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ABSTRACT
The major obstacle for learning-based RF sensing is to obtain a
high-quality large-scale annotated dataset. However, unlike visual
datasets that can be easily annotated by humanworkers, RF signal is
non-intuitive and non-interpretable, which causes the annotation of
RF signals time-consuming and laborious. To resolve the rapacious
appetite of annotated data, we propose a novel unsupervised rep-
resentation learning (URL) framework for RF sensing, RF-URL, to
learn a pre-training model on large-scale unannotated RF datasets
that can be easily collected. RF-URL utilizes a contrastive framework
to mind the gap between signal-processing-based RF sensing and
learning-based RF sensing. By constructing positive and negative
pairs through different signal processing representations, RF-URL
seamlessly integrates the existing RF signal processing algorithms
into the learning-based networks. Moreover, the RF-URL is care-
fully designed to take into account the asymmetric characteristics
of different RF signal processing representations. We show that
RF-URL is universal to a variety of RF sensing tasks by evaluating
RF-URL in three typical RF sensing tasks (human gesture recog-
nition, 3D pose estimation and silhouette generation) based on
two general RF devices (WiFi and radar). All experimental results
strongly demonstrate that RF-URL takes an important step towards
learning-based solutions for large-scale RF sensing applications.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Machine learning.
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1 INTRODUCTION
The past decade has witnessed much progress in RF sensing. Re-
searchers have utilized advanced signal processing technologies to
build explicit models between signal variations and human behav-
iors, which have enabled applications including vital sign estima-
tion [1] and location tracking [2]. Nevertheless, when the sensing
tasks become more complicated, the explicit signal processing mod-
els become intractable. Hence, learning-based RF sensing powered
by deep neural networks has been an emerging field, which has
enabled various applications including gesture recognition [51], hu-
man pose estimation [54] and identification [16], etc. While promis-
ing results have been achieved under specific conditions, it is still
difficult to scale the data-driven system to large-scale RF sensing
applications due to the dataset limitation.

Challenge: Limitation on Annotated RF Datasets. The data-
driven RF sensing methods are typically achieved in a supervised
learning manner. However, unlike RGB data which can be anno-
tated manually, annotating RF data is time-consuming and labori-
ous since RF signals are not human interpretable. Moreover, the
captured RF signal is highly relevant to the environment for sig-
nal propagation, which forces researcher to collect a large-scale
annotated dataset with various environments. To resolve such a
problem, supervised RF data augmented with other modalities in-
cluding RGB-cameras [52, 54] and accelerometers [27] has been
proposed. However, the overhead introduced by synchronization
and calibration between different modalities still limit the real-
world deployments of these systems.

Opportunity: Unsupervised Representation Learning. The
limitation on annotated RF datasets encourages us to exploit unan-
notated data for model training. URL [3] has attracted much interest
in computer vision and natural language processing [14, 23]. Con-
trastive learning is one kind of URLs that have been growing rapidly
recently in computer vision community, which repulses different
images (negative pairs) while attracting the same image’s different
views (positive pairs). In such a way, the general semantic infor-
mation cross different views corresponding to the same image is
retained, while the rest information (noise) is thrown away, result-
ing in a useful representation. However, prior work has shown that
contrastive learning tends to learn shortcut rather than meaningful
information for RF signals [32]. To this end, we have noted that the
core of contrastive framework lies in building positive and negative
pairs to learn their inherent consistencies and discrepancies, while
existing methods generally utilize data augmentation to construct
the positive and negative pairs, which is designed for visual images
but are not able to avoid shortcuts for RF signals.

Insight: Minding the Gap Between Signal Processing and
Neural Network. To design an effective contrastive framework
for RF signals, we find that the signal processing technologies,
which could achieve diverse representations with theoretic signal
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models, have been underexplored in the existing learning-based
frameworks. For instance, given a series of RF signals, we can
derive their Angle of Arrival (AoA)-Time of Flight (ToF) [48, 54],
Doppler-Frequency-Spectrum (DFS) [51], etc. These different signal
processing representations, together with the raw signal samples,
are actually corresponding to the same semantic information, which
can naturally form the positive pairs for the contrastive framework.
On the other hand, the signal processing representations of different
RF signals also naturally form the negative pairs.

In this paper, we introduce a new URL framework, RF-URL, for
RF sensing. RF-URL utilizes contrastive learning by introducing
different signal processing methods to replace data augmentation
which is the common practice for computer vision. In such a way,
we can seamlessly integrate the well-developed RF signal process-
ing algorithms into the learning-based RF-URL networks. However,
different signal representations have different characteristics (like
dimensions, feature, etc), which is referred to “asymmetric charac-
teristics”. For instance, DFS is a 2D tensor (Frequency-Time) while
AoA-ToF is a 3D tensor (AoA-ToF-Time). Such an asymmetric char-
acteristic would make the contrastive learning framework difficult
to converge. To this end, we design a series of modules to transform
knowledge between different representations as follows.

• A multi-branch structure is designed to involve different signal
processing representations obtained from the well-developed RF
signal processing algorithms.
• A translator is utilized as a mediator to embed different signal
representations of RF signals into a unified metric space to avoid
convergence problem, and a predictor with stop-gradient opera-
tion is proposed to improve the performance of RF-URL.
• A memory bank stores all representations of the training dataset
and can effectively sample a large-scale negative pairs.

Contribution: This paper takes an important step towards
learning-based solutions for RF sensing applications by extend-
ing URL to solve the appetite for large-scale annotated RF data. The
main contributions are summarized as follows:

• The paper introduces a novel URL framework, RF-URL, for RF
sensing. To the best of our knowledge, this is the first work to
utilize a contrastive framework to mind the gap between signal-
processing-based RF sensing and learning-based RF sensing. By
learning a general semantic information for various sensing tasks
from different signal representations, the proposed RF-URL could
enhance the sensing performance in an unsupervised manner.
• The paper presents an architecture for unsupervised RF sensing
that leverages a multi-branch design, translator, memory bank
and predictor with stop-gradient operation to achieve balance
among simplicity, scalability and performance.
• We show that RF-URL is a universal framework to a variety of RF
sensing tasks by evaluating it on three basic tasks with two kinds
of RF signals (WiFi and radar), including (1) single label prediction
task: human gesture recognition with WiFi signals; (2) structured
prediction task: 3D pose estimation with millimeter wave radar
signals; and (3) dense prediction: human silhouette generation
with millimeter wave radar signals. Experimental results show
that RF-URL pre-training model improves the performance of
all three tasks: 8.98% accuracy improvement for human gesture

recognition, 38.23% 𝑙2 distance reduction for 3D pose estimation,
and 11.33% IoU improvement for human silhouette generation.

2 METHOD
RF-URL is a URL framework for RF-based sensing based on con-
trastive learning. It utilizes different signal representations to con-
struct positive and negative pairs for contrastive learning, which
allows us to seamlessly integrate the well-developed RF signal pro-
cessing techniques with URL framework.

