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Abstract. Motivated by applications in combinatorial group testing for consecutive positives,
we investigate a block sequence of a maximum packing MP(t, k, v) which contains the blocks exactly
once such that the collection of all blocks together with all unions of two consecutive blocks of this
sequence forms an error correcting code with minimum distance d. Such a sequence is usually called a
block sequence with consecutive unions having minimum distance d, and denoted by BSCU(t, k, v|d).
In this paper, we show that the necessary conditions for the existence of BSCU(3, 4, v|4)s of Steiner
quadruple systems, namely, v ≡ 2, 4 (mod 6) and v ≥ 4, are also sufficient, excepting v = 8, 10.
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1. Introduction. Let V be a finite set of v elements and let X be a collection
of k-subsets of V with |X | = m. Let S = [x0, x1, . . . , xm−1] be a sequence of the
elements in X . The indices of the elements xi of S are considered modulo m. Define
yi = xi ∪ xi+1 for each i, 0 ≤ i ≤ m − 1. The sequence S is called a cyclic sequence
of X with consecutive unions having minimum distance d, denoted as CSCU(k, v|d),
if C = {x0, . . . , xm−1, y0, . . . , ym−1} has minimum distance d. Note that the distance
between any two sets x and y is defined as d(x, y) = |(x ∪ y) \ (x ∩ y)|. Furthermore,
a CSCU(k, v|d) is said to be maximal if the number of elements in X is maximum for
given k, v, and d, denoted as MCSCU(k, v|d).

The concept of an MCSCU is motivated by the applications in combinatorial group
testing for consecutive positives. Group testing was proposed by Dorfman [3] in 1940s
to do large scale blood testing economically, and new applications of group testing
have been found recently such as DNA library screening, being error-prone, in which it
is desired to determine the set of all clones containing a specific sequence of nucleotides
in an economical and correct way. A clone is positive if it contains the specific sequence
and negative otherwise. One chooses arbitrarily a subset of clones called a group or
pool and tests all clones in the pool in one stroke by some chemical analysis. The
pool is positive when it contains at least one positive clone and negative otherwise.
Colbourn [1] developed some strategy for group testing when the clones are linearly
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ordered, and the positive clones form a consecutive subset of the set of all clones, the
typical example being the problem of locating a sequence-tagged site (or STS) among
ordered clones. Jimbo and his collaborators [16, 15, 17, 18] improved Colbourn’s
strategy by considering the error detecting and correcting capability of group testing
which is essential in view of applications such as DNA library screening. In particular,
Momihara and Jimbo [16, 15] suggested using MCSCUs of a combinatorial structure
called t-packings to correct false negative or false positive clones in the pool outcomes.
For more details of such applications, we refer the reader to [1, 4, 16, 15, 17, 18, 19]
and references therein.

A t-packing of order v, block size k, briefly P(t, k, v), is an ordered pair (V,B),
where V is a finite set of v elements called points, and B is a set of k-subsets of V
called blocks, such that each t-tuple of distinct points of V is contained in at most
one block of B. In particular, a P(t, k, v) is said to be maximal, denoted MP(t, k, v),
if the number of blocks is maximum for given t, k, and v. For v ≡ 2, 4 (mod 6), an
MP(3, 4, v) is also called a Steiner quadruple system, briefly SQS(v). The existence of
an SQS(v) for every admissible v is proved by Hanani [5], Hartman [7, 8], and Lenz
[12].

It is known (see [16]) that a CSCU(k, v|d) of B is maximal if B is the block set of
an MP(�k−d/2�+1, k, v). A CSCU(k, v|d) of B which is the block set of an MP(t, k, v)
is also called a block sequence of B with consecutive unions having minimum distance
d, briefly BSCU(t, k, v|d).

In the case of d = 2, Müller and Jimbo [18] showed that there exists a BSCU(k, k, v
|2) for every v ≥ vk for the pairs of parameters k and vk, (k, vk) = (2, 6), (3, 8), (4, 11),
(5, 12), (6, 17), and (7, 19), without introducing the notion of block sequences of t-
packings. In the case of d = 3, Momihara and Jimbo [16] showed the existence
of a BSCU(2, 3, v|3) for every v ≥ 10. For the case of d = 4, it is clear that a
BSCU(3, 4, v|4) forms an MCSCU(4, v|4). Momihara and Jimbo [15] recently showed
the existence of a BSCU(3, 4, v|4) for 47 small values v ≤ 500 using the following two
constructions.

Theorem 1.1. (see [15]). Let v be an integer satisfying v ≡ 2, 4 (mod 6) and
v ≥ 14.

(1) If there exists a BSCU(3, 4, v|4), then there exists a BSCU(3, 4, 2v|4) which
contains a sub-BSCU(3, 4, v|4).

(2) If there exists a BSCU(3, 4, v|4), then there exists a BSCU(3, 4, 3v−2|4) which
contains a sub-BSCU(3, 4, v|4).

It is not difficult to see [15] that if there exists a BSCU(3, 4, v|4), then ev-
ery two consecutive blocks must be disjoint. Furthermore, there does not exist a
BSCU(3, 4, v|4) for v ≤ 11 except for v = 4, in which there is only one block. We call
such a BSCU(3, 4, 4|4) trivial.

In this paper, we write BSCU(3, 4, v|4) of the block sets of Steiner quadruple
systems as BSCU(v) for brevity. The necessary conditions for the existence of a
BSCU(v) are v ≡ 2, 4 (mod 6) and v ≥ 4. In the following sections, we will prove
that the above necessary conditions are also sufficient except for v = 8, 10. Our main
tools are the recursive constructions used in the 3-design theory (see [9, 10, 11] for
detailed information).

2. Recursive constructions. Let v, s be two nonnegative integers, t be a pos-
itive integer, and K be a set of positive integers. A candelabra t-system (or t-CS) of
order v and block sizes from K, denoted by CS(t, K, v), is a quadruple (X, S,G,A)
that satisfies the following properties:
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(1) X is a set of v elements (called points);
(2) S is an s-subset (called the stem of the candelabra) of X ;
(3) G = {G1, G2, . . .} is a set of nonempty subsets (called groups or branches) of

X \ S, which partition X \ S;
(4) A is a collection of subsets (called blocks) of X , each of cardinality from K;
(5) every t-subset T of X with |T ∩ (S∪Gi)| < t for all i is contained in a unique

block of A, and no t-subset of S ∪ Gi for all i is contained in any block of A.
By the group type (or type) of a t-CS (X, S,G,A) we mean the list (|G| | G ∈

G : |S|) of group sizes and stem size, where the stem size is separated from the group
sizes by a colon. If a t-CS has ni groups of size gi, 1 ≤ i ≤ r, and stem size s, then
we use the notation (gn1

1 gn2
2 . . . gnr

r : s) to denote the group type. When t = 3 and
K = {4}, such a system is usually called a candelabra quadruple system and denoted
for short by CQS(gn1

1 gn2
2 . . . gnr

r : s).
A holey quadruple system of order v with a hole of order s, denoted by HSQS(v : s),

is a triple (X, S,A) where X is a set of v elements (called points), S is an s-subset of
X , and A is a collection of 4-subsets (called blocks) of X such that every 3-subset T
of X with T 
⊆ S is contained in a unique block of A and no 3-subset of S is contained
in any block of A.

Let (X, S,G,A) be a CS(3, K, v) of type (gn1
1 gn2

2 . . . gnr
r : s) with S = {∞1,∞2, . . . ,

∞s}, where s ≥ 1. For 1 ≤ i ≤ s, let Bi = {A \ {∞i} | ∞i ∈ A ∈ A} and
T = {A ∈ A | A ∩ S = ∅}. Then the (s + 3)-tuple (X \ S,G,B1,B2, . . . ,Bs, T ) is
called an s-fan design. If block sizes of Bi, 1 ≤ i ≤ s, and T are from Ki and KT ,
respectively, then the s-fan design is denoted by s-FG(3, (K1, . . . , Ks, KT ),

∑r
i=1 nigi)

of type gn1
1 gn2

2 . . . gnr
r .

A group divisible t-design of order v and block sizes from K, denoted by GDD(t, K,
v), is a triple (X,G,B) such that

(1) X is a set of v elements (called points);
(2) G = {G1, G2, . . .} is a set of nonempty subsets (called groups) of X which

partition X ;
(3) B is a collection of subsets (called blocks) of X , each of cardinality from K,

such that each block intersects any given group in at most one point; and
(4) every t-subset T of X from t distinct groups is contained in a unique block

of B.
The type of GDD(t, K, v) is defined as the list (|G| | G ∈ G). In this paper, we

consider only GDD(3, 4, v) of type T and always write GDD(T ) for brevity.
Theorem 2.1. (see [14]). For u > 3, u 
= 5, a GDD(gu) exists if and only if ug is

even and g(u−1)(u−2) is divisible by 3. For u = 5, a GDD(g5) exists if g is divisible
by 4 or 6.

A CSCU(4, v|4) of B which is the block set of a CQS(gn1
1 gn2

2 . . . gnr
r : s) will be

denoted by CSCU-CQS(gn1
1 gn2

2 . . . gnr
r : s) in this paper. Similarly, we can define

CSCU-HSQS, CSCU-GDD, etc.
Now we apply the fundamental constructions in the 3-design theory, where “filling

in holes” and the “weighting method” are always useful (see [9]). First, we may think
of one CSCU (the master design) as a cycle which can be cut off at any place. Next,
we view the sequence of the other cut-off CSCU (the subdesign) as a segment and
insert it into some cut place of the master design to form a bigger cycle. Then we
calculate the number of the places in the master design where the obtained bigger
cycle is also a CSCU. If this number is positive, then the construction succeeds. We
explain it in detail as follows.



BSCU 943

For any k-subset sequence S = [x0, x1, . . . , xm−1] with length m, define

σj(S) = [xj , xj+1, . . . , xm−1, x0, . . . , xj−1],

S = {x0 ∪ x1, x1 ∪ x2, . . . , xm−2 ∪ xm−1},

and

Ŝ = {x0 ∪ x1, x1 ∪ x2, . . . , xm−2 ∪ xm−1, xm−1 ∪ x0}.

