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Abstract A directed triplewhist tournament on p players over Z p is said to have the
three-person property if no two games in the tournament have three common players. We
briefly denote such a design as a 3PDTWh(p). In this paper, we investigate the existence of a
Z-cyclic 3PDTWh(p) for any prime p ≡ 1 (mod 4) and show that such a design exists when-
ever p ≡ 5, 9, 13 (mod 16) and p ≥ 29. This result is obtained by applying Weil’s theorem.
In addition, we also prove that a Z-cyclic 3PDTWh(p) exists whenever p ≡ 1 (mod 16) and
p < 10,000 except possibly for p = 257,769.
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AMS Classification 05B05

1 Introduction

A whist tournament Wh(v) for v = 4n(or 4n + 1) is a schedule of games (a, b, c, d) where
the unordered pairs {a, c}, {b, d} are called partners, the pairs {a, b}, {c, d}, {a, d}, {b, c} are
called opponents, such that

(1) the games are arranged into 4n − 1(or 4n + 1) rounds, each of n games;
(2) each player plays in exactly one game in each round(or all rounds but one);
(3) each player partners every other player exactly once;
(4) each player opposes every other player exactly twice.
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We may think of (a, b, c, d) as the cyclic order of the four players sitting round a table.
We refer to the pairs {a, b} and {c, d} as pairs of opponents of the first kind, and the pairs
{a, d} and {b, c} as pairs of opponents of the second kind. A triplewhist tournament TWh(v)
is a Wh(v) in which each player is an opponent of the first (resp., second) kind exactly
once with every other player. The triplewhist tournament problem was first introduced by
Moore [35] in 1896. For a long time there was no progress until Baker [8] proved in 1975
that a TWh(v) exists for v = 4, 8, 16, 24 and for all large v, v ≡ 1 (mod 4) and v ≡ 0,
4, 12 (mod 16). In 1997, much progress was made by Lu and Zhu in [34]. They proved that
the necessary condition for the existence of a TWh(v), namely v ≡ 0 or 1 (mod 4), is also
sufficient with 2 definite exceptions, namely v = 5, 9, as well as 15 possible exceptions in
the range 12 ≤ v ≤ 133. Subsequent improvements were made by Ge and Zhu in [28], Ge
and Lam [24], and finally by Abel and Ge [3]. We summarize the known results as follows.

Theorem 1.1 ([3]) Necessary conditions for existence of a TWh(v), are v ≡ 0, 1 (mod 4)
and v ≥ 4. These conditions are also sufficient except for v = 5, 9, 12, 13 and possibly for
v = 17.

In the games (a, b, c, d) of a Wh(v), we may also refer to b as the left-hand opponent of
a and as the right-hand opponent of c, and similar definitions apply to each of a, b, c, d . A
directedwhist tournament DWh(v) is a Wh(v) in which each player is a left (resp., right) hand
opponent of every other player exactly once. A basic necessary condition for the existence
of a DWh(v) is v ≡ 0, 1 (mod 4). It is fairly well known [10] that a DWh(v) exists for all
v ≥ 5 whenever v ≡ 1 (mod 4). On the other hand, the results for the existence of a DWh(v)
whenever v ≡ 0 (mod 4) are still not conclusive. It is known [36,37] that a DWh(v) exists
for all v ≥ 4 whenever v ≡ 0 (mod 4), except for v = 4, 8, 12 and with at most 27 possible
exceptions of which the largest is 188. More specifically, we have the following theorem.

Theorem 1.2 ([10,36,37]) Necessary conditions for existence of a DW h(v) are v ≡ 0, 1
(mod 4) and v ≥ 4. These conditions are also sufficient except for v = 4, 8, 12 and possibly
for v ∈ {16, 20, 24, 32, 36, 44, 48, 52, 56, 64, 68, 76, 84, 88, 92, 96, 104, 108, 116, 124,
132, 148, 152, 156, 172, 184, 188}.

Whist tournaments which are simultaneously both triplewhist and directedwhist are called
directed triplewhist tournaments and denoted briefly by DTWh(v). These were first investi-
gated by Anderson and Finizio in [5,6].

A whist tournament is said to have three person-property, denoted by 3PWh(v) as in
[19,26,33], if any two games do not have three common players. It was Hartman who first
discussed this property in [30]. If we regard games in a 3PWh(v) as blocks, we obtain a
super-simple (v, 4, 3)-BIBD (we call it a sub-design of the 3PWh(v)). This kind of design
was introduced and studied by Gronau and Mullin [29] and also studied by Chen [15,16].
Such designs with resolvable property were investigated by Ge and Lam [25] and Zhang and
Ge [38].

For the existence of a DWh(v) with the three person property, briefly denoted by
3PDWh(v), Finizio [19] was able to obtain several infinite classes and some examples where
v ≡ 1 (mod 4). Subsequently, for this case, a conclusive result was given by Bennett and
Ge [9] and we now have the following theorem.

Theorem 1.3 ([9,19]) There exists a 3P DW h(v) for all v > 5, where v ≡ 1 (mod 4).

For the existence of a TWh(v) with the three person property, briefly denoted by
3PTWh(v), Ge [23] recently gave an almost complete solution. Concretely, we have the
following theorem.
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Theorem 1.4 ([23]) The necessary conditions for existence of a 3PT W h(v), namely, v ≡
0, 1 (mod 4) and v ≥ 8, are also sufficient except for v = 9, 12, 13 and possibly for v = 17.

For the existence of a 3PWh(v)which is simultaneously both triplewhist and directedwh-
ist, briefly denoted by 3PDTWh(v), Anderson and Finizio [5] gave an asymptotic solution
for the case of v ≡ 1 (mod 4). Recently, Abel et al. [1] gave a near solution as follows.

Theorem 1.5 ([1]) There exists a 3P DT W h(v) for all v ≥ 25, where v ≡ 1 (mod 4), with
the possible exceptions of v ∈ {117, 129, 141, 145, 153, 165, 177, 185, 189, 209, 213}.

A whist tournament is said to be Z-cyclic if the players are elements in Zm ∪ A, where
m = v, A = ∅ when v ≡ 1 (mod 4) and m = v − 1, A = {∞} when v ≡ 0 (mod 4). It is
further required that the round j + 1 is obtained by adding +1 (mod m) to every element in
round j . When ∞ is present then ∞ + 1 = ∞. For the existence of Z-cyclic whist tourna-
ments, much less is known despite of the efforts of many authors, such as Abel et al. [1,2],
Anderson et al. [5–7], Buratti [12], Feng and Chang [18], Finizio [20,21], Ge and Ling [27],
Ge and Zhu [28], and Liaw [31]. The following results are known.

