drone motion direction, and Respiration monitoring.

First of all, we propose an algorithm to distinguish the
unconscious victim from multiple stationary objects. By cal-
culating the Pearson coefficients of the echoes from all de-
tected objects, we take the object with the smallest coefficient
value as the unconscious victim. Secondly, we propose to
segment the drone motion into multiple time intervals based
on the linear relationship of the echoes from the stationary
objects. Within each time interval, the drone moves in a con-
stant direction, which would facilitate the monitoring of the
respiration. Finally, we recover the respiratory waveform
of the victim by cancelling out the drone motion with the
proposed motion compensation method. We transform the
echoes from the unconscious victim and a stationary object
into the frequency domain, then select the frequency band
with the highest similarity of energy distribution. The com-
pensation coefficient is estimated by computing the average
energy ratio of the two transformed signals in the selected
frequency band.

The main contributions of this paper are summarized as
follows:

o This paper introduces RF-Search, the first framework which
is capable of identifying unconscious victims in smoke
scenes with a RF-enabled drone. Leveraging the all-weather
nature of mmWave radar and the mobility of the drone,



RF-Search can achieve effective victim identification even
under dense smoke condition.

o This paper presents an architecture for victim searching
including victim identification, motion segmentation and
respiration monitoring, which can identify human reflec-
tions effectively and monitor the respiration even under
the radar interference introduced by the motion of the
drone.

e We implement RF-Search using commodity mmWave radar
and drone to evaluate the system performance. Extensive
experiments demonstrate that RF-Search could achieve an
accuracy of 92.5% for victim identification.
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(a) Stationary object. (b) Human respiration.

Figure 2: The phase of signals when RF device is static.
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Figure 3: The phase of signals when RF device moves.

2 PRELIMINARY

2.1 mmWave signal

We adopt a Frequency Modulated Continuous-Wave (FMCW)
radar for signal acquisition. The starting frequency of the
radar chirp is f;, and the bandwidth is B. The radar will
capture the reflected signal, compare it to the original one by
mixing them, and then generate the intermediate frequency
(IF) signal which can be expressed as:

y(t) = A~ e, 8

where 7 = xd denotes the delay of signal propagation, d
represents thce distance between an object and the radar, c
is the signal propagation speed in the air, and A denotes the
amplitude of the received signal.

After conducting the 2D FFT on the IF signal y(t), we
can obtain a three-dimensional matrix representation'. The

IThe details about the 2D FFT will be described in Section 3.1.
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resolution of the range is related to the bandwidth B of the
chirp, which can be represented as:

c
dres = ﬁ (2)

When B = 4 GHz, the resolution of the range is 0.375cm,
which means we can locate the position of an object in cen-
timeter level. For finer-grained movement sensing, we need
to capture the phase change of the mmWave signals, whose
relation with the movement is:

2Ad  4r-Ad

A¢=27T'T= c 5 (3)

where Ad denotes the related movement, and A¢ is the phase
changes caused by the movement.

2.2 Sensing model

When the unconscious victim breathes, there is a micro-
motion on the chest. Moreover, the movement of the drone
can also result in a change in the distance between the radar
and the target. Considering the influence of the respiratory
micro-motion and the drone motion on signal propagation,
the reflected signal can be represented as:

y(t) =A- e_j'zn'fc'(ATdmov(t)+ATrmov(t) +Tini),

(4)
where A7, (1) denotes the delay caused by the respiratory
micro-motion, Atg;,0,(t) is the delay caused by the drone
motion, and 7;p,; is initial delay related to the distance be-
tween the victim and the radar. From this sensing model, we
can see that both the drone movement and the respiratory
movement would affect the signal propagation.

Stationary
Object

Unconscious
Victim

Figure 4: The signal model of drone motion.

2.3 Drone motion model

The drone moves continuously in the space. As shown in
Figure 4, when drone moves by Ad in a certain direction, the
signal transmission distance changes of a stationary object
and the victim are Ads and Ad, respectively, and the corre-
sponding angles between the direction of the drone motion



and the direction of signal propagation are 05 and 0,. The
relation between Ad; and Ad, can be obtained by

sind,

Ad, = Ad - sinf, = éds
sinfg

in6,

- -Ads = - Ad, (5)

sinf

no,

S1 . . .
where n = is the linear coefficient between Ad; and

sinf;
Ad,.