Let U, V be two finite sets with |U | = u and |V | = v, where U is not necessarily
disjoint with V . Let S = [b0, b1, . . . , bp−1] be a CSCU(4, u|4) of B which is a collection
of 4-subsets of U with p = |B|, and let T = [a0, a1, . . . , aq−1] be a CSCU(4, v|4) of A
which is a collection of 4-subsets of V with q = |A|. It is clear that |b ∩ b′| ≤ 2 and
|a ∩ a′| ≤ 2 for any distinct b, b′ ∈ B and a, a′ ∈ A. We may assume that, for any
b ∈ B, we always have |b ∩ V | ≤ 2. Then, for any a ∈ A and b ∈ B, we always have
|b∩a| ≤ 2. We view S as a cycle, cut T between a0 and aq−1, and keep the order fixed.
We insert T = [a0, a1, . . . , aq−1] into S between bi−1 and bi for some i, 0 ≤ i ≤ p− 1,
and denote the bigger cycle [a0, a1, . . . , aq−1, bi, bi+1, . . . , bi−1] by Si = [T, σi(S)]. Let
M = {i | Si is a CSCU(4, w|4) of B ∪ A, 0 ≤ i ≤ p − 1}, where w = |U ∪ V |, and
let |M | = m. If m > 0, then we obtain a bigger CSCU(4, w|4) from the two small
CSCUs. Next, we estimate the value of m.

Let C = A ∪ B ∪ T ∪ σi(S) ∪ D, where D = {a0 ∪ bi−1, aq−1 ∪ bi}. We check the
distance between any two elements of C. First, we consider the case that a0∩bi−1 = ∅
and aq−1 ∩ bi = ∅. In this case, we have the following conclusions:
Since T is a CSCU of A, we have

Case 1: d(a, a′) ≥ 4 for any a, a′ ∈ A;
Case 2: d(c, c′) ≥ 4 for any c, c′ ∈ T ; and
Case 3: d(a, c) ≥ 4 for any a ∈ A and c ∈ T .

Since S is a CSCU of B, we have
Case 4: d(b, b′) ≥ 4 for any b, b′ ∈ B;
Case 5: d(c, c′) ≥ 4 for any c, c′ ∈ σi(S); and
Case 6: d(b, c) ≥ 4 for any b ∈ B and c ∈ σi(S).

Since |a0 ∩ bi| ≤ 2, |aq−1 ∩ bi−1| ≤ 2, and bi−1 ∩ bi = ∅, we know that d(bi−1, bi) = 8,
d(a0 ∪ bi−1, bi) ≥ 6, and also

Case 7: d(a0 ∪ bi−1, aq−1 ∪ bi) ≥ 4.
Since |a ∩ b| ≤ 2, we have

Case 8: d(a, b) ≥ 4 for any a ∈ A, b ∈ B.
Since |a| = 4, |b| = 4, and |c| = 8 for any a ∈ A, b ∈ B, and c ∈ T ∪ σi(S) ∪ D, we
have

Case 9: d(a, c) ≥ 4 for any a ∈ A and c ∈ σi(S) ∪ D; and
Case 10: d(b, c) ≥ 4 for any b ∈ B and c ∈ T ∪ D.

Since |b ∩ V | ≤ 2 for any b ∈ B, we have
Case 11: d(c, c′) ≥ 4 for c ∈ T and c′ ∈ σi(S) ∪ D.
Under the assumption that a0 ∩ bi−1 = ∅ and aq−1 ∩ bi = ∅, we still need to

consider the values of d(c, c′) for any c ∈ σi(S) and c′ ∈ D. Note that we should also
check the distance between any two elements of C in the case that a0 ∩ bi−1 
= ∅ or
aq−1 ∩ bi 
= ∅.

Let N(aq−1) = {k | 0 ≤ k ≤ p−1, aq−1∩bk 
= ∅ or d(aq−1∪bk, c) < 4 for some c ∈
Ŝ} and n(aq−1) = |N(aq−1)|. Also let α(aq−1) = |{k | 0 ≤ k ≤ p− 1, aq−1 ∩ bk 
= ∅}|.
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Then n(aq−1) = α(aq−1) + |{k | 0 ≤ k ≤ p − 1, aq−1 ∩ bk = ∅, and d(aq−1 ∪
bk, c) < 4 for some c ∈ Ŝ}|. In order to estimate n(aq−1), we consider the case that
aq−1 ∩ bk = ∅. It is clear that for any index 0 ≤ l ≤ p − 1, |(bl ∪ bl+1) ∩ aq−1| ≤ 4.

If there exists an index l such that |(bl ∪ bl+1)∩aq−1| = 4, i.e., |bl ∩aq−1| = 2 and
|bl+1∩aq−1| = 2, then if d(bl∪bl+1, aq−1∪bk) < 4, we should have |(bl∪bl+1)∩bk| ≥ 3.
In the case that B is the block set of some 3-packing of order u, there is at most one
such k that |(bl ∪ bl+1)∩ bk| = 4, that is, bk = (bl ∪ bl+1) \ aq−1, or there are at most 4
such k that |(bl ∪ bl+1)∩ bk| = 3, that is, bk are obtained by choosing any three points
from the four points in (bl ∪ bl+1) \ aq−1 and the other one from the other points of
U , which implies that |{k | 0 ≤ k ≤ p− 1, aq−1 ∩ bk = ∅, and d(aq−1 ∪ bk, bl ∪ bl+1) <
4}| ≤ 4.

If there exists an index l such that |(bl ∪ bl+1) ∩ aq−1| = 3, i.e., |bl ∩ aq−1| = 2
and |bl+1 ∩ aq−1| = 1, or |bl ∩ aq−1| = 1 and |bl+1 ∩ aq−1| = 2, then we should have
|(bl ∪ bl+1)∩ bk| = 4 if d(bl ∪ bl+1, aq−1 ∪ bk) < 4. In the case that B is the block set of
some 3-packing of order u, there is at most one k such that |(bl ∪ bl+1)∩ bk| = 4, that
is, bk is obtained by choosing four points from (bl ∪ bl+1) \ aq−1. If there is another
k′ such that |(bl ∪ bl+1) ∩ bk′ | = 4, then |bk ∩ bk′ | ≥ 3 because |(bl ∪ bl+1) \ aq−1| = 5,
which is a contradiction. In this case, we have |{k | 0 ≤ k ≤ p − 1, aq−1 ∩ bk =
∅, and d(aq−1 ∪ bk, bl ∪ bl+1) < 4}| ≤ 1.

If |(bl ∪ bl+1) ∩ aq−1| ≤ 2, then we can easily check that there is no k such that
d(bl ∪ bl+1, aq−1 ∪ bk) < 4, that is, |{k | 0 ≤ k ≤ p − 1, aq−1 ∩ bk = ∅, and d(aq−1 ∪
bk, bl ∪ bl+1) < 4}| = 0.

Therefore, if we define γ(aq−1) = |{l | 0 ≤ l ≤ p − 1, |(bl ∪ bl+1) ∩ aq−1| =
4}|, and δ(aq−1) = |{l | 0 ≤ l ≤ p − 1, |(bl ∪ bl+1) ∩ aq−1| = 3}|, then under the
condition that aq−1 ∩ bk = ∅, there are at most 4γ(aq−1) + δ(aq−1) k such that
d(bl ∪ bl+1, aq−1∪ bk) < 4. So we have n(aq−1) ≤ α(aq−1)+4γ(aq−1)+ δ(aq−1). From
the definition of γ(aq−1), we know that the existence of one such index l in γ(aq−1)
would imply both |bl ∩ aq−1| = 2 and |bl+1 ∩ aq−1| = 2. Also, from the definition of
δ(aq−1), the existence of one such index l in δ(aq−1) would imply |bl ∩ aq−1| = 2 or
|bl+1 ∩ aq−1| = 2, but not both. Keeping in mind the possibilities of occurrences of
consecutive blocks in Ξ = {k | 0 ≤ k ≤ p − 1, |bk ∩ aq−1| = 2} and one block in Ξ
followed by one block in {k | 0 ≤ k ≤ p− 1, |bk ∩ aq−1| = 1}, we can know that these
would imply 2γ(aq−1) + δ(aq−1) < 2β(aq−1), since γ and δ are mutually exclusive,
where β(aq−1) = |Ξ|.

Similarly, we can analyze the set N(a0) = {k | 0 ≤ k ≤ p − 1, a0 ∩ bk−1 
=
∅, or d(a0 ∪ bk−1, c) < 4 for some c ∈ Ŝ}, where n(a0) = |N(a0)|.

Then from the definitions of M , N(a0), and N(aq−1), we immediately have that
M ⊇ Zp \ (N(a0) ∪ N(aq−1)) and m ≥ p − n(a0) − n(aq−1) + |N(a0) ∩ N(aq−1)| ≥
p − n(a0) − n(aq−1) + |E|, where E ⊆ N(a0) ∩ N(aq−1).

Theorem 2.2. Suppose that there are both a CSCU-HSQS(u : v) and a BSCU(v).
Then there is a BSCU(u) when u ≥ 44 and u > v.