Theorem 1.6 ([1,5,6]) A Z-cyclic DTWh(p) exists for all primes p ≡ 5 (mod 8), p ≥ 29,
or p ≡ 1 (mod 8), 41 ≤ p < 10,000, p �= 257, 449, 641, 769, 1153, 1409, 7681.

Theorem 1.7 ([18]) A Z-cyclic 3PTWh(p) exists for all primes p ≡ 1 (mod 4) with the only
exceptions of p = 5, 13, 17.

Lemma 1.8 ([1]) There exists a Z-cyclic 3P DT W h(p) for p prime, p ≡ 1 (mod 4) and
29 ≤ p ≤ 241.

In this paper, we shall investigate the problem of existence of Z-cyclic 3PDTWh(v)s. The
main focus of our attention will be the case where v ≡ 1 (mod 4) is a prime p. We show that
a Z-cyclic 3PDTWh(p) exists whenever p ≡ 5, 9, 13 (mod 16) and p ≥ 29. This result is
obtained by applying Weil’s theorem. In addition, we also prove that a Z-cyclic 3PDTWh(p)
exists whenever p ≡ 1 (mod 16) and p < 10,000 except possibly for p = 257,769. For
general information on whist tournaments see the survey paper of Anderson [4]. We use [11]
as our standard reference on design theory.

2 Basic constructions

In this section, we will establish the criteria for the existence of a Z-cyclic 3PDTWh(p).
Given a prime p ≡ 1 (mod n) and a primitive element w ∈ Z p , we use Cn

0 to denote the
multiplicative subgroup {win : 0 ≤ i < (p − 1)/n} of the n-th powers modulo p, and Cn

j

to denote the coset of Cn
0 in Z∗

p , i.e., Cn
j = w j · Cn

0 . Our constructions are based on the
following lemma.

Lemma 2.1 Let p ≡ 1 (mod 4) be a prime. Suppose that n is an integer such that 4n|(p−1)
and −1 ∈ C4n

2n . Suppose also that {(ai , bi , ci , di ) : 0 ≤ i ≤ n − 1} is a set of quadruples of
elements of Z∗

p satisfying the following conditions:

(1) each of the sets
⋃n−1

i=0 {ai , bi , ci , di }, ⋃n−1
i=0 {bi − ai , ci − bi , di − ci , ai − di } is a

representative system of the coset classes {C4n
0 ,C4n

1 , . . . ,C4n
4n−1};
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(2) each of the sets
⋃n−1

i=0 {ai − bi , ci − di }, ⋃n−1
i=0 {ai − ci , bi − di }, ⋃n−1

i=0 {ai − di , bi − ci }
is a representative system of the coset classes {C2n

0 ,C2n
1 , . . . ,C2n

2n−1}.

Then R = {(ai y, bi y, ci y, di y) : 0 ≤ i ≤ n − 1, y ∈ C4n
0 } forms an initial round of a

Z-cyclic DTWh(p).

Proof It is easy to check that the following identities are satisfied:

⋃n−1

i=0
{ai , bi , ci , di } · C4n

0 = Z p \ {0};
⋃n−1

i=0
{±(ai − bi ),±(ci − di )} · C4n

0 = Z p \ {0};
⋃n−1

i=0
{±(ai − ci ),±(bi − di )} · C4n

0 = Z p \ {0};
⋃n−1

i=0
{±(ai − di ),±(bi − ci )} · C4n

0 = Z p \ {0};
⋃n−1

i=0
{bi − ai , ci − bi , di − ci , ai − di } · C4n

0 = Z p \ {0}.

The assertion then follows. �

The basic idea is to add some additional conditions to make the above initial round in
Lemma 2.1 satisfy the three-person property. The following notations are useful for checking
this, which can be found in [18,22,33].

Let G be an abelian group, and a, b, c be pairwise distinct elements of G. Let O(a, b, c) =
{{a + g, b + g, c + g} : g ∈ G}, which is called the orbit of {a, b, c} under the action of G.
The notation

G(a, b, c) = {{b − a, c − a}, {a − b, c − b}, {a − c, b − c}}
is called a generating set for O(a, b, c), and clearly G(a, b, c) is invariant under the action
of G. That is, G(a, b, c) = G(a + g, b + g, c + g), for any g ∈ G. If the order of G is a
prime p, p �= 3, then the length of the orbit O(a, b, c) equals p. It is easy to see that two
sets G(a, b, c) and G(a′, b′, c′) are equal if and only if their intersection is not empty.

Lemma 2.2 ([18]) O(a, b, c) ∩ O(a′, b′, c′) = ∅ if and only if G(a, b, c) �= G(a′, b′, c′).

By Lemma 2.2, we need to check that all the generating sets in the initial round are pairwise
distinct.

Lemma 2.3 ([18]) Let p ≡ 1 (mod 4) be a prime. Suppose that n is an integer such that
4n|(p−1) and −1 ∈ C4n

2n . Let a, b, c ∈ Z p be pairwise distinct. If a2+b2+c2 �= ab+bc+ac,
then G(a, b, c) �= G(ay, by, cy) for any y ∈ C4n

0 \ {1}.

Let e(g) = i if g ∈ C4n
i . Define E(a, b, c) = {{e(b − a), e(c − a)}, {e(a − b), e(c − b)},

{e(a − c), e(b − c)}}. We have the following lemma.

Lemma 2.4 ([18]) Let p ≡ 1 (mod 4) be a prime. Suppose that n is an integer such that
4n|(p − 1). Suppose also that {a, b, c} and {e, f, g} are two distinct triples. If E(a, b, c) �=
E(e, f, g), then G(ay, by, cy) �= G(ey′, f y′, gy′) for any y, y′ ∈ C4n

0 .
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Particularly, if {a, b, c}∪{e, f, g} = {a, b, c, d}, the requirement E(a, b, c) �= E(e, f, g)
in Lemma 2.4 can be relaxed. We say the element a in {a, b, c, d} satisfies property P if

(b − a)2 �≡ (c − a)(d − a) (mod p),

(c − a)2 �≡ (b − a)(d − a) (mod p),

(d − a)2 �≡ (b − a)(c − a) (mod p).

If each element of the quadruple {a, b, c, d} satisfies property P , we say that the quadruple
{a, b, c, d} has property P .

Lemma 2.5 Let p ≡ 1 (mod 4) be a prime. Suppose that n is an integer such that 4n|(p−1)
and −1 ∈ C4n

2n . Suppose also that (a, b, c, d) is a game from the initial round in Lemma 2.1.
If {a, b, c, d} has property P , then the four generating sets G(ay, by, cy), G(ay′, by′, dy′),
G(ay′′, cy′′, dy′′) and G(by′′′, cy′′′, dy′′′) are pairwise distinct for any y, y′, y′′, y′′′ ∈ C4n

0 .