As shown in Figure 1, the architecture of RF-URL mainly con-
tains four components: signal representation, feature extraction
with translation, predictor and memory bank sampling. Specifically,
RF signal 𝑥𝑖 is firstly processed by different signal processing tech-
niques to obtain different representations (𝑥𝑖1, ..., 𝑥

𝑖
𝑛). Then, for each

𝑥𝑖
𝑘
, a backbone network 𝑓𝜃𝑘 is utilized to extract the corresponding

feature 𝑦𝑖
𝑘
. Since different representations of RF signals are with

different characteristics and dimensions, e.g., DFS is a 2D tensor
(Frequency-Time) and AoA-ToF is a 3D tensor (AoA-ToF-Time), a
translator network is adopted to map the RF signal features into a
unified metric space with 𝑧𝑖

𝑘
= 𝑔𝜃𝑘 (𝑦

𝑖
𝑘
). Then, (𝑧𝑖1, ..., 𝑧

𝑖
𝑛) together

with the representations sampled from memory bank are utilized to
construct positive pairs (different signal representations of the same
RF signal) and negative pairs (the signal representations of different
RF signals) to minimize an InfoNCE loss, which is supposed to be
small for positive pair and large for negative pairs. In addition, a
shared-weight predictor ℎ is applied on one branch to predict the
output of another branch to further improve the representation
quality. We will discuss these four components in detail as follows.

2.1 Signal Representation
In the field of RF sensing, various signal processing techniques
have been developed to obtain the representations of the RF signals,
channel state information (CSI), DFS, AoA-ToF, etc. However, since
each of these signal representations only provides a certain per-
spective of the RF signals, directly utilizing these representations
for learning-based RF sensing may introduce inductive bias and
lead to unsatisfied solution [19]. For example, DFS mainly embodies
the velocity information, due to which the inductive bias might en-
force the network to over-weight the feature of DFS while ignoring
other information, leading to over-fitting and low generalization
performance.

RF-URL aims to exploit general semantic information for various
sensing tasks from different signal representations. It is achieved by
the contrastive learning theory through attracting different signal
representations of the same RF signals while repelling others.

2.2 Feature Extraction and Translation
Backbone Encoder: The different signal representations of RF
signals have different dimensions and characteristics, e.g., DFS is
a 2D tensor (Frequency-Time) and AoA-ToF is a 3D tensor (AoA-
ToF-Time). Thus, a customized multi-branch backbone network is
adopt to process different signal representations.

Translator: The different signal representations may cause con-
vergence issue of the RF-URL. Thus, a small MLP neural network,
named as translator, is adopted as a mediator to transform the
different representations of RF signals into a unified latent space
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Figure 1: An illustration of RF-URL pre-training mode for RF sensing.

with 𝑧𝑖
𝑘
= 𝑔𝜃𝑘 (𝑦

𝑖
𝑘
). As shown in Figure. 2, we illustrate the training

processing of RF-URL with/without translator, from which we can
see that translator plays a crucial role on enforcing convergence.
Overall, backbone is adopted to extract features of different signal
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Figure 2: Training RF-URL with/without translator.

representations generated by different RF signal processing algo-
rithms. Translator is utilized as a mediator to embed different signal
representations of RF signals into a unified metric space to avoid
convergence problem.

2.3 Predictor and Loss Function
Predictor is a small shared-weight neural networkℎwith stop-grad
(stop gradient) operation, which is applied on one branch to predict
the output of another branch to further improve the representation
quality. Stop-grad could avoid a direct interaction between two
branches, which prevent training collapsing. The loss is calculated
as

L𝑖𝑃 =
1

2(𝑛 − 1)

𝑛−1∑︁
𝑘=1

[
D(ℎ (𝑧𝑖

𝑘
), 𝑠𝑔 (𝑧𝑖

𝑘+1 ) ) + D(𝑠𝑔 (𝑧
𝑖
𝑘
), ℎ (𝑧𝑖

𝑘+1 ) )
]
, (1)

where D(.) indicates a distance metric and 𝑠𝑔(.) stands for stop
gradient operation.

RF-URL is a contrastive-learning-based framework that learns
features of RF signals from the positive and negative pairs created
through different signal processing methods. A contrastive loss [22]
is low when 𝑧𝑘 is similar to 𝑧𝑘+1 for positive pairs {𝑥𝑖𝑘 , 𝑥

𝑖
𝑘+1} and

dissimilar for negative pairs {𝑥𝑖
𝑘
, 𝑥
𝑗

𝑘+1}(𝑖 ≠ 𝑗). With similarity
function 𝑠 (u, v) = u⊤v/∥u∥∥v∥, a contrastive loss InfoNCE [40]
with 𝐾 negative pairs {𝑥𝑖

𝑘
, 𝑥
𝑗

𝑘+1}
𝐾
𝑗=1 is written as

L𝑖𝑐 (𝑧𝑖𝑘 , 𝑧
𝑖
𝑘+1 ) = − log

exp(𝑠 (𝑧𝑖
𝑘
, 𝑧𝑖
𝑘+1 )/𝑡 )

exp(𝑠 (𝑧𝑖
𝑘
, 𝑧𝑖
𝑘+1 )/𝑡 ) +

∑𝐾
𝑗=1 exp(𝑠 (𝑧𝑖𝑘 , 𝑧

𝑗

𝑘+1 )/𝑡 )
,

(2)
where 𝑡 denotes temperature parameter [44]. However,L𝑖𝑐 (𝑧𝑖𝑘 , 𝑧

𝑖
𝑘+1)

defines an asymmetric loss by fixing𝑥𝑘 , i.e.,L𝑖𝑐 (𝑧𝑖𝑘+1, 𝑧
𝑖
𝑘
) ≠L𝑖𝑐 (𝑧𝑖𝑘 , 𝑧

𝑖
𝑘+1).

Similarly, we define L𝑖𝑐 (𝑧𝑖𝑘+1, 𝑧
𝑖
𝑘
) by fixing 𝑥𝑘+1 and obtain a sym-

metrical contrastive loss as follows

L𝑖𝑐 =
1

2(𝑛 − 1)

𝑛−1∑︁
𝑘=1

[
L𝑖𝑐 (𝑧𝑖𝑘 , 𝑧

𝑖
𝑘+1) + L

𝑖
𝑐 (𝑧𝑖𝑘+1, 𝑧

𝑖
𝑘
)
]
. (3)

The final loss function for RF-URL is

L𝑅𝐹−𝑈𝑅𝐿 =
∑︁
𝑖

L𝑖𝑐 + 𝜆
∑︁
𝑖

L𝑖𝑃 , (4)

where 𝜆 is the scale factor. It is noticed that both L𝑖𝑐 and L𝑖𝑃 only
calculate the distances between consecutive processed signals (𝑧𝑘
and 𝑧𝑘+1) rather than all pairs. Compared with directly calculating
distances between all pairs, calculating distance between consecu-
tive signals could maintain the consistency between all pairs while
reducing the computational complexity.

2.4 Memory Bank
Memory bank stores all representations of the training dataset
[44]. Therefore, we can effectively sample a large-scale negative
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samples. As shown in Figure. 1, the memory bank mainly contains
two operations: sampling representations from buffers to calculate
contrastive loss L𝑖𝑐 and updating the representations in buffers.

Sampling: We adopt a cross sampling strategy. For representa-
tion 𝑧𝑖

𝑘
, a mini-batch of samples {𝑧 𝑗

𝑘+1}
𝐾
𝑗=1 are randomly sampled

from buffer 𝑘 + 1 to form the negative pairs {(𝑧𝑖
𝑘
, 𝑧
𝑗

𝑘+1)}
𝐾
𝑗=1 and

positive pair (𝑧𝑖
𝑘
, 𝑧𝑖
𝑘+1). The same operation is executed for repre-

sentation 𝑧𝑖
𝑘+1 to obtain negative pairs {(𝑧𝑖

𝑘+1, 𝑧
𝑗

𝑘
)}𝐾
𝑗=1 and positive

pair (𝑧𝑖
𝑘+1, 𝑧

𝑖
𝑘
). Then, the contrastive lossL𝑖𝑐 in Eqn.(3) can be calcu-

lated to update parameters of neural networks by back-propagation
algorithm.