Proof. Let S = [b0, b1, . . . , bp−1] be a CSCU-HSQS(u : v) on U and T =
[a0, a1, . . . , aq−1] be a BSCU(v) on V with V ⊂ U . By the definition of an HSQS(u :
v), we know that for any of its blocks, say, b, we always have |b ∩ V | ≤ 2. We view
S as a cycle, cut T between a0 and aq−1, and keep the order fixed. Next, insert
T = [a0, a1, . . . , aq−1] into S between bi−1 and bi for some i, 0 ≤ i ≤ p−1, and denote
the resultant cycle [a0, a1, . . . , aq−1, bi, bi+1, . . . , bi−1] by Si = [T, σi(S)]. Using the
same notation as above, we prove the theorem as follows.
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Since T is a BSCU(v), we have aq−1 ∩ a0 = ∅ since they are consecutive. From
the balanced property of t-designs, we also have n(a0) = n(aq−1). Then m ≥ p −
n(a0) − n(aq−1) ≥ p − 2(α(aq−1) + 4γ(aq−1) + δ(aq−1)) > p − 2α(aq−1) − 8β(aq−1).
Here p = u(u − 1)(u − 2)/24 − v(v − 1)(v − 2)/24, α(aq−1) = 2(u − 1)(u − 2)/3 −
3(u − 2) − 2(v − 1)(v − 2)/3 + 3(v − 2), and β(aq−1) = 3(u − v). Then we have
m > p − 2α(aq−1) − 8β(aq−1) > 0 when u ≥ 44 and u > v. This means that there is
a BSCU(u) when u ≥ 44 and u > v.

Theorem 2.3. Suppose that there are both a CSCU-CQS(mn : s) and a CSCU-
HSQS(m + s : s). Then there are both a CSCU-HSQS(mn + s : m + s) and a CSCU-
HSQS(mn + s : s) when mn ≥ 44, m + 2s ≥ 5, and m ≥ 2.

Proof. Let (X, S, {G1, . . . , Gn},B) be the CQS(mn : s). Then we construct an
HSQS(m + s : s) on S ∪ Gk, 1 ≤ k ≤ n, with S as the hole to obtain the desired
HSQS(mn+s : m+s) (or HSQS(mn+s : s), respectively). Let S0 = [b0, b1, . . . , bp−1]
be a CSCU-CQS(mn : s) and Tk = [ak

0 , ak
1 , . . . , a

k
q−1] be a CSCU-HSQS(m + s : s) on

S ∪ Gk. Note that for each block b ∈ B, we have |b ∩ (S ∪ Gk)| ≤ 2. View S0 as a
cycle, and cut each Tk between ak

0 and ak
q−1. Then we insert each Tk into S0 between

bik−1 and bik
one by one. Here, we require that ik 
= ik′ if k 
= k′.

Using the same notation, we have that p = m2n(n− 1)(m + mn+ 3s− 3)/24. By
counting the number rx of blocks in B containing a point x ∈ X , and the assumption
that m + 2s ≥ 5, we know that rx ≤ m(n − 1)(mn + m + 2s − 3)/6. By counting
the number rx,y of blocks in B containing a pair of distinct points {x, y} of X , and
the assumption that m ≥ 2, we also know that rx,y ≥ m(n − 1)/2. Then we have
max{α(ak

0), α(ak
q−1)} ≤ α = 4 × m(n− 1)(mn + m + 2s− 3)/6− 6 × m(n− 1)/2 and

max{β(ak
0), β(ak

q−1)} ≤ β = 6 × m(n − 1)/2 for any 1 ≤ k ≤ n.
First, since m1 ≥ p − α(a1

0) − 4β(a1
0) − α(a1

q−1) − 4β(a1
q−1) ≥ p − 2α − 8β ≥ 1,

there exists one i1, 0 ≤ i1 ≤ p − 1, such that S1 = [. . . , bi1−1, T1, bi1 , . . .] is a CSCU.
Here, S1 is obtained by inserting T1 into S0 between bi1−1 and bi1 .

Next, we want to insert T2 into S1 between bi2−1 and bi2 , where 0 ≤ i2 ≤ p − 1
and i2 
= i1, so that S2 = [. . . , bi1−1, T1, bi1 , . . . , bi2−1, T2, bi2 , . . .] is a CSCU. Since
|b ∩ (S ∪ G2)| ≤ 2 for each block b ∈ T1 ∪ B, in order to estimate m2, the number of
suitable places that we can properly insert T2 into S1, we need only to compute the
numbers of the consecutive unions c ∈ Ŝ1 = σi1(S0)∪{a1

q−1∪bi1 , a
1
0∪bi1−1}∪T1 such

that |c∩a2
j | = 3 and 4, j = 0, q−1, respectively, for the reason that m2 ≥ p′−n′(a2

0)−
n′(a2

q−1) ≥ p−1−(α′(a2
0)+4γ′(a2

0)+δ′(a2
0))−(α′(a2

q−1)+4γ′(a2
q−1)+δ′(a2

q−1)), where
α′(a2

j) = |{k | 0 ≤ k ≤ p−1, bk∩a2
j 
= ∅}| = α(a2

j ), γ′(a2
j) = |{l | |(cl∪cl+1)∩a2

j | = 4}|,
δ′(a2

j ) = |{l | |(cl ∪ cl+1) ∩ a2
j | = 3}| for j = 0 and q − 1, and cl ∪ cl+1 ∈ Ŝ1. It is

easy to know that there are no such unions in T1. We then consider the unions in
{a1

q−1 ∪ bi1 , a
1
0 ∪ bi1−1} ∪ σi1(S0). For the unions in σi1 (S0), we know that 4γ(a2

j) +
δ(a2

j) < 4β(a2
j ) holds for j = 0, q − 1. For the unions in {a1

q−1 ∪ bi1 , a
1
0 ∪ bi1−1}, since

|(a1
0 ∪ a1

q−1) ∩ a2
j | ≤ 2 for j = 0, q − 1, and a1

0 ∩ a1
q−1 = ∅, we know that the only

possible cases are the following: (1) both a1
q−1 ∪ bi1 and a1

0 ∪ bi1−1 intersect a2
j at

3 elements; (2) exactly one of a1
q−1 ∪ bi1 and a1

0 ∪ bi1−1 intersects a2
j at 4 elements,

and the other at less than 3 points; (3) exactly one of a1
q−1 ∪ bi1 and a1

0 ∪ bi1−1

intersects a2
j at 3 elements, and the other at less than 3 points. In any case, we have

m2 ≥ p − 1 − 2α − 8β − 2 × 4 ≥ 1. This means that there exists at least one such
index i2 
= i1 so that S2 = [. . . , bi1−1, T1, bi1 , . . . , bi2−1, T2, bi2 , . . .] is a CSCU, where
S2 is obtained by inserting T2 into S1 between bi2−1 and bi2 .
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Suppose we have inserted Tk into Sk−1 for k = 1, . . . , n − 1, and let Sk denote
the obtained CSCU. We want to insert Tk+1 into Sk between bik+1−1 and bik+1 where
0 ≤ ik+1 ≤ p − 1 and ik+1 
= il for any 1 ≤ l ≤ k. Similarly, we need only care about
the unions in Ŝ0∪{a1

q−1∪ bi1 , . . . , a
k
q−1∪ bik

, a1
0∪ bi1−1, . . . , a

k
0 ∪ bik−1}. Then we have

mk+1 ≥ p − k − 2α − 8β − 8k. It is easy to check that mk ≥ 1 for any 1 ≤ k ≤ n. So
there exist n distinct indices 0 ≤ i1, i2, . . . , in ≤ p−1 such that when we insert each Tk

into Sk−1 between bik−1 and bik
, the obtained sequence is a CSCU-HSQS(mn + s : s)

when 1 ≤ k ≤ n or a CSCU-HSQS(mn + s : m + s) when 1 ≤ k ≤ n − 1.
For a CQS (X, S,G,B), we may view S as a special group, that is, let S ∈ G,

and we will write CQS (X,G,B) for convenience. If a block of size k intersects each
group in at most one point, we say it is k-partite (see [9]). For any design (X,G,B),
GDD, or CQS, let P be a permutation on X . For each G ∈ G, if P (G) = G,
then the design (X,G, P (B)) is isomorphic to (X,G,B). For a point x ∈ X , denote
by Gx the group containing x. For a block B ∈ B, let PB = {

∏
x∈B(x y) | y ∈

Gx and (x y) is a transposition}. Note that each permutation in PB permutes each
point of B to a point in the same group and leaves any other point invariant.

Theorem 2.4. Let (X,G,B1, . . . ,Be, T ) be an e-FG(3, (K1, . . . , Ke, KT ), v) of
type gn1

1 gn2
2 . . . gnr

r . Suppose that there exist a CQS(mk1 : s1) for any k1 ∈ K1, a
GDD(mkis1

i ) for any ki ∈ Ki with 2 ≤ i ≤ e, and a GDD(mk) for any k ∈ KT . Then
there exists a CQS ((mg1)n1(mg2)n2 . . . (mgr)nr :

∑
1≤i≤e si). Furthermore, if

(1) the block set of each ingredient design can be arranged into a CSCU, and for
any A ∈ B1, the ingredient CQS(m|A| : s1) contains a 4-partite block, and

(2) the master e-fan design has two disjoint blocks b, b′ ∈ T if e = 0, or b ∈ T
and b′ ∈ B1 if e 
= 0,
then there exists a CSCU-CQS ((mg1)n1(mg2)n2 . . . (mgr)nr :

∑
1≤i≤e si) when m ≥

max{5, si | 1 ≤ i ≤ e} and si 
= 1 for each 1 ≤ i ≤ e.
Proof. Let Il = {0, 1, . . . , l − 1} for any positive integer l and I0 = ∅. Denote

Gx = {x} × Im for x ∈ X , and Sj = {∞j} × Isj for 1 ≤ j ≤ e, where {∞j | 1 ≤ j ≤
e}∩X = ∅. We construct the desired design on X ′ = (X × Im)∪S with the group set
G′ = {G×Im | G ∈ G} and the stem S = S1∪S2∪· · ·∪Se. Clearly, (X×Im)∩S = ∅.

For each block A ∈ B1, construct a CSCU-CQS(m|A| : s1) on XA = (A× Im)∪S1

having {Gx | x ∈ A} as its group set, S1 as its stem, and AA as its block set. Denote
GA = {Gx | x ∈ A} ∪ {S1}.

For each block A ∈ Bj , 2 ≤ j ≤ e, construct a CSCU-GDD(m|A|s1
j) on XA =

(A× Im) ∪ Sj having GA = {Gx | x ∈ A} ∪ {Sj} as its group set and AA as its block
set.