Proof We only prove the case for G(ay, by, cy) �= G(ay′, by′, dy′) for any y, y′ ∈ C4n
0 .

For the other cases, the proof can be similarly done. Here, G(ay, by, cy) = {{(b − a)y,
(c − a)y}, {(a − b)y, (c − b)y}, {(a − c)y, (b − c)y}}, and G(ay′, by′, dy′) = {{(b −
a)y′, (d − a)y′}, {(a − b)y′, (d − b)y′}, {(a − d)y′, (b − d)y′}}. The proof is separated into
the following three parts:

Suppose {(b−a)y, (c−a)y} = {(b−a)y′, (d−a)y′}. If y �= y′, then (b−a)y �= (b−a)y′.
Otherwise, (c −a)y �= (d −a)y′ since c −a �= d −a. Hence, we have (b −a)y = (d −a)y′
and (c − a)y = (b − a)y′. Combining these two identities, we obtain (b − a)2 yy′ =
(c −a)(d −a)yy′, i.e., (b −a)2 = (c −a)(d −a), which contradicts the fact that {a, b, c, d}
has the property P .

Suppose {(b − a)y, (c − a)y} = {(a − b)y′, (d − b)y′}. Since −1 ∈ C4n
2n , we have

(b − a)y �= (a − b)y′. Then (b − a)y = (d − b)y′ and (c − a)y = (a − b)y′. Combining
these two identities, we obtain (c − b)y = (a − d)y′, which contradicts Condition (1) in
Lemma 2.1.

Suppose {(b−a)y, (c−a)y} = {(a−d)y′, (b−d)y′}. By Condition (1) in Lemma 2.1, we
have (b−a)y �= (a −d)y′. Then (b−a)y = (b−d)y′ and (c−a)y = (a −d)y′. Combining
these two identities, we obtain (b−c)y = (b−a)y′. Hence, (a−b)2 yy′ = (c−b)(d −b)yy′,
i.e., (a − b)2 = (c − b)(d − b), which contradicts the fact that {a, b, c, d} has the property
P . �

Combining Lemmas 2.2–2.5, we have the following.

Lemma 2.6 Let p ≡ 1 (mod 4) be a prime. Suppose that n is an integer such that 4n|(p−1)
and −1 ∈ C4n

2n . Suppose also that {(ai , bi , ci , di ) : 0 ≤ i ≤ n − 1} is a set of quadruples
over Z∗

p satisfying Conditions (1)–(2) in Lemma 2.1. Furthermore, suppose we have the
following:

(3) each triple {a, b, c} ⊂ {ai , bi , ci , di }, 0 ≤ i ≤ n−1 satisfies the condition a2+b2+c2 �=
ab + bc + ac;

(4) each quadruple {ai , bi , ci , di }, 0 ≤ i ≤ n − 1 has property P;
(5) if n ≥ 2, then any two distinct triples {a, b, c} ⊂ {ai , bi , ci , di },

{e, f, g} ⊂ {ai ′ , bi ′ , ci ′ , di ′ }, satisfy the condition E(a, b, c) �= E(e, f, g), where
0 ≤ i < i ′ ≤ n − 1.

Then R = {(ai y, bi y, ci y, di y) : 0 ≤ i ≤ n − 1, y ∈ C4n
0 } forms an initial round of a

Z-cyclic 3PDTWh(p).
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To construct the initial round of a Z-cyclic 3PDTWh(p) with prime p ≡ 1 (mod 4),
we need to find a set of quadruples satisfying Conditions (1)–(5) in Lemmas 2.1 and 2.6
simultaneously. These conditions serve as the basic criteria for the existence of a Z-cyclic
3PDTWh(p) in our paper. In Sects. 3, 4, 5, we consider the constructions of three classes of
Z-cyclic 3PDTWh(p)s for p ≡ 5 (mod 8), p ≡ 9 (mod 16) and p ≡ 1 (mod 16) respectively.
We will employ Weil’s theorem as our main tool, which has been used extensively in the
construction of other combinatorial objects, such as difference families [17], TWhs [12] and
OOCs [14].

3 Existence of Z-cyclic 3PDTWh( p)s for prime p ≡ 5 (mod 8)

In this section, we investigate the existence of a Z-cyclic 3PDTWh(p) for any prime p ≡
5 (mod 8).

Lemma 3.1 Let p ≡ 5 (mod 8) be a prime. If there exists a quadruple (a, b, c, d) satisfying
the following properties:

(1) {a, b, c, d} is a representative system of the coset classes {C4
0 ,C4

1 ,C4
2 ,C4

3 },
(2) b − a ∈ C4

0 , c − b ∈ C4
1 , d − c ∈ C4

3 , a − d ∈ C4
2 , a − c ∈ C4

0 , b − d ∈ C4
3 ,

(3) (c − a)2 �≡ (b − a)(d − a) (mod p), (a − d)2 �≡ (b − d)(c − d) (mod p),

then R = {(ay, by, cy, dy) : y ∈ C4
0 } forms an initial round of a Z-cyclic 3PDTWh(p).

Proof Since p ≡ 5 (mod 8), we have −1 ∈ C4
2 . According to the hypothesis, it is easy to

see that the quadruple (a, b, c, d) satisfies Conditions (1)–(2) of Lemma 2.1 with n = 1, and
thus R = {(ay, by, cy, dy) : y ∈ C4

0 } forms an initial round of a Z-cyclic DTWh(p). Now,
we need only to check this Z-cyclic DTWh(p) satisfies the three-person property, namely,
(a, b, c, d) satisfies Conditions (3)–(4) in Lemma 2.6.

For Condition (3) in Lemma 2.6, note that the expression a2 + b2 + c2 = ab + bc + ac is
equivalent to (a − c)2 = (a − b)(b − c). Since a − c ∈ C4

0 , a − b ∈ C4
2 and b − c ∈ C4

3 , we
have (a − c)2 �= (a −b)(b − c), i.e., a2 +b2 + c2 �= ab +bc +ac. Hence, the triple {a, b, c}
in {a, b, c, d} satisfies the requirement of Condition (3). The other triples in {a, b, c, d} can
be checked similarly.

For Condition (4) in Lemma 2.6, we need to check that each element in {a, b, c, d} sat-
isfies property P , that is, besides (c − a)2 �≡ (b − a)(d − a) (mod p) and (a − d)2 �≡
(b − d)(c − d) (mod p), ten other modular inequalities should also be satisfied. Here, we
need only to do the routine check, which can be done similar to that for Condition (3). �

Lemma 3.1 enables us to use Weil’s theorem to solve the existence of Z-cyclic
3PDTWh(p)s for large p ≡ 5 (mod 8). Here is Weil’s theorem on multiplicative character
sums, which can be found in [32].