From the above equation, we can see that although the dis-
placements caused by the drone motion on different objects
are different, they exhibit a linear correlation relationship
during a short time period when the drone keeps a consistent
moving direction. Moreover, due to the stochastic nature of
the drone’s motion, there is a possibility of the angle 6 being
zero. We therefore add a small constant € to the denominator

and let:
sinf,

 sinfs+ € (©)
where € = 1072, It is worth noting that the respiratory micro-
motion of the victim is overwhelmed by the drone motion,
which makes it difficult to find the victims and monitor their
respiration status. Thus, two key problems of our system are
how to distinguish unconscious victims from other detected
objects and how to eliminate the influence of drone motion

on respiratory sensing.

3 RF-SEARCH

The workflow of the proposed system is shown in Figure 1,
which mainly consists of four components as follows.

e Data Preprocessing: Given the raw input from the radar
device, RF-Search first conducts the range FFT and angle
FFT transforms to obtain a 3D (range-angle-time) repre-
sentation.

e Victim Identification: The respiratory micro-motion is
overwhelmed by the drone motion. It is difficult to distin-
guish which detected object contains the micro-motion
by only using the temporal information. Motivated by the
observation that the echo from the stationary object is
only modulated by the drone motion while the echo from
the victim is modulated by both the drone motion and the
respiratory micro-motion, we propose to utilize the Pear-
son coeflicient to exploit the spatial-temporal correlations
between the detected objects to identify the victim.

Segmentation of Drone Motion Direction: The infor-

mation about the drone changing its motion direction can

help us cancel out the effect of the drone motion. Hence,
we segment the drone motion direction based on the linear
coefficient between the signals of stationary objects.

Respiration Monitoring: To monitor the health status

of the unconscious victim, we further recover his respira-

tory waveform which requires cancelling out the phase
change caused by the complex drone motion. We propose
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an effective motion compensation method by utilizing the
distribution of the human respiration signal in frequency
domain.

3.1 Data preprocessing

We perform 2D FFT on raw intermediate frequency (IF) sig-
nals to derive the range and angle maps.

Range FFT: The radar continuously transmits FMCW
signals, which are also known as chirps. These signals are
subsequently captured by the receiving antennas once they
are reflected by objects. The mixer of the radar combines the
received chirp with the transmitting chirp to generate an IF
signal. The relationship between the frequency change Af
of the IF signal and the distance d can be expressed as:

. AF -
SZd:>d: fc,

f=5-7 25

™)
where S is the slope of the chirp, c is the speed of the signal
and d is the distance between the radar and the object. Thus,
the range of the detected object can be computed using FFT.
Angle FFT: The computation of the Angle of Arrival (AcA)
involves multiple received signals obtained from different
antennas. By analyzing the phase changes between adja-
cent receiving antennas, the relationship between the phase
difference A¢ and the AoA 6 can be derived as [54]:

2nlsind

Ap = T

®)

where [ is the distance between adjacent receiving antennas
and A is the wavelength.

By performing the range FFT and angle FFT on each time
stamp of received signal, we can obtain a range-angle-time
matrix.

3.2 Victim identification

The core of this subsection is to find the victim from all de-
tected objects by leveraging the respiratory micro-motion.
We first use the CFAR algorithm [35] to detect all existing tar-
gets in the smoke scene, including stationary objects and the
unconscious victim, based on the energy of the range-angle-
time matrix. However, due to the movement of the drone,
the respiratory micro-motion is completely overwhelmed
by the movement of the drone. As shown in Figure 5, it is
difficult to identify which signal contains subtle chest mo-
tion. We observe that the echo from the stationary object is
only modulated by the drone motion, and thus the echoes
from different stationary objects are highly correlated even
when they are spatially separated. On the other hand, the
echo from the victim is modulated by both the drone motion
and the respiratory micro-motion. In such a case, the corre-
lation between the echo from the victim and those from the
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Figure 5: The echoes of objects. It is difficult to distin-
guish which one is the victim, because the respiratory
micro-motion is overwhelmed by the drone motion.

stationary objects is weakened. Motivated by this observa-
tion, we propose to utilize the strength of the correlations
to help identify the victim. Specifically, we use the Pearson
coefficient [11] to measure the correlation:

(P —Pa) (P - Poy)
VE (B — Py, (P ~ Pyt + e

where Py, Ps, denote the phases of signals corresponding to
two objects. Ps1, Py, are the average values of Py, Psy. psis2
denotes the Pearson coefficient between the signals, n is
the number of signal samples, ¢ = 107'%. We add a very
small constant € to the denominator to avoid the Pearson
coefficient becoming infinite when the denominator is zero.
In Figure 6, we illustrate an example with three detected
objects, including two stationary objects and one uncon-
scious victim. According to our previous analysis, since the
echoes from the stationary objects are modulated by the
same drone motion, the Pearson coefficient between two sta-
tionary objects should be close to 1 or -1, as shown in Figure
6c. On the other hand, the Pearson coefficient between a
stationary object and the victim should be lower due to the
respiratory micro-motion, as shown in Figure 6a and Figure
6b. In such a way, we can identify the victim by finding the
object that has low absolute Pearson coefficient with all other
objects, e.g., object 1 is identified as the victim in Figure 6.
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Figure 6: The Pearson coefficients between pairs of
signals. Object 1 is the victim, object 2 and object 3 are