For each block A ∈ T , construct a CSCU-GDD(m|A|) on XA = A × Im having
GA = {Gx | x ∈ A} as its group set and AA as its block set.

Let B = (∪1≤i≤eBi)∪T . Then ∪A∈BAA is the block set of a CQS ((mg1)n1(mg2)n2

. . . (mgr)nr :
∑

1≤i≤e si). We try to find a CSCU of ∪A∈BAA.
First, by our assumption, when e 
= 0, we can arrange B into a sequence S′ =

[b0, b1, . . . , bp−1] where the blocks of B1 are consecutive with bp−2 ∈ B1 being the
tail-end, bp−1 ∈ T , and bp−2 ∩ bp−1 = ∅; when e = 0, we simply let bp−2 ∩ bp−1 = ∅.
Next, we replace each block bi by a cut CSCU Ti = [ai

0, a
i
1, . . . , a

i
qi−1] of Abi , where

ai
0 and ai

qi−1 are the two ends, and qi = |Abi |, 0 ≤ i ≤ p − 1. By the hypothesis and
the definition of a GDD, without loss of generality, we may assume that ai

0 intersects
each group in GA in at most one point. Now we have the following claim.

Claim. There exists a set of permutations {σk ∈ Pak
0
| 0 ≤ k ≤ p − 1} such that

in the cyclic sequence S = [σ0(T0), σ1(T1), . . . , σp−1(Tp−1)], we have σk−1(ak−1
qk−1−1) ∩
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σk(ak
0) = ∅ and d(σl−1(al−1

ql−1−1) ∪ σl(al
0), σk−1(ak−1

qk−1−1) ∪ σk(ak
0)) ≥ 4 for any 0 ≤

k, l ≤ p − 1, and |k − l| ≥ 2.
We use a recursive method to prove this claim. Denote Γ0 = {σ ∈ Pa0

0
| ap−1

qp−1−1∩
σ(a0

0) = ∅} ⊆ Pa0
0
. From the assumptions on ai

0 and bp−1, we know that |a0
0 ∩

ap−1
qp−1−1| ≤ 2. We consider all possible intersections of a0

0 and ap−1
qp−1−1. Let a0

0 =
{(x1, l1), (x2, l2), (x3, l3), (x4, l4)} and ap−1

qp−1−1 = {(y1, l
′
1), (y2, l

′
2), (y3, l

′
3), (y4, l

′
4)}. We

first consider the case that xi 
= ∞j for any 1 ≤ i ≤ 4 and 1 ≤ j ≤ e. If
|{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| = 0, then |Γ0| = m4; if |{x1, x2, x3, x4} ∩ {y1, y2, y3,
y4}| = 1, then |Γ0| = (m − 1)m3; if |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| = 2, then
|Γ0| = (m−1)2m2. Next we consider the case that xi = ∞j for a unique 1 ≤ i ≤ 4 and
a unique 1 ≤ j ≤ e, which implies that sj ≥ 2. If |{x1, x2, x3, x4}∩{y1, y2, y3, y4}| = 0,
then |Γ0| = sjm

3; if |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| = 1, then |Γ0| = sj(m − 1)m2;
if |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| = 2, then |Γ0| = sj(m − 1)2m. So we know that
|Γ0| ≥ min{m4, (m−1)m3, (m−1)2m2, sjm

3, sj(m−1)m2, sj(m−1)2m | sj ≥ 2} ≥ 1.
Choose σ0 ∈ Γ0 and let S0 = 〈σ0(T0)〉 be a noncyclic sequence of σ0(T0), that is,
〈σ0(T0)〉 is exactly the same as [σ0(To)] except that σ(a0

0) is not considered as a
successor of σ(a0

q0−1).
Similarly, we denote Γ1 = {σ ∈ Pa1

0
| σ0(a0

q0−1)∩σ(a1
0) = ∅} ⊆ Pa1

0
. Again, we con-

sider all possible intersections of a1
0 and σ(a0

q0−1). Let a1
0 = {(x1, l1), (x2, l2), (x3, l3),

(x4, l4)} and σ0(a0
q0−1) = {(y1, l

′
1), (y2, l

′
2), (y3, l

′
3), (y4, l

′
4)}. If yi 
= ∞j for any 1 ≤

i ≤ 4 and 1 ≤ j ≤ e, and all yi are distinct, then |Γ1| = m4 or (m − 1)m3 or
(m − 1)2m2 or sjm

3 or sj(m − 1)m2 or sj(m − 1)2m, with sj ≥ 2 and 1 ≤ j ≤ e,
depending on whether |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| is equal to 0 or 1 or 2, and
whether |{x1, x2, x3, x4} ∩ {∞j | 1 ≤ j ≤ e}| is equal to 0 or 1. If yi 
= ∞j for
any 1 ≤ i ≤ 4 and 1 ≤ j ≤ e, and exactly two of yi are equal, then |Γ1| = m4 or
(m−1)m3 or (m−2)m3 or (m−1)2m2 or (m−2)(m−1)m2 or sjm

3 or sj(m−1)m2 or
sj(m−2)m2 or sj(m−1)2m or sj(m−2)(m−1)m, with sj ≥ 2 and 1 ≤ j ≤ e, depend-
ing on whether |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| is equal to 0 or 1 or 2, and whether
|{x1, x2, x3, x4}∩{∞j | 1 ≤ j ≤ e}| is equal to 0 or 1. If yi 
= ∞j for any 1 ≤ i ≤ 4 and
1 ≤ j ≤ e, and yi1 = yi2 and yi3 = yi4 , but these two values are not the same, then
|Γ1| = m4 or (m− 2)m3 or (m− 2)2m2 or sjm

3 or sj(m− 2)m2 or sj(m− 2)2m, with
sj ≥ 2 and 1 ≤ j ≤ e, depending on whether |{x1, x2, x3, x4}∩{y1, y2, y3, y4}| is equal
to 0 or 1 or 2, and whether |{x1, x2, x3, x4} ∩ {∞j | 1 ≤ j ≤ e}| is equal to 0 or 1. If
yi = ∞j for a unique 1 ≤ i ≤ 4 and a unique 1 ≤ j ≤ e, then all yi should be distinct,
and |Γ1| = m4 or (m − 1)m3 or (m − 1)2m2 or sim

3 or si(m − 1)m2 or (sj − 1)m3

or si(m − 1)2m or (sj − 1)(m − 1)m2, with si ≥ 2, sj ≥ 2, and 1 ≤ i 
= j ≤ e,
depending on whether |{x1, x2, x3, x4} ∩ {y1, y2, y3, y4}| is equal to 0 or 1 or 2, and
whether |{x1, x2, x3, x4} ∩ {∞j | 1 ≤ j ≤ e}| is equal to 0 or 1. In any case, we know
that |Γ1| ≥ 1. Let S1 = 〈σ0(T0), σ1(T1)〉, where σ1 ∈ Γ1.

Suppose that there exists a set of permutations {σk ∈ Pak
0
| 0 ≤ k ≤ i−1 < p−2}

such that σk−1(ak−1
qk−1−1) ∩ σk(ak

0) = ∅ and d(σl−1(al−1
ql−1−1) ∪ σl(al

0), σk−1(ak−1
qk−1−1) ∪

σk(ak
0)) ≥ 4 for any 0 ≤ k, l ≤ i − 1, and |k − l| ≥ 2. Let Si−1 = 〈σ0(T0), σ1(T1), . . . ,

σi−1(Ti−1)〉.
For k = i, we try to find a permutation σi ∈ Pai

0
such that σi−1(ai−1

qi−1−1)∩σi(ai
0) =

∅ and d(σi−1(ai−1
qi−1−1) ∪ σi(ai

0), σl−1(al−1
ql−1−1) ∪ σl(al

0)) ≥ 4 for any 0 ≤ l < i − 1.
Let ai

0 = {(x1, l1), (x2, l2), (x3, l3), (x4, l4)} and σi−1(ai−1
qi−1−1) = {(y1, l

′
1), (y2, l

′
2),

(y3, l
′
3), (y4, l

′
4)}. Denote Γi = {σ ∈ Pai

0
| σi−1(ai−1

qi−1−1) ∩ σ(ai
0) = ∅} ⊆ Pai

0
. We first
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divide the problem into two possible cases.
(a) Suppose that {x1, x2, x3, x4} ∩ {y1, y2, y3, y4} = {∞j} for some j, 1 ≤ j ≤ e.

Then sj ≥ 2. For convenience, let x4 = y4 = ∞j . Then bi, bi−1 ∈ Bj and |bi ∩ bi−1| ≤
1. In a way similar to the above analysis, we can prove that |Γi| ≥ (sj−1)(m−1)m2 ≥
1. Now we choose σi,0 ∈ Γi, which satisfies that σi−1(ai−1

qi−1−1)∩ σi,0(ai
0) = ∅. If there

exists an index l, 0 ≤ l < i − 1, such that d(σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0), σl−1(al−1
ql−1−1) ∪

σl(al
0)) < 4, then exactly one of the two blocks {bl−1, bl} belongs to Bj . The rea-

son is explained below. If bl−1, bl ∈ Bj , then since bi−1, bi ∈ Bj , we know that
|(bi ∪ bi−1) ∩ (bl−1 ∪ bl)| ≤ |bi ∩ bl−1| + |bi−1 ∩ bl−1| + |bi ∩ bl| + |bi−1 ∩ bl| ≤ 4, and
hence |(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0)) ∩ (σl−1(al−1

ql−1−1) ∪ σl(al
0))| ≤ 6, which is impossible,

for in this case we would have d(σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0), σl−1(al−1
ql−1−1) ∪ σl(al

0)) ≥ 4.
On the other hand, if bl−1, bl 
∈ Bj , then (∞j , l

′′
4 ) 
∈ σl−1(al−1

ql−1−1) ∪ σl(al
0) for any

l′′4 ∈ Isj , so |(σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0)) ∩ (σl−1(al−1
ql−1−1) ∪ σl(al