Theorem 3.2 ([32]) Let ψ be a multiplicative character of G F(q) of order m > 1 and let
f ∈ G F(q)[x] be a monic polynomial of positive degree that is not an m-th power of a
polynomial. Let d be the number of distinct roots of f in its splitting field over G F(q), then
for every a ∈ G F(q) we have

∣
∣
∣
∣
∣
∣

∑

c∈G F(q)

ψ(a f (c))

∣
∣
∣
∣
∣
∣
≤ (d − 1)

√
q.
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Table 1 (p, c, d)

(269, 65, 259), (277, 268, 242), (293, 68, 173), (317, 95, 50), (349, 4, 246), (373, 4, 47), (389, 45, 273),

(397, 43, 274), (421, 45, 280), (461, 54, 398), (509, 5, 15), (541, 235, 67), (557, 25, 128), (613, 4, 132),

(653, 64, 37), (661, 4, 39), (677, 164, 366), (701, 5, 432), (709, 34, 56), (733, 41, 23), (757, 156, 31),

(773, 61, 80), (797, 25, 116), (821, 5, 74), (829, 65, 304), (853, 4, 299), (877, 4, 542), (941, 70, 444),

(997, 4, 188).

As an application of Weil’s theorem, we quote a result which can be found in [13,14].

Theorem 3.3 ([14]) Let p ≡ 1 (mod q) be a prime satisfying the inequality

p −
[

s−2∑

i=0

(s
i

)
(s − i − 1)(q − 1)s−i

]
√

p − sqs−1 > 0.

Then, for any given s-tuple ( j1, j2, . . . , js) ∈ {0, 1, . . . , q − 1}s and any given s-tuple
(c1, c2, . . . , cs) of pairwise distinct elements of Z p, there exists an element x ∈ Z p such that
x + ci ∈ Cq

ji
for each i .

Lemma 3.4 Let p ≡ 5 (mod 8) be a prime. Then there exists an ordered quadruple
(a, b, c, d) ∈ Z4

p for each p > 241 satisfying Conditions (1)–(3) of Lemma 3.1.

Proof Since p ≡ 5 (mod 8), 2 is a non-square element. Let 2 ∈ C4
i0

, then i0 = 1 or 3.

Without loss of generality, let a = 1, b = 2, then b − a = 1 ∈ C4
0 . If Conditions (1)–(2)

of Lemma 3.1 are satisfied, then c(c − 2) �≡ d − 2 (mod p) and (2 − d)c �≡ 1 (mod p),
i.e., (c − a)2 �≡ (b − a)(d − a) (mod p), (a − d)2 �≡ (b − d)(c − d) (mod p), Condition
(3) is satisfied. Hence, we need only to prove that there exist two elements c, d such that
c ∈ C4

2 , c − 1 ∈ C4
2 , c − 2 ∈ C4

1 , d ∈ C4
i0+2, d − 1 ∈ C4

0 , d − 2 ∈ C4
1 and d − c ∈ C4

3 .
Since 0, 1, 2 are distinct elements in Z p , we can apply Theorem 3.3 with q = 4, s = 3.

Then, for any given prime p ≡ 5 (mod 8) and p ≥ 6661, there always exists an element c
in Z p satisfying c ∈ C4

2 , c − 1 ∈ C4
2 and c − 2 ∈ C4

1 . Obviously, c �= 0, 1, 2. Once the
element c is determined, we can apply Theorem 3.3 again with p ≥ 263821, q = 4, s = 4
to obtain the required element d .

For the remaining values of p ≡ 5 (mod 8), 241 < p ≤ 263821, a computer search shows
that the desired c’s and d’s all exist. To save space we only list the small primes up to 997 in
Table 1. For the other values of p with 997 < p < 263821, the interested reader may get a
copy from the authors. �

Lemma 3.5 There exists a Z-cyclic 3PDTWh(p) for any prime p ≡ 5 (mod 8).

Proof Combining Lemmas 1.8, 3.1 and 3.4, the conclusion then follows. �

4 Existence of Z-cyclic 3PDTWh( p)s for prime p ≡ 9 (mod 16)

In this section, we investigate the existence of a Z-cyclic 3PDTWh(p) for any prime p ≡
9 (mod 16).
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Lemma 4.1 Let p ≡ 9 (mod 16) be a prime. If there exist two quadruples (a, b, c, d) and
(e, f, g, h) satisfying the following properties:

(1) {a, b, c, d, e, f, g, h} is a representative system of the coset classes {C8
0 ,C8

1 , . . . ,C8
7 };

(2) b −a ∈ C8
0 , c −b ∈ C8

4 , d − c ∈ C8
1 , a −d ∈ C8

5 , a − c ∈ C8
0 , b −d ∈ C8

2 , f − e ∈
C8

2 , g − f ∈ C8
6 , h − g ∈ C8

3 , e − h ∈ C8
7 , e − g ∈ C8

3 , f − h ∈ C8
1 ,

then R = {(ay, by, cy, dy) : y ∈ C8
0 } ∪ {(ey, f y, gy, hy) : y ∈ C8

0 } forms an initial round
of a Z-cyclic 3PDTWh(p).

Proof Since p≡9 (mod 16), we have −1 ∈ C8
4 . According to the hypothesis, it is easy to see

that the quadruples (a, b, c, d) and (e, f, g, h) satisfy Conditions (1)–(2) of Lemma 2.1 with
n = 2, and thus R = {(ay, by, cy, dy) : y ∈ C8

0 } ∪ {(ey, f y, gy, hy) : y ∈ C8
0 } forms an

initial round of a Z-cyclic DTWh(p). Now, we need only to check this Z-cyclic DTWh(p) sat-
isfies the three-person property, that is (a, b, c, d) and (e, f, g, h) satisfy Conditions (3)–(5)
in Lemma 2.6.

For Conditions (3)–(4), the proof is similar to that of Lemma 3.1.
For Condition (5), the eight sets E(a, b, c), E(a, b, d), E(a, c, d), E(b, c, d) and

E(e, f, g), E(e, f, h), E(e, g, h), E( f, g, h)of the two quadruples (a, b, c, d) and (e, f, g, h)
are listed in the following two columns:

{{0, 4}, {4, 4}, {0, 0}}, {{2, 7}, {6, 6}, {3, 2}},
{{0, 1}, {4, 6}, {5, 2}}, {{2, 3}, {6, 5}, {7, 1}},
{{4, 1}, {0, 1}, {5, 5}}, {{7, 3}, {3, 3}, {7, 7}},
{{4, 6}, {0, 1}, {2, 5}}, {{6, 5}, {2, 3}, {1, 7}}.