stationary objects.
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Furthermore, in scenarios where there are multiple un-
conscious victims, we can still use the Pearson coefficient to
detect them. If the victims are spatially isolated, we identify
them sequentially. In scenarios where multiple victims are lo-
cated in close proximity, the system distinguishes the victims
from stationary objects by exploiting the differences between
the characteristics of their respiratory patterns, including
differences in strength, frequency, and phase. In such a way,
the Pearson coeflicient between multiple victims would be
low, facilitating accurate victim identification.

3.3 Segmentation of drone motion direction

After finding the unconscious victim, we intend to further
recover his/her respiratory waveform by estimating and elim-
inating the impact of the drone motion. The drone moves
in a relatively fixed direction for a short period of time. The
linear relationship between the echoes from two stationary
objects effectively reflects the drone motion direction. When
the direction of the drone’s motion changes, the linear rela-
tionship between the echoes from the stationary objects will
also change.

Therefore, we propose to segment drone motion direction
based on the linear coefficient 751 5, between the echoes from
two stationary objects s1 and s2, which can be calculated by

L (P = P)(P) - Py)
(P = Pa)? +e

where Py, Ps; denote the phase of two stationary objects’
signals, Pg; is the average value of Ps;, and P;; is the average
value of Pg,. Moreover, to avoid the denominator being zero,
we add a small constant € to the denominator, where € =
10712, As shown in Figure 7, we can estimate the coefficient
Ns1,s2 between stationary objects within a sliding window,

and then use the value of 7;; 5, to speculate whether the
direction of the drone changes or not at each moment.
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Figure 7: The drone motion direction is segmented
based on whether the value of 7;; ;; changes. The dis-
placement of the drone within this extremely short
duration is minimal due to frequent changes in the
drone’s direction and its slow speed, which has no ef-
fect on the linear coefficient.



3.4 Respiration monitoring

To further understand the health status of the victim, RF-
Search recovers the detailed respiratory waveform by esti-
mating and cancelling out the drone motion. Even though
the range-angle FFT contains the angle information of the de-
tected object, we cannot directly use it to estimate the motion
of drone due to its limited angular and distance resolution.
In this work, we indirectly estimate the motion of the drone
with the help of stationary objects. The phase change Py, of
the signal reflected from a victim consists of two parts: the
displacement P, caused by the respiratory micro-motion and
the displacement P, caused by the drone motion as follow:

(11)

Since P, = 1y - Ps, where P; is the phase change of the signal
reflected from a stationary object, 7, is the ground truth
of the linear coefficient, which is adopted as compensation
coefficient to estimate the drone motion. In order to eliminate
P,, it is necessary to obtain compensation coefficient 9. In
the literature [58], the least square algorithm [23] has been
used to estimate 7o by optimizing the following function:

n

. . 2

arg minz (P}(Il) - (UPS(I) + f)) ,
né =1

where n is the total number of the phase samples, and & is a
constant. Suppose that Py, is equal to P, + 1o Ps. We can obtain
the following results by solving the optimization problem?

(8 ()

n . _\2
)

P, =P, + P,

(12)

n

)

i=1

(13)
2

i=1

where the estimated 7 consists of the ground truth 7, and
an extra term inside the box. The extra term comes from the
influence of micro-motion caused by human respiration. As
the extra term cannot be ignored, the drone motion cannot
be eliminated by using the estimated 5 from the least square
method.

To handle this problem, we propose a novel compensation
coefficient estimation method by leveraging the fact that the
frequency band corresponding to the respiratory micro-motion
is narrow, while the motion of drone is relatively wide-band.
We first transform the two phases reflected by the stationary
object and the victim into the frequency domain and calculate
the amplitude of each frequency point as follow:

As = |[FFT(Ps)|, Ap = |FFT(Py)|, (14)
where FFT represents the Fourier transform. A, A, are the
amplitude of FFT(Ps) and FFT(Py), respectively. As shown

2The optimization process is shown in Appendix A.

1381

in Figure 8, the frequency distribution is different in respira-
tion band, but similar in other bands.

) ) Human
600 [ | Human —p  Otherband Stationary object
] Respiration]
g 400 | I band 1 Sliding
< 1 1 window
& . ,
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Frequency(Hz)

Figure 8: We transform the echoes from the stationary
object and the victim into the frequency domain, then
select the frequency band with the highest similarity
of energy distribution and compute the energy ratio.