0))| ≤ 6, which is again
impossible. Then there are two cases to be considered: bl−1 ∈ Bj , bl 
∈ Bj and bl ∈ Bj ,
bl−1 
∈ Bj . We first assume that bl−1 ∈ Bj and bl 
∈ Bj. Then clearly σl(al

0) ∩ Sj = ∅.
Since we have supposed that d(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0), σl−1(al−1

ql−1−1) ∪ σl(al
0)) <

4, i.e., |(σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0)) ∩ (σl−1(al−1
ql−1−1) ∪ σl(al

0))| ≥ 7, we should have
that one of |σl−1(al−1

ql−1−1) ∩ (σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0))| and |σl(al
0) ∩ (σi−1(ai−1

qi−1−1) ∪
σi,0(ai

0))| equals 4 and the other at least 3. Since bl−1 ∈ Bj , then |bl−1 ∩ bi| ≤ 1
and |bl−1 ∩ bi−1| ≤ 1, i.e., |(bl−1 ∪ {∞j}) ∩ (bi ∪ bi−1 ∪ {∞j})| ≤ 3, which im-
plies that |σl−1(al−1

ql−1−1) ∩ (σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0))| ≤ 3. Therefore, it is necessary
that |σl−1(al−1

ql−1−1) ∩ (σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0))| = 3 and |σl(al
0) ∩ (σi−1(ai−1

qi−1−1) ∪
σi,0(ai

0))| = 4. Then we can let σl−1(al−1
ql−1−1) = {(x1, σi,0(l1)), (y1, l

′
1), (∞j ,♦), (�, ∗)}

and σl(al
0) = {(x2, σi,0(l2)), (x3, σi,0(l3)), (y2, l

′
2), (y3, l

′
3)}, where ♦ ∈ {σi,0(l4), l′4}.

If ♦ = σi,0(l4), no permutation σ ∈ Γi satisfies that |(σi−1(ai−1
qi−1−1) ∪ σ(ai

0)) ∩
(σl−1(al−1

ql−1−1) ∪ σl(al
0))| ≥ 7 except σ = σi,0. If ♦ = l′4, then all the permuta-

tions σi,1 ∈ Γi which change (∞j , σi,0(l4)) to every element in {∞j} × (Zsj \ {l′4})
and fix the other three points in σi,0(ai

0) satisfy that |(σi−1(ai−1
qi−1−1)∪σi,1(σi,0(ai

0)))∩
(σl−1(al−1

ql−1−1) ∪ σl(al
0))| ≥ 7. So for such a pair (bl−1, bl), there are at most (sj − 1)

σ ∈ Γi such that d(σi−1(ai−1
qi−1−1) ∪ σ(ai

0), σl−1(al−1
ql−1−1) ∪ σl(al

0)) < 4. Now we com-
pute the number of such pairs (bl−1, bl) or, equivalently, the number of such bl. There
are

(
6
3

)
− 2 = 18 triples in {x1, x2, x3, y1, y2, y3} excluding the two triples {x1, x2, x3}

and {y1, y2, y3}. Since each triple occurs in exactly one block of B, each block of
B contains exactly 4 triples, |bl ∩ {x1, x2, x3}| = 2, and |bl ∩ {y1, y2, y3}| = 2, we
know that there are at most �18/4� = 4 such bl. From the assumption, we have
|Γi| ≥ (m − 1)m2(sj − 1) > 4(sj − 1), which implies that there exists at least one
permutation σi ∈ Γi such that σi−1(ai−1

qi−1−1) ∩ σi(ai
0) = ∅ and d(σi−1(ai−1

qi−1−1) ∪
σi(ai

0), σl−1(al−1
ql−1−1)∪σl(al

0)) ≥ 4 for any 0 ≤ l < i−1. For the case that bl ∈ Bj and
bl−1 
∈ Bj , we can also prove, in the same fashion as above, that the same assertion
holds.

(b) Suppose that {x1, x2, x3, x4} ∩ {y1, y2, y3, y4} 
= {∞j} for any j, 1 ≤ j ≤ e.
We further divide this case into two possible subcases.

(b.1) y1 = y2 = x1 and y3 = x2, i.e., σi−1(ai−1
qi−1−1) = {(x1, l

′
1), (x1, l

′
2), (x2, l

′
3), (y4,

l′4)}. If y4 = x2, then |Γi| ≥ min{(m − 2)2m2, (m − 2)2msj | sj ≥ 2} ≥ 1. If y4 
= x2,
then |Γi| ≥ min{(m − 2)(m − 1)m2, (m − 2)(m − 1)msj | sj ≥ 2} ≥ 1. In any
case, we know that |Γi| ≥ 1. Assume that σi−1(ai−1

qi−1−1) ∩ σi,0(ai
0) = ∅. We now
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prove that d(σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0), σl−1(al−1
ql−1−1) ∪ σl(al

0)) ≥ 4 for 0 ≤ l ≤ i − 1.
If {x1, x2} ⊂ bl, then |bl ∩ (bi−1 ∪ bi)| = 2. Since al

0 is 4-partite, we know that
|(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0)) ∩ σl(al

0)| ≤ 2, which makes d(σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0), σl−1

(al−1
ql−1−1) ∪ σl(al

0)) ≥ 4. If {x1, x2} ⊂ bl−1, then since y1 = y2 = x1, we know that
bi−1 ∈ B1 and thus bl−1 
∈ B1, implying that al−1

ql−1−1 is a block in some ingredient
GDD and therefore is 4-partite. So |(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0)) ∩ σl−1(al−1

ql−1−1)| ≤ 2,
which ensures that d(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0), σl−1(al−1

ql−1−1) ∪ σl(al
0)) ≥ 4. We still

need to consider the case when {x1, x2} 
⊂ bl−1 and {x1, x2} 
⊂ bl. If y4 = x2,
then |(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0)) ∩ σl(al

0)| ≤ 2, which makes again d(σi−1(ai−1
qi−1−1) ∪

σi,0(ai
0), σl−1(al−1

ql−1−1) ∪ σl(al
0)) ≥ 4. If y4 
= x2, then |(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0)) ∩

σl(al
0)| ≤ 3 and |(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0)) ∩ σl−1(al−1

ql−1−1)| ≤ 3, which also ensures
that d(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0), σl−1(al−1

ql−1−1) ∪ σl(al
0)) ≥ 4.

(b.2) All cases except (b.1), that is, σi−1(ai−1
qi−1−1) ∈ {{(x1, l

′
1), (x1, l

′
2), (y3, l

′
3), (y4,

l′4)}, {(x1, l
′
1), (x2, l

′
2), (y3, l

′
3), (y4, l

′
4)}, {(x1, l

′
1), (y2, l

′
2), (y3, l

′
3), (y4, l

′
4)}, {(y1, l

′
1), (y2,

l′2), (y3, l
′
3), (y4, l

′
4)}}, where yi 
= xj for any i anf j. A tedious calculation shows

that |Γi| ≥ min{(m− 2)m3, (m− 2)m2sj , (m− 1)2m2, (m− 1)2msj , (m− 1)m3, (m−
1)m2sj , m

4, m3sj | sj ≥ 2} ≥ 2(m−2)m2 ≥ 1. Choose σi,0 ∈ Γi. Then σi−1(ai−1
qi−1−1)∩

σi,0(ai
0) = ∅. If there exists an index l, 0 ≤ l < i − 1, such that d(σi−1(ai−1

qi−1−1) ∪
σi,0(ai

0), σl−1(al−1
ql−1−1)∪σl(al

0)) < 4, then |(σi−1(ai−1
qi−1−1)∪σi,0(ai

0))∩(σl−1(al−1
ql−1−1)∪

σl(al
0))| ≥ 7. Let R = {r ⊂ X ′ | r ⊂ σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0), r 
⊂ σi−1(ai−1

qi−1−1), r 
⊂
σi,0(ai

0), and |r| = 3}; then |R| ≤
(
4
2

)
×

(
4
1

)
× 2 = 48. Suppose that there are t1 l’s

such that |(σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0)) ∩ (σl−1(al−1
ql−1−1) ∪ σl(al

0))| = 8 and t2 l’s such
that |(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0)) ∩ (σl−1(al−1

ql−1−1) ∪ σl(al
0))| = 7. For the former case,

each block in {σl−1(al−1
ql−1−1), σl(al

0)} contains four triples from R. Even if there is
one point in one of these two blocks with its second component changed, we still have
|(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0)) ∩ (σl−1(al−1

ql−1−1) ∪ σl(al
0))| ≥ 7, that is, d(σi−1(ai−1

qi−1−1) ∪
σi,0(ai

0)), (σl−1(al−1
ql−1−1)∪σl(al

0)) < 4. So there are at most max{4(m−1)+1, 3(m−1)+
(sj−1)+1 | sj ≥ 2} = 4m−3 σ ∈ Γi such that d(σi−1(ai−1

qi−1−1)∪σ(ai
0), σl−1(al−1

ql−1−1)∪
σl(al

0)) < 4. For the latter case, one block in {σl−1(al−1
ql−1−1), σl(al

0)} contains four
triples and the other one contains only one triple from R. Even if the second compo-
nent of the uncommon point is changed in the block which contains only one triple
from R, we still have |(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0)) ∩ (σl−1(al−1

ql−1−1) ∪ σl(al
0))| ≥ 7, that

is, d(σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0)), (σl−1(al−1
ql−1−1) ∪ σl(al