Update buffer: The representations in memory bank could not
be updated by back-propagation process, and a dynamically update
strategy is adopted to update the parameters of memory bank with
a momentum mechanism

𝑧𝑛𝑒𝑤 ←𝑚 · 𝑧 + (1 −𝑚)𝑧𝑜𝑙𝑑 , (5)

where𝑚 ∈ (0, 1) is a momentum coefficient, 𝑧 is the output of the
translator, and 𝑧𝑜𝑙𝑑 comes from the memory bank.

3 RF SENSING TASKS
As shown in Figure. 3, in this paper, we demonstrate the univer-
sality of RF-URL framework through three different RF sensing
tasks including human gesture recognition with WiFi signals, 3D
pose estimation with millimeter wave radar signals, and human
silhouette generation with millimeter wave radar signals.
• Human gesture recognition is a single label prediction task
which utilizes a classifier after the pre-trained backbone of RF-
URL to classify different gestures.
• 3D pose estimation is a structured prediction task that estimates
human skeletons by adding a regression module after the pre-
trained backbone of RF-URL.
• Human silhouette generation is a dense prediction task that
generates a semantic segmentation of human by adding a decoder
module to the back-end of the pre-trained backbone of RF-URL.

Since almost all RF sensing tasks can be seen as a combination of
above three tasks, and twomost widely used RF signals areWiFi and
radar signals, with the above three RF sensing tasks, it is sufficient
to demonstrate the universality of the RF-URL framework.

3.1 Signal Processing
While there are many different signal processing algorithms which
can be utilized to produce different signal representations, without
loss of generality, we mainly utilize AoA-ToF and DFS in this paper.
Specifically, as shown in Figure. 3, for human gesture recognition,
we adopt two different signal processing algorithms (AoA-ToF and
DFS) to produce two signal representations as the input of neural
network. For human 3D pose estimation and silhouette generation,
two perpendicular radars have been deployed for data collection,
which have captured human information from two different views.
In such a case, we can simply adopt one signal processing algorithm
(AoA-ToF) to naturally generate two signal representations from
the captured data of two radars.

3.1.1 AoA-ToF. Considering the signal transmitted and reflected
from AoA 𝜃 and ToF 𝜏 , the relative phase shift of this signal on

adjacent antennas is Φ(𝜃 ) = 𝑒𝑥𝑝{− 𝑗2𝜋 𝑓𝑘 𝑑 cos𝜃𝑐 }, where 𝑑 , 𝑓𝑘 and
𝑐 denote the space interval between two adjacent antennas, sig-
nal frequency and the speed of light. The phase shift on adjacent
frequencies is Φ(𝜏) = 𝑒𝑥𝑝{− 𝑗2𝜋Δ𝑓 𝜏}, where Δ𝑓 denotes the dif-
ference between adjacent frequencies. By compensating the phase
shift and adding the signals on different antennas and frequencies,
the signals from AoA 𝜃 and ToF 𝜏 would superimpose coherently
while the signals from other locations would be suppressed. Hence,
the signals from that AoA-ToF could be separated, and the extracted
signal [48, 49] can be expressed as

𝑃 (𝜃, 𝜏) =
𝑀∑︁
𝑚=0

𝐾∑︁
𝑘=0

𝑠𝑚,𝑘𝑒
𝑗2𝜋 𝑓𝑘 𝑚𝑑 cos𝜃

𝑐 𝑒 𝑗2𝜋𝑘Δ𝑓 𝜏 , (6)

where 𝑠𝑚,𝑘 denotes the received signal,𝑚 and 𝑘 denote the index
of receiver antenna and signal frequency.

Since typical frequency modulated continuous wave (FMCW)
radars could perform signal transceiving over large bandwidth
with multiple input multiple output (MIMO) antenna array, AoA-
ToF representations from radar could achieve much higher spatial
resolution with larger data size compared with that of WiFi. By
contrast, WiFi devices do not need to perform frequency sweeping,
which leads to higher frame rate compared with radar. The output
of the algorithm is a matrix of dimension𝐺1 ×𝐺2. For FMCW radar,
𝐺1 = 160 and 𝐺2 = 200. For WiFi, 𝐺1 = 96 and 𝐺2 = 96, which is
smaller due to its lower spatial resolution.

3.1.2 DFS. Following the literature [51], the signal processing
pipeline of DFS includes three steps: (1)We first perform conjugate
multiplication on CSI of two antennas to remove random offsets;
(2) We perform Principal Component Analysis (PCA) algorithm on
the CSI stream to extract human reflections and reduce the data
dimension; (3)We perform short-time Fourier transform (STFT) on
the processed data to extract Doppler information. The DFS output
is a frequency-time matrix of dimension (121, 1024).

3.2 Basic settings
Unless specified, the following settings are used for RF-URL.
• Translator has batch normalization (BN) applied to each fully-
connected (FC) layer with ReLU activation function, and the
output FC has no ReLU with 128-dimension (128-d). This MLP
has 3 layers with hidden size 1024-d.
• Predictor has BN applied to each FC layer with ReLU activation
function. This MLP has 2 layers with hidden size 1024-d. The
cosine distance is used for the distancemetric in Eqn.(1) as follows

D (𝑧1, 𝑧2) = −
𝑧1
∥𝑧1∥2

· 𝑧2
∥𝑧2∥2

, (7)

where ∥·∥2 is L2 normal. The predictor works only in first five
epochs and is closed afterwards during pre-training stage. The 𝜆
in Eqn. (4) is 1.0 by default.
• Optimizer: We use stochastic gradient descent (SGD) optimizer
with a cosine decay schedule and a warm up of 10 epochs. We
also find a large initial learning rate, e.g., 0.6, can work well
and produce better results. This is because RF-URL is based on
memory bank, which requires a large learning rate to ensure the
backbone to be adapted to the stored representations. The weight
decay is 0.0001 and the SGD momentum is 0.9.
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Figure 3: An illustration of RF-URL for gesture recognition, 3D pose estimation and silhouette generation.

• Device:All experiments runs on 4×NVIDIATesla V100GPU(32GB)
with PyTorch [34] library. All BN layer are replaced by Sync BN.
• Hyperparameters: The temperature parameter 𝑡 in Eqn. (2)
is set as 0.07, and the momentum coefficient for memory bank
update in Eqn. (5) is set as 0.5. The negative pairs𝐾 for calculating
InfoNCE loss in Eqn. 2 is 4096. The batch size of the pre-training
stage is 256 by default.
• Evaluation protocol: We evaluate the RF-URL performance
under both feature frozen setting and fine-tuning setting by freez-
ing/ fine-tuning the backbone (initialized from RF-URL) and train
a sub network from scratch. The evaluation metrics are classifi-
cation accuracy, average 𝑙2 distance between predicted keypoints
and their ground-truth, and the average intersection-over-union
(IoU) between the generating silhouette and ground-truth.

4 HUMAN GESTURE RECOGNITION
4.1 Dataset
RF-URL is designed to learn a general feature representation in
an unsupervised manner using pre-training dataset without la-
bels. Then training dataset with labels is utilized to evaluate the
effectiveness of RF-URL. In practical deployment, it requires less
overhead to collect unannotated data, and it is more common that
the pre-training dataset is much larger than the annotated training
dataset. Thus, we use a public dataset Widar3.0 [51] to evaluate
the RF-URL framework for human gesture recognition, where two
types of human gesture dataset are collected.