Then, we design a similarity-based sliding window to iden-
tify the non-respiration frequency bands. We calculate the
similarity of the frequency amplitude vector in each slid-
ing window and select the sliding window with the highest
similarity as follow:

AT AP
Az - Ay
where A™ is the frequency amplitude vector in the m-th
sliding window, || denotes the L1-norm. The ratio between

the frequency amplitude with the highest similarity can be
calculated as:

(15)

arg max
m

bl w
T A

where the ratio 7 is the desired compensation coefficient. It

is noticed that we use the L1-norm to calculate the accumu-

lation of energy in this sliding window.

The estimated 7 is adopted to cancel out the drone mo-
tion according to the drone motion model. Specifically, we
multiply the phase of y,(#) from the stationary object by the
compensation coefficient 7 to obtain y, (¢) as below:

y;(t) — As . e_j'ZH'fC'(U'Afdmou(t)+’7'fini,s).

(17)

Then, through dividing yy(t) by y,(t), we can eliminate
e~/ 2m fehtamoo () caused by the drone motion as follows:

(t) A _j'zn'ﬁ"(+ATrmon(t)+Tini)
Ya\l) _ Ap-e€

Ynew(t) = = =
ys(t) e—j-Zn-fC-( n- ATdmm,(t) +17~T,-,,,-,5)
(18)
— ﬂ . eij'Zﬂ'fE'(Afrmuv(t)+7ini7’7'Tini,s)’ (19)

S
where Ay, and A; are the amplitude signals reflected from the
victim and a stationary object, and the expressions inside
the two boxes are equal which can be cancelled. Note that
Tini and 7jn; s are initial time delay related to object position.
After that, the respiratory waveform can be recovered.
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4 IMPLEMENTATION

Hardware Implementations. As shown in Figure 9a, the
sensing device of RF-Search mainly contains a mmWave
radar module and a wireless communication module that are
integrated on the same small PCB board. Thus, the hardware
of RF-Search is lightweight and portable, which can be easily
integrated into existing commercial drone without any side
effects. The mmWave radar employs a TI AWR1843AO0P chip
[18] that is equipped with 3 transmit antennas and 4 receive
antennas, and works at 76 — 81 GHz with 4 GHz available
bandwidth. The drone is the Da-Jiang Innovations Mavic
3 [17], which can carry a payload of over 800 grams. The
flight path and speed of the drone are controlled through
a remote controller. The sensing device and the drone are
fixed together with a special adhesive tape. The TP-Link TL-
WDR7660 WiFi device is used for receiving and transmitting
data. We use a Lenovo thinkpad VE13GTSC laptop with Intel
Core-i7 processor and 16GB memory to process data and
implement the algorithm.

Software Implementations. We configure the radar
equipment using Ubuntu 20.04, receive data based on Python
3.8 through WiFi connection, and implement the system
based on Matlab.

5 PERFORMANCE EVALUATION

In this section, we evaluate the system’s performance from
two aspects: victim identification and respiratory recovery.
Specifically, we first conduct a series of experiments to eval-
uate the overall system performance. Then we investigate
the impact of different experimental factors on the system.
Finally, we evaluate the system in indoor and outdoor smoke
scenarios.

5.1 Experimental setup

We evaluate the proposed RF-Search system under three
different indoor environments, i.e., laboratory, conference
room, and lobby. We recruit 10 volunteers who repeat the
experiment three times in each environment, with each trial
lasting 3 minutes, resulting in 270 minutes. We have them
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lie on the ground in different poses, who are surrounded by
some tables, chairs or sofa, as shown in Figure 9b. We also
use wearable device HKH-11C with a piezoelectric sensor
to collect the ground truth of the subjects’ respiration. Our
experiments have essentially followed our institute’s IRB
protocol. During the experiments, we manipulate the drone
to enter the experimental scenario to search the subject. To
ensure the safety of the drone’s flight, it is equipped with
an obstacle avoidance system and operates at a low speed.
Once the subject is detected, the drone will hover over the
subject to sense the respiration.

Performance metric: We use the accuracy, precision,
and recall as the metrics to evaluate the performance of the
victim identification. To evaluate the precision of estimating
respiration rates, we utilize the relative error, which is calcu-
lated by dividing the absolute error by the actual respiration
rates. We also measure the similarity between the recovered
respiratory waveform and the ground-truth waveform using
the cosine similarity.