It is easy to see that there do not exist two identical sets from the two different columns. �

Lemma 4.2 Let p ≡ 9 (mod 16) be a prime. Suppose there are two different elements a, x
in G F(p)∗ satisfying the following conditions:

(1) a ∈ C8
2 , a − 1 ∈ C8

4 and a + 1 ∈ C8
4 ,

(2) x ∈ C8
s , x − 1 ∈ C8

i , x + 1 ∈ C8
l , x − a ∈ C8

j and x + a ∈ C8
k , where s ∈ {1, 3, 5, 7},

i − l ≡ 4 (mod 8), j − k ≡ 4 (mod 8) and i − j ≡ 1 (mod 2),
(3) each triple {a, b, c} in {1, x, a,−x} or {ax, a2,−ax,−a} satisfies the condition a2 +

b2 + c2 �= ab + bc + ac,
(4) both of the quadruples {1, x, a,−x} and {ax, a2,−ax,−a} have property P .

Then R = {(y, xy, ay,−xy) : y ∈ C8
0 } ∪ {(axy, a2 y,−axy,−ay) : y ∈ C8

0 } forms an
initial round of a Z-cyclic 3PDTWh(p).

Proof Since p ≡ 9 (mod 16), we have −1 ∈ C8
4 and 2 is a quadratic residue. Let 2 ∈

C8
t , where t ∈ {0, 2, 4, 6}. Let (a1, b1, c1, d1) = (1, x, a,−x) and (a2, b2, c2, d2) =
(ax, a2,−ax,−a). Then we have a1 ∈ C8

0 , b1 ∈ C8
s , c1 ∈ C8

2 , d1 ∈ C8
s+4, a2 ∈

C8
s+2, b2 ∈ C8

4 , c2 ∈ C8
s+6 and d2 ∈ C8

6 . Furthermore, we have b1 − a1 = x − 1 ∈
C8

i , c1 −b1 = a − x ∈ C8
j+4, d1 −c1 = −x −a ∈ C8

k+4, a1 −d1 = 1+ x ∈ C8
l , a1 −c1 =

1 − a ∈ C8
0 , b1 − d1 = 2x ∈ C8

s+t , b2 − a2 = a(a − x) ∈ C8
j+6, c2 − b2 = −a(x + a) ∈

C8
k+6, d2−c2 = a(x −1) ∈ C8

i+2, a2−d2 = a(1+x) ∈ C8
l+2, a2−c2 = 2ax ∈ C8

s+t+2 and
b2−d2 = a(a+1) ∈ C8

6 . It is easily checked that Conditions (1)–(2) of Lemma 2.1 with n = 2
are satisfied. Thus R = {(y, xy, ay,−xy) : y ∈ C8

0 } ∪ {(axy, a2 y,−axy,−ay) : y ∈ C8
0 }

forms an initial round of a Z-cyclic DTWh(p). We still need to check that this Z-cyclic
DTWh(p) has the three-person property.
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Conditions (3)–(4) in Lemma 2.6 can be easily checked. Thus we need only to check
Condition (5) in Lemma 2.6. The eight sets E(a1, b1, c1), E(a1, b1, d1), E(a1, c1, d1),
E(b1, c1, d1) and E(a2, b2, c2), E(a2, b2, d2), E(a2, c2, d2), E(b2, c2, d2) of the two qua-
druples (a1, b1, c1, d1) and (a2, b2, c2, d2) are listed in the following two columns:

{{i, 4}, {i + 4, j + 4}, {0, j}}, {{ j + 6, s + t + 6}, { j + 2, k + 6}, {s + t + 2, k + 2}},
{{i, l + 4}, {i + 4, s + t + 4}, {l, s + t}}, {{ j + 6, l + 6}, { j + 2, 2}, {l + 2, 6}},
{{4, l + 4}, {0, k + 4}, {l, k}}, {{s + t + 6, l + 6}, {s + t + 2, i + 2}, {l + 2, i + 6}},
{{ j + 4, s + t + 4}, { j, k + 4}, {s + t, k}}, {{k + 6, 2}, {k + 2, i + 2}, {6, i + 6}}.

Based on the modular equations i, j, k, l satisfied and the fact that s ∈ {1, 3, 5, 7} and
t ∈ {0, 2, 4, 6}, we can show that any two sets from the above two different columns are
distinct. Take the two sets {{i, 4}, {i + 4, j + 4}, {0, j}} and {{ j + 6, s + t + 6}, { j + 2, k +
6}, {s + t + 2, k + 2}} as an example. First, suppose {i, 4} = { j + 6, s + t + 6}, then
i = s + t + 6, since s + t + 2 is odd. Hence, j + 6 = 4, which means both j and k are even.
Consequently, we have {i +4, j +4} = {s + t +2, k +2}. This leads to j +4 = k +2 which
contradicts j − k ≡ 4 (mod 8). Next, suppose {i, 4} = { j + 2, k + 6}, it is not true because
i − j ≡ 1 (mod 2) and j − k ≡ 4 (mod 8). Finally, suppose {i, 4} = {s + t + 2, k + 2}, then
we have i = s + t + 2, since s + t + 2 is odd. Hence, k + 2 = 4, which means both j and
k are even. Consequently, {i + 4, j + 4} should be equal to { j + 6, s + t + 6}. This leads to
j + 4 = j + 6, which leads to a contradiction. Hence, {{i, 4}, {i + 4, j + 4}, {0, j}} is not
equal to {{ j + 6, s + t + 6}, { j + 2, k + 6}, {s + t + 2, k + 2}}. The proofs for other pairs of
sets from the above two different columns can be similarly done. �

Lemma 4.3 Let p ≡ 9 (mod 16) be a prime and p ≥ 816169. Then there exists a Z-cyclic
3PDTWh(p).

Proof Applying Theorem 3.3 with q = 8, s = 3, we always have that there exists an element
a in Z p satisfying a ∈ C8

2 , a − 1 ∈ C8
4 and a + 1 ∈ C8

4 for any prime p ≡ 9 (mod 16) and
p ≥ 694313. Obviously, a �= 0, 1, −1. Once the element a is determined, we still need to
find an element x satisfying Conditions (2)–(4) in Lemma 4.2. Let

g1(x) = x, g2(x) = (x − 1)(x − a),

g3(x) = (x + 1)(x − 1)3(x − a)4, g4(x) = (x + a)(x − 1)4(x − a)3.

Since there are in total of 32 inequalities of degree 2 concerning the variable x in Condi-
tions (3)–(4) in Lemma 4.2, it is easy to see that the requirements for Conditions (2)–(4)
of Lemma 4.2 can be satisfied if there exist at least 65 different elements x satisfying the
following conditions:

(i) for k = 1, 2, gk(x) ∈ C8
1 ∪ C8

3 ∪ C8
5 ∪ C8

7 ,

(ii) for k = 3, 4, gk(x) ∈ C8
0 .