The first dataset (non number dataset) collects the widely used
hand gestures for human-computer interaction, which contains
38687 samples. Due to the difficulty in constructing large-scale
annotated RF dataset, it is unpractical to pre-train the model in a
supervised manner. Thus, although the Widar3.0 is annotated, to
simulate the real scenario, we remove the labels of first dataset to

create the pre-training dataset for RF-URL to extract the general
representation.

The second dataset (number dataset) collects some complex and
semantic gestures that draw number 0-9 in the horizontal plane
with a total of 5000 samples.

We perform a dynamic link selection (DLS) algorithm [51] for
Widar3.0 to prune those WiFi receivers that may potentially be
blocked by human torso and use the rest of the devices for human
gesture recognition. Each sample in dataset 1 and dataset 2 contains
6 links, which means that we can get 6 × 38687 = 232002 samples
for dataset 1 and 6 × 5000 = 30000 samples for dataset 2. After
performing the DLS algorithm,we obtain 143255 samples for dataset
1 and 23574 samples for dataset 2. The dataset 2 are randomly split
into training dataset (21335 samples) and validation dataset
(2239 samples) with a ratio of 0.9:0.1.

4.2 Baseline
4.2.1 Backbone Network. We adopt ResNet [25] as the backbone
followed with translator and predictor. Since there are two different
basic block of ResNet, e.g., BasicBlock for ResNet-18/34 and Bottle-
neck for ResNet-50/101/152, to avoid potential inconsistency, we
unify the basic block with Bottleneck and propose a new structure
ResNet-17/35, i.e., ResNet-17: [1, 1, 2, 1] and ResNet-35: [2, 3, 3, 3]
for Bottleneck [conv2_x, conv3_x, conv4_x, conv5_x] in [25], as an
alternative version of ResNet-18/34. Given that the backbones of
RF-URL for human gesture recognition are dual-branch, we split
ResNet into two part by halving channels, e.g, a convolution layer
with 256 3 × 3 filters is split into two convolution layers with 128
3 × 3 filters.

4.2.2 Training Details. (1) Pre-training: We perform pre-training
on Widar3.0 pre-training dataset with a total training number of
150 epochs. (2) Fine-tune: The linear classifier combined with a
frozen or fine-tuned backbone is trained on training dataset with
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50 epochs and evaluated on validation dataset. The batch size is
128. For frozen setting, the initial learning rate is 30. For fine-tune
setting, the learning rates of backbone and classifier are 0.003 and
0.03, respectively.

4.3 Experimental Results
4.3.1 Classification Accuracy.
Comparison study: The performance of different models on the
human gesture recognition accuracy is illustrated in Table. 1. We
can see that with the RF-URL pre-training, the accuracy of all back-
bones are all improved, and 94.060% accuracy can be achieved for
ResNet-152 with fine-tuned backbone. The highest accuracy for
training from scratch is 89.326% obtained by ResNet-152, which
is however even lower than the lowest accuracy of RF-URL pre-
training method, i.e., 91.201% obtained by fine-tuned ResNet-17.

From Table. 1, we can also see that with the ResNet-50 backbone,
a carefully designed RF-URL can improve the performance with
7.995%, achieving 97.008% accuracy, which is 4.108% higher than
Widar3.0 [51]. These results show that our RF-URL pre-training
model can extract general information for gesture recognition from
dataset 1 and apply it to dataset 2.

Table 1: The performance of different models on the human
gesture recognition accuracy.

Pre-training Method Accuracy

EI[28] 80.0
- Widar3.0[51] 92.9

ResNet-17 86.780
ResNet-35 88.656

- ResNet-50 89.013
ResNet-101 89.058
ResNet-152 89.326

ResNet-17 91.201 (+4.421)
ResNet-35 92.363 (+3.707)

RF-URL ResNet-50 92.631 (+3.618)
(Fine-tune) ResNet-101 93.301 (+4.243)

ResNet-152 94.060 (+4.734)

ResNet-50 (baseline) 89.013
+ RF-URL(frozen) 92.229 (+3.216)
+ Predictor 92.407 (+0.178)

RF-URL + Fine-tune 92.631 (+0.224)
(Details) + 3D CNN 84.323 (-8.308)

+ feature in translator 96.784 (+12.461)
+ Shuffle BN 97.008 (+0.224)

Representation quality: Table. 2 shows the results of frozen
feature settingwith backbone initialized randomly (denoted as “Ran-
dom init") or from RF-URL (denoted as “RF-URL(Frozen)"). We can
see that pre-training using RF-URL learns better representations,
which deliver a maximum improvement of 70.334% for ResNet-101
and a minimum improvement of 44.975% for ResNet-17.

Accuracy vs parameters: As shown in Figure. 4, as the increase
of neural network parameters, both fine-tuning and learning from
scratchmethods achieve better performance. However, the accuracy
of learning from scratch method increases slowly and then tends to

Table 2: Evaluate the accuracy of RF-URL for human gesture
recognition under frozen feature setting with random ini-
tialization or RF-URL.

Model Parameters Random init RF-URL (Frozen)

ResNet-17 11.18M 46.539 91.514
ResNet-35 21.85M 34.971 91.603
ResNet-50 25.55M 28.093 92.407
ResNet-101 44.54M 21.617 91.961
ResNet-152 60.19M 22.778 92.095

be stable. The fine-tuning method is more benefit from the larger
models with a rapid and continuous increasing trend.
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Figure 4: Evaluation of RF-URL for human gesture recogni-
tion under different parameters and settings.

4.3.2 Different Annotated Samples. Table. 3 shows the performance
of ResNet-17/50/152 with different annotated samples. The train-
ing dataset of Widar3.0 are randomly sampled 𝑛% of samples, e.g.,
100%labels (21335 samples), 50% (10667samples) and 10% (2133 sam-
ples). All results are evaluated on Widar3.0 validation dataset.

Table 3: Evaluate the accuracy of RF-URL with different an-
notated samples, Frozen and Fine-tune are backbone initial-
ization from RF-URL.

Model Pre-training 100%labels 50%labels 10%labels 0%labels

- 86.780 82.269 65.699 10.540
ResNet-17 Frozen 91.514 89.549 82.314 10.808

Fine-tune 91.201 84.591 63.510 -

- 89.013 84.815 64.448 11.121
ResNet-50 Frozen 92.407 90.621 83.519 10.630

Fine-tune 92.631 90.174 71.103 -

- 89.326 84.323 61.411 10.585
ResNet-152 Frozen 92.095 90.889 84.323 9.558

Fine-tune 94.060 91.157 72.086 -

Overall, as the annotated samples increase from 0% to 100%, the
performance improves but the improvement decreases. Compared
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with training from scratch, RF-URL can achieve significant perfor-
mance improvement with fewer annotated samples. For example,
the performance of RF-URL pre-training models trained on 50% of
training dataset is higher than the model trained form scratch using
100% of training dataset. Even though only using 10% of training
dataset, RF-URL pre-training model also achieves a remarkable per-
formance of 82.314%, 83.519% and 84.323%, which demonstrates
the effectiveness of RF-URL. We should notice that RF-URL pre-
training model only shows the effectiveness when combined with
a fine-tune process. Without the training dataset, i.e., 0% training
dataset, RF-URL only obtains about 10% accuracy, which behaves
like a random classifier. This is because the RF-URL only extracts
the general feature representations in an unsupervised learning
manner, which does not include the training process of classifier.
The classifier works well only when it is fine-tuned using anno-
tated dataset. Thus, we use 10% labels as the smallest annotated
samples in the following human 3D pose estimation and silhouette
generation task.