Baseline: For victim identification, to our best knowledge,
the proposed system is the first to detect unconscious victim
by detecting respiratory micro-movements under the drone
motion. So there is no proper existing baseline to compare
with. For respiratory waveform recovery, we compare the
proposed system with Mobi%Sense [58].

5.2 Overall performance

In terms of victim identification, as shown in Figure 11a, our
system achieves an accuracy of 92.5%, a precision of 96.5%,
and a recall of 93.3% on average, which demonstrates the
effectiveness of the proposed system. Moreover, to better
illustrate the searching process, we have drawn a diagram
of an example of a real-time search process with RF-Search,
as shown in Figure 10. In the figure, the horizontal axis
represents time, while the vertical axis represents phase.
Each line represents the phase of the echo, which reflects
the change in distance between the object and the radar. At
the beginning, the system detects two objects and identifies
them as stationary objects. At 48 second, a new object is
identified as a victim. Then the system monitors the victim’s
breath. At 55 second, two objects are found and identified
as stationary objects. From the figure, we are able to gain
comprehensive insights into the entire process of searching
for unconscious victim, which also demonstrates that our
system has the capability of real-time searching. With our
hardware setting, the system has a latency of approximately
0.2 seconds. On average, it takes 2 minutes to locate one
victim.

When a victim is found, the respiratory waveform is then
recovered by the proposed system as shown in Figure 12,
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identified as a victim. Then the system monitors the victim’s breath. At about 68 seconds, three objects are lost.

which has a cosine similarity of 0.91 and respiration rates er-
ror of 7% compared with the ground truth. As a comparison,
Mobi?Sense [58] only achieves the cosine similarity of 0.66
and respiration rates error of 26% as shown in Figure 11b.
This is due to the least squares method for estimating motion
compensation coefficient in Mobi?Sense. As evidenced in the
Section 3.4, the compensation coefficient that is estimated
through least square method contains an extra term, which is
the influence of the micro-motion caused by human respira-
tion. As the extra term cannot be ignored, the drone motion
cannot be eliminated. The above results demonstrate the
superior performance of our system in terms of respiratory
waveform recovery and respiration rate estimation.

I Ours B M obi*Sense

Recall

Relative errors

Accuracy Precise Similarity

(a) Victim identification. (b) Respiratory recovery.

Figure 11: The overall performance of RF-Search.

5.3 Performance under different scenarios

5.3.1 Impact of multiple unconscious victims. In real-
world scenarios, RF-Search should be capable of handling
situations where multiple victims are located in close prox-
imity and simultaneously scanned by radar. Therefore, we
investigate the performance of our system when handling
multiple victims. Specifically, we let multiple subjects lie on
the ground, who can be simultaneously scanned by radar.
And these subjects are separated by about 1 meter apart.
We vary the number of subjects from 1 to 4 while keeping
other factors unchanged. As shown in Figure 13, our system
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Figure 12: The recovered respiratory waveform.
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achieves good identification performance when multiple vic-
tims appear simultaneously, where the accuracy is defined by
the accuracy of victim identification. Also, with an increasing
number of subjects, there is a degradation in identification
performance of our system. This is because the respiratory
signals of multiple subjects exhibit inherent interferences.

5.3.2 Impact of the number of stationary objects. In
real-life scenarios, the presence of multiple stationary ob-
jects is frequently observed. In this experiment, to study the
impact of multiple stationary objects, we change the number



(a) Laboratory.

(b) Conference room.

Figure 15: Three different experimental environments.
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Figure 18: Impact of envi-

Figure 17: Impact of the ronment on respiratory re-

drone’s speed. covery.

of stationary objects from 2 to 5 while keeping other factors
fixed. As show in Figure 14, our system achieves very good
performance when the number of stationary objects is 3 and
4, while the performance drops slightly when the number of
stationary objects is 2 and 5. This is because too few station-
ary objects are not conducive enough to remove the drone
motion and identify the victim, while too many stationary
objects introduce too much interference due to the limited
radar distance resolution.

5.3.3 Impact of different speeds of drone. To ensure the
safe flight of the drone, we control the speed of the drone to
fly within a low-speed range. In this subsection, we explore
whether the speed of the drone affects the performance of
RF-Search. In the experiments, the drone searches for the
subjects at speeds ranging from 0.1 m/s to 3 m/s. Figure
17 shows that a higher drone speed will decrease the per-
formance. This is because the Doppler effect leads to some
frequency shift, which has an impact on the estimation of
compensation coefficient 5 for RF-Search.