Let χ be a non-principal multiplicative character of order 8. That is χ(x) = θ t if x ∈ C8
t

where θ = e
2π i

8 is the 8-th root of unity. Let

Ak = χ(gk(x)), k = 1, 2, 3, 4.

Then, we have the following functions:
For k = 1, 2,

1 − A4
k =

⎧
⎨

⎩

2, gk(x) ∈ C8
1 ∪ C8

3 ∪ C8
5 ∪ C8

7 ,

1, gk(x) = 0,
0, gk(x) �∈ {0} ∪ C8

1 ∪ C8
3 ∪ C8

5 ∪ C8
7 .
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For k = 3, 4,

1 + Ak + A2
k + . . .+ A7

k =
⎧
⎨

⎩

8, gk(x) ∈ C8
0 ,

1, gk(x) = 0,
0, gk(x) �∈ {0} ∪ C8

0 .

From these, let

S(x) = (
1 − A4

1

) (
1 − A4

2

) (
1 + A3 + A2

3 + . . .+ A7
3

) (
1 + A4 + A2

4 + . . .+ A7
4

)

and

S =
∑

x∈G F(p)

S(x). (1)

Let X ⊂ G F(p) such that S(x) �= 0 for any x ∈ X . Denote X1 = {x ∈ X : g1(x)g2(x)g3(x)
g4(x) = 0} and X2 = X \ X1. Then, x satisfies the above Conditions (i)–(ii) if x ∈ X2.
Consider the sum |S|.

|S| ≤
∑

x∈X1

|S(x)| +
∑

x∈X2

|S(x)|.

Denote
∑

x∈X1
|S(x)| as S1. If g1(x) = x = 0, then g2(x) = a ∈ C8

2 , thus 1 − A4
2 = 0,

the contribution to S1 is 0. If x �= 0 and g2(x) = (x − 1)(x − a) = 0, then x = 1 ∈ C8
0

or x = a ∈ C8
2 , thus 1 − A4

1 = 0, the contribution to S1 is 0. If x �= 0, 1, a and g3(x) =
(x + 1)(x − 1)3(x − a)4 = 0, then x = −1 ∈ C8

4 , thus 1 − A4
1 = 0, the contribution to S1

is 0. If x �= 0, 1,−1, a and g4(x) = (x + a)(x − 1)4(x − a)3, then x = −a ∈ C8
6 , thus

1 − A4
1 = 0, the contribution to S1 is 0. So, the contribution to S1 is 0 for any x ∈ X1. Then

|S| = ∑
x∈X2

|S(x)| = 2 × 2 × 8 × 8 × n = 256 × n where n = |X2|, i.e., the number of
elements satisfying Conditions (i)–(ii).

Expanding the inner product in Eq. 1 we obtain

|S| ≥ ∑

x∈G F(p)
1 −

∣
∣
∣
∣
∣

∑

x∈G F(p)
A4

1

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣

∑

x∈G F(p)
A4

2

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣

∑

x∈G F(p)
A4

1 A4
2

∣
∣
∣
∣
∣

− ∑

0≤r2≤1

∑

r3+r4>0
0≤r3,r4≤7

∣
∣
∣
∣
∣

∑

x∈G F(p)
A4r2

2 Ar3
3 Ar4

4

∣
∣
∣
∣
∣
− ∑

0≤r2≤1

∑

r3+r4>0
0≤r3,r4≤7

∣
∣
∣
∣
∣

∑

x∈G F(p)
A4

1 A4r2
2 Ar3

3 Ar4
4

∣
∣
∣
∣
∣
.

(2)

In order to estimate the inner sums, we may use Weil’s theorem on multiplicative character
sums.

Suppose that χ(G(x)) = A4r1
1 A4r2

2 Ar3
3 Ar4

4 , where 0 ≤ r1, r2 ≤ 1, 0 ≤ r3, r4 ≤ 7 and
r2 + r3 + r4 > 0. Then

G(x) = x4r1(x + 1)r3(x − 1)4r2+3r3+4r4(x + a)r4(x − a)4r2+4r3+3r4 .

If there is a polynomial P(x) such that G(x) = [P(x)]8, then we have

x4r1(x + 1)r3(x − 1)4r2+3r3+4r4(x + a)r4(x − a)4r2+4r3+3r4 = [P(x)]8.

Since x, x + 1, x − 1, x + a and x − a are pairwise co-prime, then r1 ≡ r2 ≡ 0 (mod 2),
r3 ≡ r4 ≡ 0 (mod 8). Hence, r1 = r2 = r3 = r4 = 0, which leads to a contradiction to
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r2 + r3 + r4 > 0. By Theorem 3.2, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣
∣
∣
∑

x∈G F(p) A4
1

∣
∣
∣ ≤ 0,

∣
∣
∣
∑

x∈G F(p) A4
2

∣
∣
∣ ≤ √

p,

∣
∣
∣
∑

x∈G F(p) A4
1 A4

2

∣
∣
∣ ≤ 2

√
p,

∣
∣
∣
∑

x∈G F(p) A4r2
2 Ar3

3 Ar4
4

∣
∣
∣ ≤ 3

√
p,

∣
∣
∣
∑

x∈G F(p) A4
1 A4r2

2 Ar3
3 Ar4

4

∣
∣
∣ ≤ 4

√
p.

Then

|S| ≥ p − √
p − 2

√
p − ∑

0≤r2≤1

∑

r3+r4>0
0≤r3,r4≤7

3
√

p − ∑

0≤r2≤1

∑

r3+r4>0
0≤r3,r4≤7

4
√

p

= p − 885
√

p.
(3)

If p − 885
√

p ≥ 256 × 65, namely, p ≥ 816169, we have n ≥ 65. The proof is
complete. ��
Lemma 4.4 Let p ≡ 9 (mod 16) be a prime and 241 < p < 816169. Then there exists a
Z-cyclic 3PDTWh(p).