Pre-training vs Scratch: From Table. 3, we can observe that
as the number of annotated training data decreases, the accuracy
of all methods decreases, e.g. removing 90% of training dataset,
ResNet-50 drops 24.565% (Scratch), 8.888% (Frozen) and 21.528%
(Fine-tune). Compared with learning from scratch, the RF-URL pre-
training models (both Frozen and Fine-tune) maintain relatively
high accuracy, which demonstrates that RF sensing task could be
benefit from the RF-URL pre-training models, even in the condition
of limited annotated samples.

Frozen vs Fine-tune:We also observe that RF-URL with fine-
tuned backbone achieves the best performance located at the lower
left corner of the Table. 3. Thus, RF-URL with fine-tuned backbone
is benefit from a larger model associated with large-scale annotated
dataset. Nevertheless, frozen RF-URL is more stable w.r.t the change
of models and annotated samples, which indicates that frozen RF-
URL can be a general scheme with some performance loss, e.g.,
drops 1.965% for ResNet152 combined with 100% labels.

4.3.3 Different Size of Pre-training Dataset. Table. 4 reports the
performance of ResNet-50 with different size of pre-training dataset.
Overall, a smaller pre-training dataset has worse performance,
which may be due to the over-fitting effect on the smaller pre-
training dataset.

Table 4: Evaluate the accuracy of ResNet-50 under different
size of pre-training dataset.

Size 100% 80% 60% 40% 20% 0%

Frozen 92.407 89.192 82.448 76.061 65.386 28.093
Fine-tune 92.631 92.586 89.951 84.949 84.055 84.011

4.3.4 Ablation. In this subsection, we conduct ablation studies to
evaluate some important components of our RF-URL framework
for gesture recognition.

Predictor: We ablate the predictor of RF-URL by using ResNet-
17 with a total pre-training number of 100 epochs and a bigger
batchsize 512.We adopt frozen RF-URLmethod to train the classifier.
The results are shown in Table. 5, where epochs 𝑛 indicates that
the predictor participates in training during epoch 0 to 𝑛 and is

discarded afterwards. We get the highest accuracy 88.566% when
predictor is only trained 5 epochs, which improves the accuracy
of 1.027% compared to that without predictor. However, a longer
trained predictor reduces the performance about 0.402% (epoch
50) compared to that without predictor. The results indicate that
RF-URL could be benefit from a short trained predictor.

Table 5: Predictor with different training epochs.

Epochs 0 (w/o pred.) 5 10 25 50 100

Acc. 87.539 88.566 87.673 87.271 87.137 88.164

Backbone and representation extracted layer:We ablate the
dual branch of RF-URL with symmetrical backbone where both DFS
and AoA-ToF use ResNet-50, and asymmetrical backbone where
DFS and AoA-ToF use ResNet-50 and 3D-ResNet-50, respectively.
Note that AoA-ToF is a 3D tensor (AoA-ToF-time) rather than a 2D
tensor. Thus, in the asymmetrical backbone, ResNet-50 is replaced
by 3D-ResNet-50 [18]. For the symmetrical backbone, a 3D tensor
can be treated as multiple 2D tensors stacked over the channel
dimension. Hence, we adopt the same ResNet-50 with different
input channels numbers for 2D and 3D tensor. Since the translator
plays the role of unifying the representation of ResNet-50 and 3D-
ResNet-50 by transforming the feature of 2D tensor and 3D tensor
into a vector, we also take the representation extracted layer in
translator into consideration.

Table 6: Evaluate the accuracy of RF-URLwith different back-
bone and the representation extracted layer.

Models Rep. in Frozen Fine-tune

layer-0 92.407 92.631
ResNet-50 + layer-1 90.531 92.720
ResNet-50 layer-2 90.621 95.489

layer-0 84.903 84.323
ResNet-50 + layer-1 87.628 85.753
3D-ResNet-50 layer-2 94.239 96.784

As shown in Table. 6, the asymmetrical backbone (ResNet-50 +
3D-ResNet-50) with the representation in layer-2 obtains the high-
est accuracy in both frozen (94.239%) and fine-tuning (96.784%)
strategies. This result shows that RF-URL is benefit from a cus-
tomized backbone for input RF signals.

Table.6 also reports that the asymmetrical backbone significantly
decreases the accuracy in layer-0, compared with symmetrical back-
bone, which decreases 7.504% and 8.308% for frozen and fine-tune
strategy respectively. This is because it is difficult for the classifier
to handle the simply stacked 2D spatial and 3D spatio-temporal
features.

By comparing layer-2 with layer-0, there is a great gain +9.336%
(frozen) and +12.461% (fine-tune) in ResNet-50 + 3D-ResNet-50,
which supports our hypothesis that translator plays the role of
transforming information. It is also worth noting that when us-
ing a symmetrical backbone, representation in a deeper extracted
layer (frozen with layer-1 or layer-2) might has a negative impact
on performance. Therefore, a symmetrical backbone should use
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layer-0 as representation layer for frozen strategy and layer-2 as
representation layer for fine-tuning strategy.

Shuffle BN vs Sync BN: As similarly reported in [23], our em-
pirical studies show that using Sync BN has a negative impact on
performance. This is possibly because the intra-batch communi-
cation among samples leaks information. We solve this problem
by shuffling BN [23] that trains with multiple GPUs and performs
BN on the samples independently for each GPU. The results are
shown in Table. 1, from which we can see that a shuffle BN miti-
gates the leaking information of BN, and improves the performance
by 0.224% for a fine-tuned backbone.

5 3D HUMAN POSE ESTIMATION
5.1 Dataset
We collect a multi-modal dataset, RFP3D (RFPose3D), to evaluate
the RF-URL for 3D human pose estimation. As shown in Figure. 5,
RFP3D synchronously captures the millimeter wave radar signals
by dual perpendicular TI MMWCAS-RF-EVM FMCW radars with
an antenna array of 12 transmitters and 16 receivers, and the op-
tical images by a 13-view camera system. The sweep ranges of
dual FMCW radar are 77-78.23 GHz and 79-80.23 GHz respectively.
The multi-camera system senses the target from different views
to generate 3D keypoints using AlphaPose [17] associated with a
triangulation process. The hardware system and data processing
methods are similar to literature [54].

Figure 5: RF signals and RGB image synchronous record.

We collect data under 11 different conditions, including ran-
dom walk without occlusion, random walk under occlusion (styro-
foam, carton, yoga mat and dark) and random action (stand, walk,
squat and sit). The RFP3D dataset contains three parts: pre-training
dataset, training dataset and validation dataset. Pre-training dataset
includes 149506 samples. Both training dataset and validation dataset
include 25842 annnotated samples. We feed 10 frames of RF signal
into neural network to generate the 3D keypoint of last frame.

5.2 Baseline
5.2.1 Network Structure. Our pose estimation network follows
the design of RF-Extractor in RFGAN [47], which utilizes two RF
encoding networks to extract human pose information from vertical
and horizontal RF signal with a fusion module to combine the
extracted information.

Backbone network: The RF encoding network utilizes 6 layers
of 5 × 5 convolutions with strides 2 and padding 2. The channels
of 6 convolution layers are [10𝛼 , 5𝛼 , 16𝛼 , 32𝛼 , 128𝛼 , 128𝛽], where
𝛽 = 4, 𝛼 = 0.5, 1, 2, denoted as RFPose-Tiny (RFP-T), RFPose-Base
(RFP-B) and RFPose-Large (RFP-L), respectively. Each convolution
layer is followed by a BN layer and ReLU activation function.