5.3.4 Impact of different environments. In this subsec-
tion, we conduct the experiments on three different envi-
ronments, i.e., laboratory (length: 8m, width: 7m, height:
4m), conference room (length: 10m, width: 8m, height: 4m),
and lobby (length: 8m, width: 8m, height: 4.5m) as shown
in Figure 15, to investigate the the system’s adaptability to
different environments. As shown in Figure 16 and Figure
18, our system achieves similar impressive performance in
victim identification and respiratory waveform recovery in
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Figure 16: Impact of environ-
ment on victim identification.

different environments, which demonstrates the robustness
of the proposed system under different environments.

5.3.5 Impact of different distances between the drone
and the victim. During the searching process, the distance
between the drone and the victim varies depending on the
different environmental conditions. Therefore, in this sub-
section, we investigate whether the distance would influence
the performance of our system. Specifically, we deploy the
drone to hover above the victim and maintain varying dis-
tances, from 1m to 5m. As shown in Table 1, the distances
from 1m to 3m do not affect the performance of the system,
while at distances of 4m and 5m, the system’s performance
experiences slightly degradation due to the low power of the
radar, which can be addressed by using high-power radar.

Table 1: Impact of the distances between the drone and
the victim.

Distances ‘ Acc Precise Recall Similarity Errors
1m 0.926 0963  0.931 0.91 7.5%
2m 0.921 0.959  0.930 0.90 7.6%
3m 0.920 0.957 0.928 0.90 7.8%
4m 0.907 0.943 0.912 0.88 8.3%
5m 0.883  0.912 0.896 0.85 10.8%

5.3.6 Impact of different poses of the victim. In real-
world scenarios, unconscious victim can be with diverse
poses when found lying on the ground. To evaluate the im-
pact of different poses of the victim, we conduct a series of
experiments, in which the victim lies on the ground with
three different poses: lying flat, lying with legs raised, and
side lying, as shown in Figure 19a, 19b and 19c. From Fig-
ure 19d and 20, we can see that the proposed RF-Search
achieves the highest human identification and breath wave-
form recovery performance when the victim lies flat, while
the performance slightly drops when the victim lies on his
side. This is because with the victim’s lateral decubitus posi-
tion, the respiratory chest displacement may not be entirely
captured by the RF signal.
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Figure 19: The three poses of victim and the impact of
poses on victim search.
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Figure 20: Impact of poses on respiratory recovery.

Bl Path 1 B Path 2

Path 3

D oo N ocar
|

Accuracy Precise Recall

[ Ferson]
Figure 22: Impact of paths

Figure 21: Three paths. on victim identification.

5.3.7 Impact of different flying paths of drone. During
the operational flights of drone, a wide variety of flight paths
are encountered. In this subsection, we investigate the impact
of the different drone flying paths on the performance of our
system. Specifically, as shown in Figure 21, we control the
drone to fly along three different paths. Figure 22 shows that
different paths do not affect the performance of our system.

5.3.8 When a person is under a pile of stuffs. We also
evaluate the performance of the system when a person is
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Figure 23: Detection of abnormal breaths.

under a pile of stuffs. Specifically, the objects with different
materials (i.e., cardboard, sponge, wood, metal) are placed
on a person lying on the ground. As shown in Table 2, ex-
cept for the metal, the system still achieves excellent perfor-
mance when obstructed by other occlusion materials. This
is because wireless signals can penetrate through cardboard,
sponge, and wood but cannot penetrate metal.

Table 2: Performance when a person is under stuffs.

Material ‘ Acc  Precise Recall Similarity Errors

Cardboard | 0.915 0.952  0.921 0.90 8.6%
Sponge | 0912 0.946  0.925 0.90 8.8%
Wood 0.899 0.92.6 0.912 0.89 9.2%
Metal 0.501 0.582  0.517 0.53 40.6%

5.3.9 Detection of abnormal respiration. Our system
can also provide real-time monitoring of the respiratory
condition of unconscious victims and promptly transmit
health reports. To evaluate the performance of the proposed
system on monitoring abnormal breaths, we simulate the
abnormal scene by letting the subject holding the breath for
a few seconds. Figure 23 shows that our system is able to
accurately monitor the abnormal breaths.

5.4 Ablation study

5.4.1 Victim identification. The CFAR algorithm [35] is
adopted to detect all existing targets, which is important
for our system. Therefore, we study the impact of the CFAR
algorithm on our system. Specifically, we remove the CFAR
algorithm, and use the maximum amplitude for target detec-
tion. Furthermore, we evaluate the impact of the different
window sizes on the CFAR’s performance by changing the
window size from 4 to 12. As shown in Table 3, the algorithm
is essential for our system, and it achieves the best perfor-
mance when the window size is 8. Moreover, we investigate
the impact of the Pearson coeflicient, as shown in Figure 24,
the blue and red portions represent the Pearson coefficient



between the subject and the stationary objects, and the Pear-
son coefficient between the stationary objects, respectively.
In this work, we set the threshold as 0.87.