0)) < 4. So there are at most
max{m, sj | sj ≥ 2} = m σ ∈ Γi such that d(σi−1(ai−1

qi−1−1) ∪ σ(ai
0), σl−1(al−1

ql−1−1) ∪
σl(al

0)) < 4. Here, 8t1 + 5t2 ≤ |R| ≤ 48. Since t1 ≤ |R|/8 ≤ 6, we have t1(4m − 3) +
t2m ≤ t1(4m−3)+(48−8t1)m/5 = t1(2.4m−3)+9.6m ≤ 6(2.4m−3)+9.6m = 24m−
18. From the assumption that m ≥ 5, we have 2(m−2)m2 > 24m−18, which implies
that there exists at least one permutation σi ∈ Γi such that σi−1(ai−1

qi−1−1)∩σi(ai
0) = ∅

and d(σi−1(ai−1
qi−1−1) ∪ σi(ai

0), σl−1(al−1
ql−1−1) ∪ σl(al

0)) ≥ 4 for any 0 ≤ l < i − 1.
Then we set Si = 〈Si−1, σi(Ti)〉 for 1 ≤ i ≤ p − 2.
When k = p − 1, we want to find a permutation σp−1 ∈ Pap−1

0
such that

σp−2(a
p−2
qp−2−1) ∩ σp−1(a

p−1
0 ) = ∅, σp−1(a

p−1
qp−1−1) = ap−1

qp−1−1, and d(σp−2(a
p−2
qp−2−1) ∩

σp−1(a
p−1
0 ), σl−1(al−1

ql−1−1) ∪ σl(al
0)) ≥ 4 for any 1 ≤ l < p − 2. By assumption,
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bp−2 ∩ bp−1 = ∅. This implies that σp−2(a
p−2
qp−2−1) ∩ σp−1(a

p−1
0 ) = ∅ for any σp−1 ∈

Pap−1
0

. Denote Γp−1 = {σ ∈ Pap−1
0

| σ(ap−1
qp−1−1) = ap−1

qp−1−1}. Since bp−1 ∈ T is replaced

by the cut CSCU Tp−1 = [ap−1
0 , ap−1

1 , . . . , ap−1
qp−1−1], then, as we said in section 1, we

have that ap−1
0 ∩ ap−1

qp−1−1 = ∅. This, together with σ(ap−1
qp−1−1) = ap−1

qp−1−1, shows that
|Γp−1| ≥ (m−1)4 ≥ 1. Similar to the proof in (b.2), we can prove that there are at most
(24m − 18) σ ∈ Γi such that d(σp−2(a

p−2
qp−2−1) ∩ σ(ap−1

0 ), σl−1(al−1
ql−1−1) ∪ σl(al

0)) < 4
for some l, 1 ≤ l < p− 2. From the assumption, we have (m− 1)4 > 24m− 18. Thus
we have proved the existence of σp−1.

Now we have finished the proof of the claim. For convenience, we use Tk to denote
σk(Tk) for 0 ≤ k ≤ p − 1. Then S = [T0, T1, . . . , Tp−1] satisfies the conditions that
ak−1

qk−1−1 ∩ ak
0 = ∅ and d(al−1

ql−1−1 ∪ al
0, a

k−1
qk−1−1 ∪ ak

0) ≥ 4 for any 0 ≤ k, l ≤ p − 1, and
|k − l| ≥ 2. Next, we will prove S is actually a CSCU.

To do this, we should check the distance between any two elements of C =
(
⋃p−1

i=0 Abi)∪(
⋃p−1

i=0 Ti)∪(
⋃p−1

i=0 {a
i−1
qi−1−1∪ai

0}). Elements of C are classified into three
types.

Type I: a ∈ Abi for some i, 0 ≤ i ≤ p − 1. If bi ∈ B1, we say that a belongs to
Type ICQS; otherwise, a belongs to Type IGDD.

Type II: c ∈ Ti for some i, 0 ≤ i ≤ p − 1. If bi ∈ B1, we say that c belongs to
Type IICQS; otherwise, c belongs to Type IIGDD.

Type III: c ∈
⋃p−1

i=0 {a
i−1
qi−1−1 ∪ ai

0}.
Since the resultant design is a CQS, we easily know the following:
Case 1: d(a, a′) ≥ 4 for any two distinct a, a′ from Type I;
Case 2: d(a, c) ≥ 4 for any a from Type I and c from Types II, III, respectively.

Since each Ti, 0 ≤ i ≤ p − 1, is a CSCU, we have
Case 3: d(c, c′) ≥ 4 for any c, c′ ∈ Ti, 0 ≤ i ≤ p − 1, from Type II.

For each a ∈ Abi from Type IGDD, |a ∩ Xbj | ≤ 2 when a 
∈ Abj , so
Case 4: d(c, c′) ≥ 4 for any c ∈ Ti from Type IIGDD and c′ ∈ Tj from Type II.

For each a ∈ Abi from Type ICQS, we know that bi ∈ B1 and |a ∩ Xbj | ≤ 2 when
bj ∈ B1 and a 
∈ Abj , so

Case 5: d(c, c′) ≥ 4 for any c, c′ from Type IICQS.
If bi 
∈ B1, then by the definition of a GDD and our special arrangement of B into
S′ = [b0, b1, . . . , bp−1], we know that |a ∩ a′| ≤ 1 for any a ∈ Abi and a′ ∈ Abi−1 , so

Case 6: d(c, ai−1
qi−1−1 ∪ ai

0) ≥ 4 for any c ∈ Ti from Type IIGDD.
If bi ∈ B1, then |a ∩ Xbi | ≤ 2 for any a 
∈ Abi , so

Case 7: d(c, ai−1
qi−1−1 ∪ ai

0) ≥ 4 for any c ∈ Ti from Type IICQS.
Since aj

0 is 4-partite, we know that |aj
0 ∩Xbi | ≤ 2 for any 1 ≤ i 
= j ≤ p− 1, and then

Case 8: d(c, aj−1
qj−1−1 ∪ aj

0) ≥ 4 for any c ∈ Ti and 1 ≤ i 
= j ≤ p − 1.
Since ai

0 ∩ ai
qi−1 = ∅ and |ai−1

qi−1−1 ∩ ai
qi−1| ≤ 2, we have

Case 9: d(ai−1
qi−1−1 ∪ ai

0, a
i
qi−1 ∪ ai+1

0 ) ≥ 4, 0 ≤ i ≤ p − 1.
From the property of S, we know that

Case 10: d(ai−1
qi−1−1 ∪ ai

0, a
l−1
ql−1−1 ∪ al

0) ≥ 4 for |i − l| ≥ 2.
Then we have proved that S is in fact a CSCU.
Theorem 2.5. In Theorem 2.4, if we change the condition (1) to be
(1′) the block set of each ingredient design can be arranged into a CSCU with two

consecutive 4-partite blocks,
then there exists a CSCU-CQS ((mg1)n1(mg2)n2 . . . (mgr)nr :

∑
1≤i≤e si) when m ≥

max{4, si | 1 ≤ i ≤ e} and si 
= 1 for each 1 ≤ i ≤ e.
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Proof. Since the proof is similar to that of Theorem 2.4, we will look at only those
places which are different from Theorem 2.4.

First, without loss of generality, we may assume that both ai
0 and ai

qi−1 of Ti =
[ai

0, a
i
1, . . . , a

i
qi−1] are 4-partite for any i, 0 ≤ i ≤ p − 1.

Remember that in the proof of Theorem 2.4, we need m = 5 only in Case (b.2).
So we can omit the proof for all cases except for (b.2). We divide Case (b.2) into two
subcases.

(b.2.1) If xi = ∞j for some i and j, 1 ≤ i ≤ 4, 1 ≤ j ≤ e, then |Γi| ≥ min{(m −
1)2msj , (m−1)m2sj , m

3sj | sj ≥ 2} = (m−1)2msj ≥ 1. Assume that σi−1(ai−1
qi−1−1)∩

σi,0(ai
0) = ∅. If there exists an index l, 0 ≤ l < i − 1, such that d(σi−1(ai−1

qi−1−1) ∪
σi,0(ai

0), σl−1(al−1
ql−1−1) ∪ σl(al

0)) < 4, then, as we knew already in case (b.2) of The-
orem 2.4, |(σi−1(ai−1

qi−1−1) ∪ σi,0(ai
0)) ∩ (σl−1(al−1

ql−1−1) ∪ σl(al
0))| ≥ 7. Again, let R =

{r ⊂ X ′ | r ⊂ σi−1(ai−1
qi−1−1) ∪ σi,0(ai

0), r 
⊂ σi−1(ai−1
qi−1−1), r 
⊂ σi,0(ai

0), and |r| = 3},
and then we know that |R| ≤

(
4
2

)
×

(
4
1

)
× 2 = 48. Suppose again that there are t1 l’s

such that |(σi−1(ai−1
qi−1−1)∪σi,0(ai

0))∩(σl−1(al−1
ql−1−1)∪σl(al

0))| = 8 and t2 l’s such that
|(σi−1(ai−1

qi−1−1)∪σi,0(ai
0))∩(σl−1(al−1

ql−1−1)∪σl(al
0))| = 7. For the former case, just as in

case (b.2) of Theorem 2.4, we can prove that there are at most 3(m−1)+(sj−1)+1 =
3m+sj−3 σ ∈ Γi such that d(σi−1(ai−1

qi−1−1)∪σ(ai
0), σl−1(al−1

ql−1−1)∪σl(al
0)) < 4. Sim-

ilarly, for the latter case, we can prove that there are at most max{m, sj} = m σ ∈ Γi

such that d(σi−1(ai−1
qi−1−1)∪σ(ai

0), σl−1(al−1
ql−1−1)∪σl(al

0)) < 4. Since 8t1 +5t2 ≤ |R| ≤
48, we have t1 ≤ |R|/8 ≤ 6, and t1(3m+sj−3)+t2m ≤ t1(3m+sj−3)+(48−8t1)m/5 =
t1(1.4m+sj−3)+9.6m ≤ 6(1.4m+sj−3)+9.6m = 18m+6sj−18. From the assump-
tions that m ≥ 4 and sj ≥ 2, we have (m − 2)m2sj > 18m + 6sj − 18, which implies
that there exists at least one permutation σi ∈ Γi such that σi−1(ai−1

qi−1−1)∩σi(ai
0) = ∅

and d(σi−1(ai−1
qi−1−1) ∪ σi(ai

0), σl−1(al−1
ql−1−1) ∪ σl(al

0)) ≥ 4 for any 0 ≤ l < i − 1.
(b.2.2) If xi 
= ∞j for any i and j, 1 ≤ i ≤ 4, 1 ≤ j ≤ e, then the proof is exactly

the same as that for (b.2.1) except that sj is replaced by m.
Corollary 2.6. Let m ≥ 4 and gn ≥ 16. Assume there exists a GDD(3, 4, gn)

of type gn. If there exists a CSCU-GDD(3, 4, 4m) of type m4, then there exists a
CSCU-GDD(3, 4, gnm) of type (mg)n.