Proof For each given prime p ≡ 9 (mod 16) and 241 < p < 816169, we find two quadru-
ples (a, b, c, d) and (e, f, g, h) satisfying requirements in Lemma 4.1 by a computer search.
Here, we just list the required quadruples (a, b, c, d) and (e, f, g, h) for 241 < p ≤ 1033 in
Table 2. For the other primes, the interested reader can get a copy from the authors. �

Table 2

p (a,b,c,d), (e,f,g,h) p (a,b,c,d), (e,f,g,h)

281 (1, 2, 120, 74), (5, 19, 52, 225) 313 (1, 4, 37, 155), (8, 43, 67, 90)

409 (1, 2, 47, 94), (3, 124, 260, 45) 457 (1, 2, 8, 316), (5, 30, 290, 172)

521 (1, 2, 82, 4), (3, 65, 184, 217) 569 (1, 2, 171, 4), (3, 12, 381, 533)

601 (1, 5, 200, 214), (7, 105, 523, 396) 617 (1, 2, 168, 307), (6, 21, 60, 487)

761 (1, 2, 79, 477), (3, 69, 249, 166) 809 (1, 2, 20, 68), (3, 17, 188, 282)

857 (1, 2, 59, 392), (3, 28, 229, 773) 937 (1, 3, 30, 168), (5, 111, 769, 178)

953 (1, 2, 128, 4), (3, 11, 551, 286) 1033 (1, 2, 10, 406), (3, 27, 95, 413)

Lemma 4.5 Let p ≡ 9 (mod 16) be a prime and p ≥ 41. Then there exists a Z-cyclic
3PDTWh(p).

Proof Combining Lemmas 1.8 and 4.3–4.4, the conclusion then follows. �
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5 Existence of Z-cyclic 3PDTWh( p)s for prime p ≡ 1 (mod 16)

In this section, we shall extend the useful construction displayed in [4, Example 6.4], which
can be regarded as a special case of Lemma 2.1.

Let p = 2k t +1 be a prime and θ be a primitive root of Z p , where k ≥ 3, t odd and t ≥ 3.
The quadruples

(1, θ,−θ, θ1+α)× θ4nj+2i (0 ≤ j ≤ t − 1, 0 ≤ i ≤ n − 1)

where n = 2k−2, form an initial round of a Z-cyclic TWh(p) provided

(a) α ≡ 2k−1 − 1 (mod 2k),
(b) θα+1 − 1 = �,
(c) (θ + 1)(θα − 1) = �,
(d) (θ − 1)(θα + 1) = �.

Furthermore, if the following conditions can be satisfied

(e)
2θ

θ − 1
∈ C4n

0 and
θ1+α − 1

θ(θα + 1)
∈ C4n

0 , or

(e′)
2θ

θ(θα + 1)
∈ C4n

0 and
θ1+α − 1

θ − 1
∈ C4n

0 , then we have the following lemma.

Lemma 5.1 Let p = 2k t + 1 be a prime, where k ≥ 3, t odd and t ≥ 3. θ and α are defined
as above satisfying Conditions (a)–(d) and (e) (or (e′)). Then

R = {(1, θ,−θ, θ1+α)× θ4nj+2i : 0 ≤ j ≤ t − 1, 0 ≤ i ≤ n − 1}
where n = 2k−2, forms an initial round of a Z-cyclic DTWh(p).

Proof Let ai = θ2i , bi = θ2i+1, ci = −θ2i+1 and di = θ2i+1+α, where 0 ≤ i ≤ n − 1.
Since p = 2k t + 1, k ≥ 3, t odd, t ≥ 3, −1 ∈ C4n

2n and ±2 are quadratic residues, the set of
quadruples

{(ai , bi , ci , di ) : 0 ≤ i ≤ n − 1}
satisfies Conditions (1)–(2) of Lemma 2.1, i.e., R forms an initial round of a Z-cyclic
DTWh(p). �

In addition, we need more requirements to ensure the above Z-cyclic DTWh(p) satisfies
the three-person property. First, we notice that Lemma 2.3 can be easily extended to the
following:

Lemma 5.2 Let p = 2k t + 1 be a prime, where k ≥ 3, t odd and t ≥ 3. If a2 + b2 + c2 �=
ab + bc + ac, then G(a, b, c) �= G(a, b, c) × θ4nj+2i , where 0 ≤ i ≤ n − 1, 0 ≤ j ≤
t − 1, i2 + j2 �= 0 and n = 2k−2.

Proof The proof is similar to that of [18, Lemma 3.1]. Define f (a, b, c) = 2[(a − b)2 +
(a−c)2+(b−c)2]. If G(a, b, c) = G(a, b, c)×θ4nj+2i , where 0 ≤ i ≤ n−1, 0 ≤ j ≤ t−1,
then f (a, b, c) = f ((a, b, c)×θ4nj+2i ). So 4(1−θ8nj+4i )(a2 +b2+c2−ab−bc−ac) = 0.
Thus we have 1 = θ8nj+4i , which contradicts the fact that 0 ≤ i ≤ n − 1, 0 ≤ j ≤ t − 1
and n = 2k−2. �
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Lemma 5.3 If {a, b, c} and {e, f, g} are different subsets of {1, θ,−θ, θ1+α}, where θ and α
satisfy Conditions (a)–(d) and (e) (or (e′)), then G(a, b, c) �= G(e, f, g)× θ4nj+2i , where
0 < i ≤ n − 1, 0 ≤ j ≤ t − 1 and n = 2k−2.

Proof To save space, we only take the case of {a, b, c} = {1, θ,−θ} and {e, f, g} =
{θ,−θ, θ1+α} as an example. For the other cases, the proof can be similarly done. Here,
G(1, θ,−θ) = {{θ−1,−θ−1}, {1−θ,−2θ}, {θ+1, 2θ}} and G(θ,−θ, θ1+α)×θ4nj+2i =
{{−2θ, θ1+α−θ}, {2θ, θ1+α+θ}, {θ−θ1+α,−θ−θ1+α}}×θ4nj+2i . In this case, we will show
that pair {1−θ,−2θ} in G(1, θ,−θ) can not be equal to any pair in G(θ,−θ, θ1+α)×θ4nj+2i .

It is easy to see that if x = y × θ4nj+2i , x, y ∈ Z p , 0 < i ≤ n − 1, 0 ≤ j ≤ t − 1 and
n = 2k−2, then x

y �∈ C4n
0 ∪ C4n

2n . So we have that (±2θ) × θ4nj+2i can not be equal to any

element in {1−θ,−2θ} by Condition (e). Hence, {1−θ,−2θ} �= {−2θ, θ1+α−θ}×θ4nj+2i

and {1 − θ,−2θ} �= {2θ, θ1+α + θ} × θ4nj+2i . Also we have that (−θ − θ1+α) × θ4nj+2i

can not be equal to any element in {1 − θ,−2θ} by Conditions (d)–(e). Consequently, we
have {1 − θ,−2θ} �= {θ − θ1+α,−θ − θ1+α} × θ4nj+2i . The proof is complete. �

Combining Lemmas 2.6 and 5.1–5.3, we have the following.