Cross spatial attention (CSA) module is an information ag-
gregation module that makes vertical and horizontal RF signals
interact with each other. The CSA is calculated as

𝐶𝑆𝐴 (𝑖, 𝑗) =

(
𝑉 (𝑖) · 𝐻𝑇 ( 𝑗)

)
/
√
𝐷, 𝑖, 𝑗 ∈ [0,𝑤 · ℎ] ,

𝑍 [1,𝑤 ·ℎ,𝑤 ·ℎ] = Conv
(
𝐶𝑆𝐴[𝛽,𝑤 ·ℎ,𝑤 ·ℎ]

)
,

(8)

where𝑉 ,𝐻 (with a reshape operation [𝑐,𝑤, ℎ] → [𝛽, 𝑐/𝛽,𝑤 ·ℎ]) are
feature maps of vertical and horizontal RF signals that are extracted
by backbone, 𝑐, ℎ,𝑤, 𝐷 are channel, height, width of feature maps
and scale factor, and Conv is a 5 × 5 convolution layer with strides
2 and padding 2 to process CSA information.

Pose estimation network (PEN): The PEN network receives
the representations from CSA to estimate 3D keypoints, which is
composed of 2 FC layers with hidden size 256. Each FC layer is
followed by a BN layer and ReLU activation function. The output
layer size is 14 × 3 without activation function followed. The loss
function is

𝐿 =
1
𝑁

𝑁∑︁
𝑖=1
∥𝑥𝑖 − 𝑦𝑖 ∥2 +






 1𝑁 𝑁∑︁
𝑖=1
(𝑥𝑖 − 𝑦𝑖 )







2
, (9)

where 𝑁 indicates the number of human keypoints, 𝑥𝑖 and 𝑦𝑖 are
prediction and ground-truth of 3D coordinates for 𝑖-th keypoint. It
is noted that the proposed PEN model works only for single-user
case since only single-user dataset has been accessible. A multi-user
case could be supported by adding some additional modules like
region proposal network (RPN) and ROI Pooling as [53, 54].

5.2.2 Training Details. (1) Pre-training: We perform pre-training
on the pre-training dataset with a total training number of 50 epochs.
(2) Fine-tune: The PEN module combined with a frozen or fine-
tuned backbone is trained on the training dataset with 50 epochs
and evaluated on the validation dataset. The batch size is 128. The
learning rate is 0.03 for PEN and 0.003 for fine-tuning backbone.

5.3 Experimental Results
5.3.1 3D Pose Estimation Performance.
Comparison study: The performance of 3D pose estimation with
different methods are shown in Table. 7 and Figure. 6. We can see
that the RF-URL pre-training method achieves centimeter accuracy
for RFP-T (63𝑚𝑚), RFP-B (64𝑚𝑚) and RFP-L (64𝑚𝑚), while the
trained model from scratch achieves decimeter accuracy for RFP-T
(102𝑚𝑚), RFP-B (114𝑚𝑚) and RFP-L (262𝑚𝑚). These results demon-
strate that 3D pose estimation task is benefit from the RF-URL
pre-training model. From Table. 7, we can also see that with RFP-T,
an elaborated designed RF-URL can improve the performance by
39𝑚𝑚. The result shows that our RF-URL pre-training model can
generalize well to 3D pose estimation task.

The performance of RFP-T trained from scratch (102𝑚𝑚) is
higher than that of RF-Pose3D (112.7𝑚𝑚) although the network
architecture of RFP-T is simple. This is due to the fact that the
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training dataset of RFP3D is relatively small which may not be ade-
quate to tune the parameters in RF-Pose3D. A similar phenomenon
occurs for RFP-B (114𝑚𝑚) and RFP-L (262𝑚𝑚), which have more
parameters but achieve poorer performance.

Table 7: Evaluation of different models on 3D pose estima-
tion.

Pre-training Method Pose Err.(mm)

- RF-Pose3D[54] 112.7

RFP-T 102
- RFP-B 114

RFP-L 262

RFP-T 63 (-39)
RF-URL RFP-B 64 (-50)

(Fine-tune) RFP-L 64 (-198)

Baseline: RFP-T(w/o IAM) 97
+ RF-URL(frozen) 79 (-18)

RF-URL + CSA 70 (-9)
(Details) + Predictor 68 (-2)

+ Fine-tune 63 (-5)
+ Shuffle BN 62 (-1)

Figure 6: Pose estimation under different environments,
where RF-URL adopts fine-tuning strategy and GT stands for
ground-truth.

Representation quality: Table. 8 reveals that pre-training us-
ing RF-URL learns high-quality representations, which delivers
a maximum improvement of 135𝑚𝑚 for RFP-B and a minimum
improvement of 123𝑚𝑚 for RFP-L compared with random initial-
ization backbone.

Table 8: Evaluate the performance (Pose Err.(mm)) of RF-URL
for 3D pose estimation by RFP under frozen feature setting
with different backbone initialization strategy.

Model Parameters Random init RF-URL (Frozen)

RFP-T 2.66M 198 68
RFP-B 3.87M 206 71
RFP-L 7.09M 200 77

Does RFP-B/L exist over-fitting? Table. 7 shows that a larger
model gets a worse accuracy, which might exist over-fitting due to
the limited dataset. Therefore, an early terminated training experi-
ment for RFP-B is conducted to verify our conjecture with RF-URL

(Frozen), and the results are shown in Table. 9. When only training
30 epochs, RFP-B obtains the highest accuracy 69𝑚𝑚 that is almost
the same accuracy as RFP-T. This result suggests that pre-training
dataset should be as rich as possible and an early terminated train-
ing can relieve the over-fitting problem.

Table 9: Early terminated training of RFP-B

Epoch 10 20 30 40 50

Pose Err.(mm) 89 73 69 71 71

5.3.2 Different Annotated Samples. Table. 10 shows the perfor-
mance of RFP-T/B/L with different annotated samples. The training
dataset are randomly sampled 𝑛% of samples, e.g., 100%labels (25842
samples), 50% (12921samples) and 10% (2584 samples). All results
are evaluated on RFP3D validation dataset. From Table. 10, we can
see that all RF-URL pre-training methods outperform the corre-
sponding scratch methods. Even only with 10% of training data, the
RF-URL pre-trainingmethods still maintain relatively high accuracy
for RFP-T (103𝑚𝑚), RFP-B (109𝑚𝑚) and RFP-L (119𝑚𝑚). Fine-tune
RF-URL method is higher than frozen method about 4.1 mm. These
results show that the RF-URL pre-training models are scalable to
the limited data condition.

Table 10: Evaluate the performance (Pose Err.(mm)) of RFP
with different annotated samples, Frozen and Fine-tune are
backbone initialized from RF-URL.

Model Pre-training 100% labels 50% labels 10% labels

- 102 304 305
RFP-T Frozen 68 72 104

Fine-tune 63 68 103

- 114 288 305
RFP-B Frozen 71 76 111

Fine-tune 64 70 109

- 262 303 305
RFP-L Frozen 77 82 119

Fine-tune 64 71 122

5.3.3 Different Size of Pre-training Dataset. We evaluate the perfor-
mance of RFP-T under different size of pre-training dataset. Table. 11
shows that as the size of pre-training dataset reduces from 100% to
0%, the performance decreases from 63𝑚𝑚 to 86𝑚𝑚. The decreased
performance is expected since the pre-training model gradually
suffers from the over-fitting problem with the size reduction of
pre-training dataset.

Table 11: Evaluate the performance (Pose Err.(mm)) of RFP-T
under different size of pre-training dataset.

Size 100% 80% 60% 40% 20% 0%

Frozen 68 79 88 101 109 198
Fine-tune 63 67 72 78 83 86
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5.3.4 Ablation. In this subsection, we conduct ablation studies to
evaluate some important components of our RF-URL framework
for 3D pose estimation.