Table 3: The impact of the CFAR algorithm.

| W/0 4 6 8 10 12

Accuracy | 0.769 0.836 0.916 0.925 0.920 0.856
Precise 0.778 0.854 0.957 0.965 0.959 0.879
Recall 0.756  0.841 0.926 0.933 0.928 0.863
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Figure 26: The impact of motion direction segmenta-
tion on respiratory waveform recovery.
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Figure 27: The impact of different motion compensa-
tion methods on respiratory waveform recovery.

5.4.2 Motion direction segmentation. We then evaluate
the impact of motion direction segmentation on the perfor-
mance of our system. Figure 26 illustrates that the similar-
ity between the recovered waveform and the ground truth
drops significantly without the motion direction segmenta-
tion step. As shown in Figure 25, without motion direction
segmentation, the cosine similarity reduces from 0.9 to 0.7,
and the breath rate error increases from 7% to 18%. These
results demonstrate that the proposed motion direction seg-
mentation is crucial to enable the mmWave radar to sense
fine-grained breath under complex drone motion.
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Figure 28: Impact of motion compensation methods.

5.4.3 Motion compensation. We also compare the per-
formance of compensation coefficient estimation using the
proposed method and the least square method adopted in
Mobi®Sense [58]. Figure 27 clearly shows that the recovered
waveform by the least square method is worse than our
proposed method. Then we compute the cosine similarity
between the recovered waveform and ground truth, and the
relative error between the estimated and the actual breath
rates. As shown in Figure 28, compared with the least square
method, our method has achieved significant improvements
in both cosine similarity and relative errors.

5.5 Case studies

5.5.1 Indoor smoke-filled environment. To simulate the
smoke-filled scenario, a smoke generator is employed to pro-
duce smoke, as shown in Figure 29a. We keep the other
experimental settings the same as those under the smoke-
free condition. As shown in Table 4, our system has achieved
comparable performance to that in a smoke-free scenario.
Furthermore, to simulate the scenario of falling burning ob-
jects in a fire incident, we allow several objects to fall around
the subject. As shown in Figure 31, the distance between the
landing area and the victim is approximately 0.5 meters. The
results in Table 4 show that the falling objects only have a
minimal impact on the performance of the system, where

W/ indicates objects falling in the experimental scenario.
5.5.2 Outdoor smoke scenario. To simulate the wildfire

smoke scenario, we deploy the experiment in an outdoor
scenario where a smoke generator is employed to produce



(a) Indoor.

(b) Outdoor.

Figure 29: The two smoke scenarios.

Table 4: The performance in indoor smoke scenario.

Falling objects ‘ Acc
W/0 ‘

Precise Recall Similarity Errors

0.926
0.901

0.963
0.946

0.931
0.925

0.91
0.90

7.5%

W/ 8.2%

Table 5: The performance in outdoor smoke scenario.

Scenario ‘ Acc  Precise Recall Similarity Errors

0.926
0.881

0.963
0.926

0.931
0.896

0.91
0.83

7.5%
12.7%

Indoor
Outdoor

smoke, as shown in Figure 29b. We let the subject lie on an
unmanned vacant land, while the drone searching within a
certain vicinity. The vertical distance between the drone and
the subject ranges from 2 meters to 5 meters. The setup in
outdoor experiment is shown in Figure 30. The results in
Table 5 show that the system experiences a certain degree
of performance degradation compared to indoor scenarios
due to fewer stationary objects available as references.

6 RELATED WORK

RF sensing has recently attracted tremendous attentions
in both academia and industry. It has been employed to
solve various human-related problems including human ges-
ture recognition [16, 25, 43, 44, 59], activity recognition [8,
13, 20, 46, 49, 50], pose estimation [21, 38, 60, 62], human
mesh recovery [51, 52, 61], silhouette generation[38, 48],
re-identification [14, 26], fall detection [27, 42], vital sign
monitoring [9, 10, 55-57, 63], localization [22, 47, 53] and so
on. These existing works mainly rely on static transmitter
and receiver deployment which hinders the application of
large-scale RF based sensing in practice. In this work, we
aims to conduct RF sensing with the sensing device mounted
on a drone which moves in a complex way.

Device mobility sensing system with RF aims to over-
come the effect of signal variation caused by device move-
ment. Airborne radar [40] and vehicular radar [6] are two
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classic device mobility sensing systems, which are widely
used to sense nearby objects’ locations and moving speed,
but cannot meet the requirements of complex perception
tasks [32]. To enable more fine-grained sensing like moni-
toring the millimeter level respiration movement (rate and
depth), Mobi®Sense [58] employs one static object in the
environment as a reference to remove the effect of device
movement. Although these existing device mobility sensing
systems have made much progress in dealing with the device
movement, they still are inapplicable to micro-motion iden-
tification under complex device motion like drone move and
are unable to effectively cancel the influence of the motion.
The proposed method can identify stationary targets with
micro-motion using RF device with very complex motion
pattern.