Proof. In a GDD(3, 4, gn) of type gn, the number of blocks is λ0 = g3n(n−1)(n−2)
24 ,

the number of blocks containing one point is λ1 = g2(n−1)(n−2)
6 , and the number of

blocks containing two distinct points is λ2 = g(n−2)
2 . There exist two disjoint blocks

if and only if λ0 >
(
4
1

)
(λ1 − 1)−

(
4
2

)
(λ2 − 1) + 1. This inequality is satisfied provided

that gn ≥ 16. Then apply Theorem 2.5 with e = 0.
Theorem 2.7. There exists a CSCU-GDD(3, 4, 4g) of type g4 for any g ≥ 5.
Proof. Let X = Z4 × Zg. We build a GDD(3, 4, 4g) of type g4 on X with the

group set G = {{i} × Zg | i ∈ Z4} and the block set B = {α(i, j, k) = {(0, i), (1, i +
j), (2, k), (3, k + j)} | i, j, k ∈ Zg}. Let T (j, k) = 〈α(0, j, k), α(1, j, k + 1), . . . , α(g −
1, j, k + g − 1)〉, Tj = 〈T (j, j), T (j, j + 1), . . . , T (j, j − 1)〉, and S = [T0, T1, . . . , Tg−1].
It is clear that S = B if we view S as a block set. We will check that S is in fact a
CSCU.

It is easy to check that any two consecutive blocks in S are disjoint and d(α(i, j, k),
α(i′, j′, k′)) ≥ 4 for any distinct (i, j, k) and (i′, j′, k′). Let ct be the union of two
consecutive blocks. Then d(α(i, j, k), ct) ≥ 4 for any ct ∈ Ŝ. Thus we need only
consider the distance between any two unions. We separate the unions into the
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following three types.
Type I: c1(i, j, k) = α(i, j, k) ∪ α(i + 1, j, k + 1), 0 ≤ i ≤ g − 2, 0 ≤ j, k ≤ g − 1.
Type II: c2(j, k) = α(g − 1, j, k − 2) ∪ α(0, j, k), 0 ≤ j, k ≤ g − 1.
Type III: c3(j) = α(g − 1, j − 1, j − 3) ∪ α(0, j, j), 0 ≤ j ≤ g − 1.
We should check that any two unions from these three types have distance more

than or equal to 4. Let nq be the number of points in c1(i, j, k) ∩ c1(i′, j′, k′) with
the first coordinate being q, where q ∈ Z4. Then nq ≤ 2 for any q ∈ Z4. If there
are at least two nq’s of the c1(i, j, k) ∩ c1(i′, j′, k′) having value no more than 1, then
|c1(i, j, k) ∩ c1(i′, j′, k′)| ≤ 6, which means that d(c1(i, j, k), c1(i′, j′, k′)) ≥ 4.

Case a: Two unions from Type I, say, c1(i, j, k) = {(0, i), (0, i+1), (1, i+j), (1, i+
j+1), (2, k), (2, k+1), (3, k+j), (3, k+j+1)} and c1(i′, j′, k′) = {(0, i′), (0, i′+1), (1, i′+
j′), (1, i′ + j′ + 1), (2, k′), (2, k′ + 1), (3, k′ + j′), (3, k′ + j′ + 1)}. We will show that
|c1(i, j, k)∩ c1(i′, j′, k′)| ≤ 6 for any distinct (i, j, k) and (i′, j′, k′). Note the fact that
if l 
= l′ and g ≥ 5, then |{l, l+1}∩{l′, l′+1}| ≤ 1. Since each of the three parameters
{i, j, k} is related to two different first coordinates, it is easy to check that at least
two of the nq’s have value no more than 1. The details are listed below.

(1) When i 
= i′, j 
= j′, and k 
= k′, we have n0 ≤ 1 and n2 ≤ 1.
(2) When i 
= i′, j 
= j′, and k = k′, then k + j 
= k′ + j′, so n0 ≤ 1 and n3 ≤ 1.
(3) When i 
= i′, j = j′, and k 
= k′, we have n0 ≤ 1 and n2 ≤ 1.
(4) When i 
= i′, j = j′, and k = k′, then i + j 
= i′ + j′, so n0 ≤ 1 and n1 ≤ 1.
(5) When i = i′, j 
= j′, and k 
= k′, then i + j 
= i′ + j′, so n1 ≤ 1 and n2 ≤ 1.
(6) When i = i′, j 
= j′, and k = k′, then i + j 
= i′ + j′ and k + j 
= k′ + j′, so

n1 ≤ 1 and n3 ≤ 1.
(7) When i = i′, j = j′, and k 
= k′, then k + j 
= k′ + j′, so n2 ≤ 1, and n3 ≤ 1.
Case b: Two unions from Type I and Type II, respectively, say, c1(i, j, k) =

{(0, i), (0, i + 1), (1, i + j), (1, i + j + 1), (2, k), (2, k + 1), (3, k + j), (3, k + j + 1)} and
c2(j′, k′) = {(0, g− 1), (0, 0), (1, j′− 1), (1, j′), (2, k′ − 2), (2, k′), (3, k′ + j′ − 2), (3, k′ +
j′)}. Since 0 ≤ i ≤ g − 2 in c1(i, j, k), we know that n0 ≤ 1. Since g ≥ 5, we have
|{k, k + 1} ∩ {k′ − 2, k′}| ≤ 1, i.e., n2 ≤ 1. Then d(c1(i, j, k), c2(j′, k′)) ≥ 4.

Case c: Two unions from Type I and Type III, respectively, say, c1(i, j, k) =
{(0, i), (0, i + 1), (1, i + j), (1, i + j + 1), (2, k), (2, k + 1), (3, k + j), (3, k + j + 1)} and
c3(j′) = {(0, g−1), (0, 0), (1, j′−2), (1, j′), (2, j′−3), (2, j′), (3, 2j′−4), (3, 2j′)}. Since
0 ≤ i ≤ g − 2 and g ≥ 5, in a similar way, we can know that n0 ≤ 1 and n1 ≤ 1.

Case d: Two unions from Type II, say, c2(j, k) = {(0, g−1), (0, 0), (1, j−1), (1, j),
(2, k − 2), (2, k), (3, k + j − 2), (3, k + j)} and c2(j′, k′) = {(0, g − 1), (0, 0), (1, j′ −
1), (1, j′), (2, k′ − 2), (2, k′), (3, k′ + j′ − 2), (3, k′ + j′)}, where (j, k) and (j′, k′) are
distinct. Similarly to Case a, we can show that there are at least two nq’s having
value no more than 1.

Case e: Two unions from Type II and Type III, respectively, say, c2(j, k) =
{(0, g−1), (0, 0), (1, j−1), (1, j), (2, k−2), (2, k), (3, k+ j−2), (3, k+ j)} and c3(j′) =
{(0, g − 1), (0, 0), (1, j′ − 2), (1, j′), (2, j′ − 3), (2, j′), (3, 2j′ − 4), (3, 2j′)}. It is readily
checked that at least one of the following assertions holds:

(e.1): n1 ≤ 1 and n2 ≤ 1;
(e.2): n1 ≤ 1 and n3 ≤ 1.

Case f: Two unions from Type III, say, c3(j) = {(0, g − 1), (0, 0), (1, j − 2), (1, j),
(2, j−3), (2, j), (3, 2j−4), (3, 2j)} and c3(j′) = {(0, g−1), (0, 0), (1, j′−2), (1, j′), (2, j′−
3), (2, j′), (3, 2j′ − 4), (3, 2j′)}, where j 
= j′. Similarly to Case a, we can prove that
there are at least two nq’s having value no more than 1.
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3. Direct constructions. In this section, we directly construct some small
CSCUs which will be used in the recursive constructions. In order to save space,
we list only a few examples. The interested reader is referred to the authors or to
the new results website for Handbook of Combinatorial Designs [2] maintained by
Professor Jeff Dinitz of the University of Vermont for a copy of the detailed cyclic
sequences of blocks.

Lemma 3.1. There exists a CSCU-CQS(gn : s) for each (g, n, s) ∈ {(4, 4, 2), (4,
4, 4), (6, 3, 2), (6, 3, 4), (6, 5, 2), (6, 5, 4), (8, 3, 2), (12, 3, 2), (12, 3, 4), (12, 4, 2), (12, 4, 4)}.