Predictor:We ablate the predictor of RF-URL by using RFP-T
(Frozen) with different training duration. The results are shown in
Table. 12, from which we can see that the highest accuracy 68𝑚𝑚
is obtained when predictor is only trained 5 epochs. However, a
longer trained predictor (epoch 50) reduces the performance by
4𝑚𝑚 compared that without predictor. The results indicate that
RF-URL could be benefit from a short trained predictor.

Table 12: Predictor with different training epochs.

Epochs 0 (w/o predictor) 5 15 30 50

Pose Err.(mm) 70 68 69 69 74

Information aggregation module (IAM): We ablate IAM for
RF-URL 3D pose estimation using RFP-T network. The candidate
modules include CSA, channel shuffle (CS) [33], layer-3 (feature
extracted from layer 3 of translator) and without IAM (just stack
the extracted feature maps). The results are illustrated in Table. 13.
CSA obtains the highest accuracy of 68𝑚𝑚. Compared without IAM,
CSA, CS and layer-3 improves the accuracy by 11𝑚𝑚, 4𝑚𝑚 and
8𝑚𝑚. Note that CSA reduces the error by 5𝑚𝑚 when training from
scratch, according to Table. 7 where RFP-T with CSA gets 102𝑚𝑚
accuracy and RFP-Twithout IAM gets 97𝑚𝑚 accuracy. These results
demonstrate that CSA is more suitable for RF-URL pre-training
model, but has a negative impact for training from scratch.

Table 13: Different information aggregation module.

IAM CSA CS w/o IAM layer-3

Pose Err.(mm) 68 75 79 71

Shuffle BN vs Sync BN: As reported in Section. 4.3.4, BN might
leak information that prevents RF-URL from learning good repre-
sentations. Thus, we ablate Shuffle BN and Sync BN for RF-URL in
RFP-T network. The results are illustrated in Table. 7. We can see
that a shuffle BN improves 1𝑚𝑚 for fine-tuned backbone. Although
only a little performance improvement, Sync BN also has a positive
impact on RF-URL for 3D pose estimation.

6 HUMAN SILHOUETTE GENERATION
6.1 Dataset
Using the same hardware system as in Section 5, we collect a multi-
modal dataset to evaluate the RF-URL framework for human silhou-
ette generation task. The multi-camera system captures images to
generate human silhouette ground-truth using Mask R-CNN [24].
We collect data in four different environments under 11 different
conditions, including random walk with no occlusion, random walk
under occlusion (styrofoam, carton, yoga mat and dark) and random
action (stand, walk, squat and sit) for both single-person and multi-
person scenarios. We use three environments data as pre-training
dataset (119280 samples), and one environments data excluding
occlusion parts as training dataset (16272 samples) and validate
dataset (3312 samples). We feed 12 frames of RF signals to generate
6 frames of human silhouette segmentation.

6.2 Baseline
6.2.1 Network Structure. For fair comparison with the existing
methods, we do not adopt the same backbone in Section 5. Instead,
our human silhouette generation network, named as RFSG, follows
the design of RF-Pose [52], which uses two RF encoding networks
to extract features from vertical and horizontal RF signals. Then,
the outputs of encoding networks are concatenated and fed into
generation network to generate human silhouette segmentation.

Backbone network: The RF encoding network uses 10 9× 5× 5
3D convolutions layers with 1 × 2 × 2 strides and 16𝛼 channels
followed by a BN layer and a ReLU activation function, where 𝛼 = 1
for the last layer. The channels of backbone network 𝛼 = 0.5, 1, 2
are named as RFSG-T, RFSG-B and RFSG-L.

Silhouette generation network (SGN): The generation net-
work is composed of 4 deconvolution layers, where the first three
layers are equipped with the kernel of size 3 × 6 × 6 and stride
1× 2× 2, while the last one has the kernel of size 3× 6× 6 and stride
1×4×4. The number of channels at different layers are [64, 32, 16, 1],
respectively. RF-Pose [52] uses Parametric ReLU (PReLU) activation
function without BN layer. However, RFSG uses Leaky ReLU with
slope of 0.02 and BN layer.

6.2.2 Training Details. (1) Pre-training: We perform pre-training
on pre-training dataset with a total training number of 50 epochs.
(2)Fine-tune: The SGN module combined with a frozen or fine-
tuned backbone is trained on training dataset with 50 epochs and
evaluated on validation dataset. The batch size is 64. The learning
rate of SGN and backbone is 1.0.

6.3 Experimental Results
6.3.1 Human Silhouette Generation Performance.
Comparison study: The performance of human silhouette gener-
ation with different methods are shown in Table. 14 and Figure. 7.
The RF-URL pre-training method achieves IoU of 0.610, 0.619, 0.613
for RFSG-T, RFSG-B and RFSG-L, while the trained model from
scratch only achieves IoU of 0.539, 0.556, 0.571 for RFSG-T, RFSG-B
and RFSG-L, respectively. Compared to RF-Pose [52], with a similar
number of parameters, RFSG-B improves the performance of IoU
about 0.036. The results show that our RF-URL pre-training models
can generalize well to human silhouette generation.

Representation quality: Table. 15 reveals that pre-training
using RF-URL learns high quality representations, which delivers
an IoU improvement of 0.327, 0.317, 0.288 for RFSG-T, RFSG-B
and RFSG-L, respectively, compared with random initialization
backbone.

6.3.2 Different Annotated Samples. Table. 16 shows the perfor-
mance of RFSG-T/B/L with different annotated samples. The train-
ing dataset are randomly sampled 𝑛% of samples, e.g., 100%labels
(16272 samples), 50% (8136 samples) and 10% (1627 samples). All
results are evaluated on the validation dataset. From Table. 16, we
can see that all RF-URL pre-training methods outperform the corre-
sponding scratch methods. Even only with 10% of training data, the
RF-URL pre-training methods still maintain relatively high IoU for
RFSG-T (0.581), RFSG-B (0.586) and RFSG-L (0.565). However, the
performance without pre-training decreases rapidly, i.e., decrease
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Table 14: The performance of different models on the human
silhouette generation.

Pre-training Method IoU

- RF-Pose[52] 0.583

RFSG-T 0.539
- RFSG-B 0.556

RFSG-L 0.571

RFSG-T 0.610 (+0.071)
RF-URL RFSG-B 0.619 (+0.063)

(Fine-tune) RFSG-L 0.613 (+0.042)

RFSG-B (baseline) 0.556
+ RF-URL(frozen) 0.557 (+0.001)

RF-URL + Fine-tune 0.611 (+0.054)
(Details) + Predictor 0.619 (+0.008)

+ Shuffle BN 0.614 (-0.005)

RF-URL

Scratch

GT

None

Dark

Figure 7: Human silhouette generation under different en-
vironments, where RF-URL adopts fine-tuning strategy and
GT stands for ground-truth.

Table 15: Evaluate the performance (IoU) of RF-URL for hu-
man silhouette generation under frozen feature setting with
different backbone initialization strategy.

Model Parameters Random init RF-URL (Frozen)

RFSG-T 0.39M 0.225 0.552
RFSG-B 0.76M 0.239 0.556
RFSG-L 2.09M 0.248 0.536

IoU of 0.082, 0.075 and 0.069. These results show that a small anno-
tated dataset could be benefit from RF-URL pre-training method.

6.3.3 Different Size of Pre-training Dataset. Table. 17 shows the
performance of RFSG-B with different size of pre-training dataset.
It illustrates that RFSG-B works well in a larger pre-training dataset
for both forzen and fine-tune strategy.