Vital sign monitoring aims to recover the fine-grained
vital sign from the subtle micro-motions using RF sensing
device, including heartbeat [1, 7, 15, 63] and breath [1, 55, 56,
58, 63]. These micro-motions are extremely sensitive to the
body or device movements, and can be easily submerged by
high-energy movements. So existing vital sign monitoring
only works in limited scenarios, e.g., static target or device.
To tackle these challenges, MoRe-Fi [64] and MoVi-Fi [10]
extend the above limited scenarios to a relaxed one with
body movements and employs customized deep learning
approaches for the problem. But the devices are still kept
static in these works. Mobi?Sense [58] allows the movement
of the device and chooses a static object in the scene as a
reference to remove the effect of device move. The device
movement considered in our work is much more complex
and we further considered the static reference object identi-
fication problem. We propose to utilize the spatial-temporal
correlation between the sensed objects to effectively identify
the unconscious victim and the static reference object.

7 LIMITATIONS AND DISCUSSIONS

Stationary objects and reference: Our system requires
two or more stationary objects as references in order to
identify the subject. While such a condition generally holds



in most scenarios, the performance may degrade when there
is only one or no stationary object. Moreover, due to the
relatively large surface area of walls and floors, the radar
reflections from the walls and floors exhibit variations as the
drone moves. Thus, the floors and walls cannot be considered
as a reference to estimate the drone motion.

Drone motion: Although our system is applicable in any
motion direction and location of the drone, it assumes that
the motion of the drone is translational. However, the actual
movement of drones is even more diverse and intricate. In
addition to translation, it involves other motions such as
rotation. In future work, we will delve deeper into modeling
drone movement in order to address the impact of drone
motion on system performance.

Path plannings: For the path plannings, existing works
[2, 5, 28, 33, 34] are relatively mature. In this paper, our focus
is on how to search victims and recover the respiratory wave-
form under drone motion. In future work, we will combine
our method with the path planning algorithm to achieve a
faster and more intelligent search and rescue system.

Multi-drone cooperation: Multi-drone cooperative search

can enhance search efficiency, but there can be interference
among the radars on the drones due to operating in the
same frequency range. In the future, we will integrate the
interference mitigation techniques to facilitate multi-drone
cooperation.

8 CONCLUSION

While radar human detection based on vital signs has been
studied for years, the situation where the radar is mounted
on the drone has never been explored. To resolve the signal
variations raised by drone motion, we have noted that the
physical signature of drone motion is encoded in stationary
object reflections. Based on this observation, we propose an
architecture for victim searching which takes victim identifi-
cation, motion segmentation and respiration monitoring as
the core components. Extensive experiments demonstrate
that the proposed framework could achieve an accuracy of
92.5% for victim identification. To the best of our knowledge,
this is the first framework which is capable of identifying un-
conscious victims in smoke scenes with a RF-enabled drone.

A DETAILED PROOF OF EQUATION

For convenience of presentation, we redefine our problem
in a mathematical manner.

Given the phase of the received signal P, we can divide
it into P, and P, as:

Ph = Pr + PU (20)

where P, = 1o - Ps. So we have P, = P, + 1 - P
The 1 is unknown, and we need to estimate the value of
1o from a series of observation value, e.g., Ps and Py,. Existing
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method [58] assumes that P, is approximately a constant &,
and estimates 7, through the least square method by mini-
mizing the following function:

R =3 (1 - (0 )

i=1

(21)

where 7 is the estimated value of 1g. The least square method

obtains the minimum by setting - aF =0, ‘;? =0 as:

B ) ()0

3—? =2 ; (Pfl” - (nPSm + g)) (-1) =0, (23)
which gives
&= P, - P (24)
5 -8 -
n="— — (25)
2 (r- )

_ 1 . _ .
where P, = = Y1 P}(l') and s = = Y1, Y. Substituting
n n

Py, = P, +1 - Ps into above equation, the estimated value 7 is

n . _ . : _ _
% (P = Bo) (B 4 Pl By = o)
n= = n (i) 2 (26)
N o=
igl (Ps - Ps)
n —
> (Ps(’) Ps) (P(') P,)
= 7]0 + = n @ 2 by (27)
N =
igl (Ps - Ps)
which has the same mathematical form with Equation.13.
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