Lemma 5.4 Let p = 2k t + 1 be a prime, where k ≥ 3, t odd and t ≥ 3. Suppose θ and α
satisfy Conditions (a)–(d) and (e) (or (e′)). If further,

( f ) the quadruple {1, θ,−θ, θ1+α} has property P ,
(g) any triple {a, b, c} ⊂ {1, θ,−θ, θ1+α} satisfies the condition a2+b2+c2 �= ab+bc+ac,

then

R = {(1, θ,−θ, θ1+α)× θ4nj+2i : 0 ≤ j ≤ t − 1, 0 ≤ i ≤ n − 1}
where n = 2k−2, forms an initial round of a Z-cyclic 3PDTWh(p).

Applying the above construction, we have successfully constructed most of the Z-cyclic
3PDTWh(p)s for primes p ≡ 1 (mod 16), 241 < p < 10000 with 19 possible exceptions.
Here, we list the appropriate primitive root and corresponding parameter α for these primes,
and tabulate the triples (p, θ, α) in Table 3.

For the unsolved primes p, we extend the construction in Lemma 5.4 to the following.
Let p = 2k t +1 be a prime and θ be a primitive root of Z p , where k ≥ 3, t odd and t ≥ 3.

Suppose the quadruples

(am, bm, cm, dm)× θ4i (0 ≤ i ≤ n/2 − 1, m = 0, 1)

where n = 2k−2, satisfy

(i)
⋃1

m=0{am, bm, cm, dm} and
⋃1

m=0{bm − am, cm − bm, dm − cm, am − dm} are represen-
tative systems of the coset classes ∪{C4n

el
} ∪ {C4n

el+2nsl
} and ∪{C4n

e′
l
} ∪ {C4n

e′
l+2ns′

l
} respec-

tively, where sl and s′
l are odd integers, 0 ≤ l ≤ 3 and each of the sets {e0, e1, e2, e3},

{e′
0, e′

1, e′
2, e′

3} covers the different residues modulo 4.
(ii)

⋃1
m=0{am − bm, cm − dm}, ⋃1

m=0{am − cm, bm − dm} and
⋃1

m=0{am − dm, bm − cm}
are representative systems of the coset classes ∪{C4n

gl
}, ∪{C4n

g′
l
} and ∪{C4n

g′′
l
} respectively,

where 0 ≤ l ≤ 3 and each of the sets {g0, g1, g2, g3}, {g′
0, g′

1, g′
2, g′

3}, {g′′
0 , g′′

1 , g′′
2 , g′′

3 }
covers the different residues modulo 4.
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Ta
bl

e
3
(
p,
θ
,
α
)

(2
57
,
−)
,
(3

37
,
46
,
27

9)
,
(3

53
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Then, it is easy to check that (am, bm, cm, dm)× θ4i (0 ≤ i ≤ n/2 − 1, m = 0, 1) satisfy
Conditions (1)–(2) of Lemma 2.1 with n. Hence,

R = {(am, bm, cm, dm)× θ4nj+4i : 0 ≤ j ≤ t − 1, 0 ≤ i ≤ n/2 − 1, m = 0, 1}
where n = 2k−2, forms an initial round of a Z-cyclic DTWh(p).

Furthermore, if

(iii) any triple {a, b, c} ⊂ {am, bm, cm, dm}, m = 0, 1, satisfies the condition a2+b2+c2 �=
ab + bc + ac, and

(iv) any two different triples {a, b, c} ⊂ {am, bm, cm, dm} × θ4i and {e, f, g} ⊂ {am′ , bm′ ,
cm′ , dm′ } × θ4i ′ , where m,m′ = 0, 1 and 0 ≤ i, i ′ ≤ n/2 − 1, satisfy the condition
E(a, b, c) �= E(e, f, g),

then R forms an initial round of a Z-cyclic 3PDTWh(p).
Using the above extended construction, we find the required quadruples (am, bm, cm, dm),

m = 0, 1 for 17 of the 19 unsolved Z-cyclic 3PDTWh(p)s by a computer search. Here, we
list them below.

p = 353: θ = 3, (1, 3, 13, 115), (9, 344, 263, 122),

p = 449: θ = 3, (1, 2, 375, 273), (3, 281, 103, 447),

p = 577: θ = 5, (1, 5, 52, 544), (41, 256, 126, 555),

p = 641: θ = 3, (1, 6, 114, 418), (32, 422, 331, 79),

p = 1153: θ = 5, (1, 3, 480, 203), (93, 862, 365, 839),

p = 1409: θ = 3, (1, 2, 51, 336), (43, 1317, 338, 472),

p = 1601: θ = 3, (1, 3, 9, 37), (61, 306, 1070, 99),

p = 2689: θ = 19, (1, 3, 10, 1520), (30, 510, 310, 1753),

p = 2753: θ = 3, (1, 2, 5, 129), (6, 1680, 607, 1986),

p = 3137: θ = 3, (1, 3, 9, 76), (139, 666, 2345, 141),

p = 3329: θ = 3, (1, 2, 87, 956), (234, 317, 2074, 336),

p = 3457: θ = 7, (1, 2, 10, 153), (158, 1594, 1217, 1463),

p = 4481: θ = 3, (1, 3, 9, 1642), (53, 1735, 785, 211),

p = 4993: θ = 5, (1, 3, 15, 1438), (211, 3086, 4265, 3840),

p = 7681: θ = 17, (1, 2, 82, 4003), (954, 5360, 4065, 477),

p = 7937: θ = 3, (1, 2, 5, 2361), (107, 4028, 6493, 799),

p = 9473: θ = 3, (1, 3, 13, 4105), (90, 6033, 8444, 3721).

Summarizing the discussion above and combining Lemma 1.8, we have

Lemma 5.5 For each prime p ≡ 1 (mod 16), 97 ≤ p < 10,000, and p �= 257,769, there
exists a Z-cyclic 3PDTWh(p).

Now, Theorem 1.6 can be improved as follows:

Lemma 5.6 A Z-cyclic DTWh(p) exists for any prime p ≡ 5 (mod 8), p ≥ 29, or
p ≡ 1 (mod 8), 29 ≤ p < 10,000, p �= 257,769.

6 Concluding remarks

Combining Lemmas 3.5 and 4.5, we have
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Theorem 6.1 There exists a Z-cyclic 3P DT W h(p) for any p prime, p ≡ 5, 9, 13 (mod 16)
and p ≥ 29.

In this paper, we investigate the existence of a Z-cyclic 3PDTWh(p) for any prime
p ≡ 1 (mod 4) and show that such a design exists whenever p ≡ 5, 9, 13 (mod 16)
and p ≥ 29. Weil’s Theorem played an important role in obtaining this result. However, this
approach fails for the case of p ≡ 1 (mod 16) due to the cyclotomic number can not be easily
fixed. Particularly, there appears to be no easy way of obtaining a Z -cyclic DTWh(p) for p
a prime of the form 2m + 1.
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