Table 16: Evaluate the performance (IoU) of RFSGwith differ-
ent annotated samples, Frozen and Fine-tune are backbone
initialization from RF-URL.

Model Pre-training 100% labels 50% labels 10% labels

- 0.539 0.539 0.457
RFSG-T Frozen 0.552 0.553 0.532

Fine-tune 0.610 0.611 0.581

- 0.556 0.550 0.481
RFSG-B Frozen 0.557 0.552 0.537

Fine-tune 0.619 0.614 0.586

- 0.571 0.591 0.502
RFSG-L Frozen 0.536 0.529 0.506

Fine-tune 0.613 0.612 0.565

Table 17: Evaluate the performance (IoU) of RFSG-B under
different size of pre-training dataset.

Size 100% 80% 60% 40% 20% 0%

Frozen 0.557 0.531 0.529 0.489 0.426 0.239
Fine-tune 0.619 0.602 0.585 0.573 0.562 0.556

6.3.4 Ablation. In this subsection, we conduct ablation studies to
evaluate some important components of our RF-URL framework
for human silhouette generation.

Predictor: We ablate the predictor of RF-URL by using RFSG-B
(Fine-tune) with different training duration. The results are shown
in Table.18, from which we can see that the highest IoU 0.619
is obtained when predictor is only trained 5 epochs. The results
indicate that RF-URL could be benefit from a short trained predictor.

Table 18: Predictor with different training epochs.

Epochs 0 (w/o predictor) 5 15 30 50

IoU 0.611 0.619 0.615 0.617 0.615

0 10 20 30 40 50
Epoch

2

4

6

8

10

Lo
ss

Shuffle BN
Sync BN

Figure 8: Training RF-URL with Shuffle BN or Sync BN.

Shuffle BN vs Sync BN: We ablate Shuffle BN and Sync BN
for RF-URL based on RFSG-B. As shown in Table. 14, shuffle BN
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decreases the performance of RF-URL pre-training model, which is
different from those in Section 4.3.4 and 5.3.4. This may be reason
that 3D full convolution network RFSG is hard to train. As shown in
Figure. 8, comparedwith the negative impact of leaking information,
the poor convergence brought by Shuffle BN is more harmful.

7 RELATEDWORK
RF sensing: Learning-based RF sensing has recently gained atten-
tions in health care and smart homes, including human gesture
recognition [26, 31, 41, 42, 51], activity recognition [11, 15, 29, 43, 45,
46], human pose estimation [30, 52–54], person re-identification [16,
32], fall detection [39], vital sign monitoring [12, 13, 48–50, 55], and
so on. These existing works mainly rely on supervised learning
which requires large-scale annotated RF datasets, while the pro-
posed framework exploits unannotated data for model training.

Masking and predicting model: The pre-training method has
achieved unprecedented success in NLP community, e.g. GPT [4,
35, 36] and BERT [14]. These methods mask a portion of the in-
put sequence and try to predict the missing content, which have
been shown with excellent scalability and generalization. Although
language and RF signals have similar sequential structure, rele-
vant information in radio signals are typically very sparse while
language signals are highly information-dense, causing a big gap
between RF sensing and NLP community.

Contrastive learning: Recently, contrastive learning has be-
came popular for learning effective representations. The learned
representations make downstream tasks solved easier, and the
performance even surpasses the supervised methods [8, 23]. The
core idea of contrastive learning is to attract the positive sample
pairs and repulse the negative sample pairs. The commonly used
contrastive learning frameworks include memory bank method
(e.g., InsDis [44], MoCo [8, 23] and contrastive multiview cod-
ing (CMC) [38]), big batchsize (e.g., SimCLR [7]), clustering (e.g.,
SwAV [5]), transformer (e.g., MoCov3 [10] and DINO [6]) and
negative-pairs-free methods (e.g., BYOL [20] and SimSiam [9]).
However, these methods strongly depend on data augmentation [7,
9, 20], which always tends to learn shortcut rather than meaningful
information for RF signals [32].

Contrastive multiview coding (CMC) [38]: Our RF-URL is
a form of CMC, but different from the classical CMC in follow-
ing ways. Firstly, existing investigations have demonstrated that
traditional data augmentation methods are inefficient for RF data.
To resolve this problem, we have noted that different signal pro-
cessing methods could naturally generate different representations
of the same signal. Inspired by this phenomenon, RF-URL utilizes
RF signal processing methods to construct positive and negative
pairs rather than data augmentation. Secondly, the inputs of CMC
are symmetric but RF-URL adopts an asymmetric signal represen-
tations as input(e.g., DFS and AoA-ToF). The asymmetric signal
representations make the CMC-based method not converge, while
RF-URL adopts a translator to solve this problem. In addition, RF-
URL adopts a predictor with stop-grad operation to improve the
quality of learned representations through a short-term training.

Synthetic data: Synthetic dataset can be generated by a RF
ray-tracing simulator to solve the data-hungry problem [21, 37]. Al-
though synthetic RF signals share some similar properties with real

RF data, the simulators may not capture all physical RF phenomena
such as multi-path, reflections, diffraction and polarization effects
causing a gap between synthetic and real RF signals. Nevertheless,
these techniques can also be integrated with the proposed frame-
work to generate more data for general semantic feature extraction.

8 DISCUSSIONS
Why contrastive learning is a reasonable choice? Different
from visual images or natural languages, annotating RF signals is
muchmore costly since they are non-intuitive and non-interpretable.
Contrastive learning is an unsupervised learning method that could
learn a general semantic representation from unannotated dataset.
The main challenge of contrastive learning lies in the design of the
principle to construct positive and negative pairs. To this end, we
have noted that different signal processing methods could naturally
generate different representations of the same signal, which could
be utilized to construct positive/negative pairs. Since various sig-
nal processing methods have been developed for RF sensing, we
could utilize contrastive learning to seamlessly integrate these well-
developed signal processing techniques. In this sense, contrastive
learning is a good choice.

Signal representation: In this paper, the backbone of RF-URL
is based on convolutional neural networks (CNNs), which could
extract features of the signals based on their spatial distributions.
Although linear transformations are utilized to generate different
signal representations which wouldn’t change the information of
signal itself, they could rearrange the spatial characteristics of the
input signal to yield different spatial information. Thus, different
linear transformations of the same RF signal could expose different
spatial features to CNNs, which is helpful for training.

The role of predictor and InfoNCE: The functionality of
InfoNCE is to attract positive pairs and repulse negative pairs, where
both the positive and negative pairs are composed by the features
from memory bank and the output of neural network. However,
since the memory bank is randomly initialized, at the early stages
of the training processes, random noise may be sampled to form
positive pairs with the network output, leading to fluctuations of
training. On the other hand, predictor directly shortens the distance
between the output of multi-branch neural network, which can
weaken the negative impact of noise in memory bank and smooth
the training processes. Thus, in this paper, we enable the predictor
in the first 5 epochs of the training processes, which lead to slightly
performance gain. Note that the further training of predictor tends
to prevent the backbone from aligning the features of the memory
bank, which may lead to performance degradation.

9 CONCLUSION
This paper presented a novel URL framework, RF-URL, for RF-based
sensing through contrastive learning. The positive and negative
pairs were constructed with different signal processing technolo-
gies, which achieved effective contrastive learning in an unsuper-
vised manner by minding the gap between signal processing and
neural network. All experimental results strongly demonstrated
that RF-URL took an important step towards deploying learning-
based solutions for large-scale RF-based sensing applications.
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