Proof. We list only the sequence of a CSCU-CQS(44 : 2) on the point set X = Z18,
with the group set G = {{i, 4 + i, 8 + i, 12 + i} | i ∈ Z4} and the stem S = {16, 17}.
S =[{6, 7, 12, 17}, {4, 10, 11, 16}, {12, 14, 15, 17}, {2, 5, 7, 16}, {1, 6, 8, 10}, {2, 7, 9, 17}, {5, 10, 15, 16},

{0, 1, 2, 14}, {4, 5, 6, 10}, {1, 3, 14, 16}, {0, 6, 9, 10}, {1, 2, 15, 17}, {3, 6, 9, 16}, {1, 7, 10, 17},
{9, 11, 14, 16}, {3, 5, 6, 17}, {2, 4, 13, 14}, {1, 6, 11, 16}, {3, 13, 14, 17}, {1, 7, 11, 12}, {2, 8, 9, 14},
{0, 7, 11, 13}, {2, 5, 12, 14}, {4, 6, 7, 8}, {0, 3, 5, 15}, {6, 10, 12, 13}, {1, 3, 4, 15}, {5, 7, 8, 11},
{0, 2, 3, 12}, {4, 7, 9, 11}, {3, 8, 13, 15}, {0, 10, 11, 12}, {2, 5, 9, 15}, {3, 4, 8, 10}, {0, 6, 12, 15},
{2, 4, 8, 11}, {3, 9, 12, 15}, {1, 2, 7, 13}, {4, 8, 14, 15}, {1, 3, 6, 13}, {2, 4, 9, 10}, {0, 7, 12, 14},
{5, 6, 9, 11}, {1, 10, 13, 15}, {3, 5, 9, 14}, {0, 2, 10, 13}, {5, 6, 8, 14}, {0, 1, 3, 7}, {2, 6, 8, 13},
{5, 7, 9, 10}, {1, 11, 13, 14}, {2, 5, 8, 10}, {3, 11, 12, 13}, {0, 2, 5, 6}, {3, 7, 8, 9}, {1, 4, 10, 14},
{2, 6, 9, 12}, {3, 4, 5, 11}, {1, 2, 10, 12}, {0, 3, 9, 11}, {1, 2, 4, 6}, {8, 10, 13, 14}, {3, 5, 7, 12},
{0, 6, 13, 14}, {1, 3, 8, 11}, {0, 5, 10, 14}, {3, 4, 7, 13}, {9, 10, 12, 14}, {4, 5, 7, 15}, {1, 6, 12, 14},
{8, 9, 11, 15}, {0, 3, 4, 6}, {7, 12, 13, 15}, {4, 6, 9, 14}, {5, 11, 12, 15}, {0, 3, 8, 14}, {4, 11, 13, 15},
{0, 7, 8, 10}, {1, 9, 14, 15}, {0, 2, 4, 7}, {3, 6, 8, 12}, {0, 1, 11, 15}, {2, 7, 8, 12}, {0, 4, 11, 14},
{1, 7, 8, 15}, {3, 4, 12, 14}, {0, 7, 9, 15}, {4, 6, 11, 12}, {1, 3, 9, 10}, {8, 11, 12, 14}, {1, 2, 3, 5},
{0, 4, 10, 15}, {1, 6, 7, 9}, {0, 2, 8, 15}, {4, 7, 10, 12}, {1, 2, 9, 11}, {8, 10, 12, 15}, {2, 3, 9, 13},
{0, 6, 8, 11}, {5, 13, 14, 15}, {2, 3, 6, 7}, {1, 5, 10, 11}, {0, 4, 9, 13}, {10, 11, 14, 15}, {5, 6, 7, 13},
{2, 4, 12, 15}, {9, 10, 11, 13}, {1, 5, 8, 12}, {7, 9, 13, 14}, {0, 1, 4, 5}, {2, 6, 11, 15}, {3, 7, 10, 14},
{2, 5, 11, 13}, {1, 4, 9, 12}, {2, 3, 14, 15}, {0, 5, 8, 13}, {2, 7, 10, 15}, {0, 1, 12, 13}, {6, 7, 14, 15},
{4, 5, 8, 9}, {2, 7, 11, 14}, {1, 5, 6, 15}, {8, 9, 12, 13}, {3, 6, 11, 14}, {4, 5, 12, 13}, {6, 7, 10, 11},
{0, 1, 8, 9}, {3, 6, 10, 15}, {1, 5, 7, 14}, {6, 9, 13, 15}, {2, 3, 10, 11}, {4, 5, 14, 16}, {2, 12, 13, 17},
{0, 1, 10, 16}, {2, 4, 5, 17}, {8, 9, 10, 16}, {0, 1, 6, 17}, {3, 5, 10, 13}, {6, 8, 9, 17}, {12, 13, 14, 16},
{5, 8, 15, 17}, {1, 4, 7, 16}, {0, 5, 9, 12}, {1, 4, 8, 13}, {5, 10, 12, 17}, {0, 2, 9, 16}, {4, 10, 13, 17},
{1, 2, 8, 16}, {0, 9, 14, 17}, {4, 6, 13, 16}, {1, 8, 14, 17}, {5, 6, 12, 16}, {0, 13, 15, 17}, {7, 9, 12, 16},
{1, 4, 11, 17}, {0, 3, 13, 16}, {9, 11, 12, 17}, {3, 5, 8, 16}, {0, 2, 11, 17}, {1, 12, 15, 16}, {3, 4, 9, 17},
{0, 6, 7, 16}, {1, 3, 12, 17}, {0, 5, 11, 16}, {7, 8, 13, 17}, {4, 9, 15, 16}, {0, 5, 7, 17}, {6, 8, 15, 16},
{0, 3, 10, 17}, {8, 11, 13, 16}, {4, 6, 15, 17}, {7, 8, 14, 16}, {6, 11, 13, 17}, {3, 10, 12, 16}, {4, 7, 14, 17},
{2, 11, 12, 16}, {9, 10, 15, 17}, {2, 3, 4, 16}, {8, 10, 11, 17}, {0, 14, 15, 16}, {2, 3, 8, 17}, {7, 10, 13, 16},
{5, 11, 14, 17}, {2, 13, 15, 16}].

Lemma 3.2. There exists a CSCU-GDD(gu) for each (g, u) ∈ {(3, 4), (4, 4), (4, 5),
(6, 5), (6, 6)}.

Proof. We list only two examples here. First, we list the sequence of a CSCU-
GDD(34) on the point set X = Z12 with the group set G = {{i, 4+ i, 8 + i} | i ∈ Z4}.

S =[{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, {0, 1, 6, 7}, {4, 5, 10, 11}, {8, 9, 2, 3}, {0, 1, 10, 11},
{4, 5, 2, 3}, {8, 9, 6, 7}, {0, 5, 10, 3}, {4, 9, 2, 7}, {8, 1, 6, 11}, {0, 5, 2, 7}, {4, 9, 6, 11},
{8, 1, 10, 3}, {0, 5, 6, 11}, {4, 9, 10, 3}, {8, 1, 2, 7}, {0, 9, 6, 3}, {4, 1, 10, 7}, {8, 5, 2, 11},
{0, 9, 10, 7}, {4, 1, 2, 11}, {8, 5, 6, 3}, {0, 9, 2, 11}, {4, 1, 6, 3}, {8, 5, 10, 7}].
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Next, we list the sequence of a CSCU-GDD(44) on the point set X = Z16 with
the group set G = {{i, 4 + i, 8 + i, 12 + i} | i ∈ Z4}.

S =[{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}, {0, 1, 6, 7}, {4, 5, 10, 11}, {8, 9, 14, 15},
{2, 3, 12, 13}, {0, 1, 10, 11}, {4, 5, 14, 15}, {2, 3, 8, 9}, {6, 7, 12, 13}, {2, 3, 4, 5}, {0, 1, 14, 15},
{6, 7, 8, 9}, {10, 11, 12, 13}, {0, 2, 5, 7}, {4, 6, 9, 11}, {8, 10, 13, 15}, {1, 3, 12, 14}, {0, 5, 6, 11},
{4, 9, 10, 15}, {3, 8, 13, 14}, {1, 2, 7, 12}, {0, 5, 10, 15}, {3, 4, 9, 14}, {2, 7, 8, 13}, {1, 6, 11, 12},
{2, 4, 7, 9}, {6, 8, 11, 13}, {1, 10, 12, 15}, {0, 3, 5, 14}, {4, 6, 13, 15}, {0, 2, 9, 11}, {1, 3, 8, 10},
{5, 7, 12, 14}, {0, 6, 9, 15}, {3, 4, 10, 13}, {1, 7, 8, 14}, {2, 5, 11, 12}, {0, 3, 9, 10}, {4, 7, 13, 14},
{1, 2, 8, 11}, {5, 6, 12, 15}, {2, 4, 11, 13}, {1, 6, 8, 15}, {3, 5, 10, 12}, {0, 7, 9, 14}, {1, 3, 4, 6},
{0, 2, 13, 15}, {5, 7, 8, 10}, {9, 11, 12, 14}, {0, 3, 6, 13}, {1, 4, 7, 10}, {5, 8, 11, 14}, {0, 7, 10, 13},
{5, 9, 12, 15}, {1, 4, 11, 14}, {2, 5, 8, 15}, {3, 6, 9, 12}, {1, 2, 4, 15}, {0, 11, 13, 14}, {3, 5, 6, 8},
{7, 9, 10, 12}].

Lemma 3.3. There exists a CSCU-HSQS(v : s) for each (v, s) ∈ {(16, 4), (20, 8),
(22, 10), (26, 10)}.

Proof. Here we list only the sequence of a CSCU-HSQS(16 : 4) on the point set
X = Z16 with the hole set {0, 1, 2, 3}.

S =[{3, 4, 11, 12}, {0, 1, 6, 7}, {8, 9, 10, 11}, {0, 1, 4, 5}, {2, 3, 6, 7}, {8, 9, 12, 13}, {0, 2, 4, 6},
{8, 9, 14, 15}, {0, 2, 5, 7}, {8, 10, 12, 14}, {0, 3, 4, 7}, {8, 10, 13, 15}, {0, 3, 5, 6}, {8, 11, 12, 15},
{4, 5, 6, 7}, {8, 11, 13, 14}, {2, 3, 4, 5}, {12, 13, 14, 15}, {1, 3, 5, 7}, {10, 11, 14, 15}, {1, 3, 4, 6},
{10, 11, 12, 13}, {1, 2, 5, 6}, {9, 11, 13, 15}, {1, 2, 4, 7}, {9, 11, 12, 14}, {0, 1, 10, 15}, {2, 7, 8, 9},
{0, 1, 11, 14}, {2, 7, 10, 15}, {0, 1, 12, 13}, {2, 7, 11, 14}, {9, 10, 12, 15}, {3, 6, 11, 14}, {0, 1, 8, 9},
{3, 6, 10, 15}, {2, 7, 12, 13}, {4, 5, 10, 15}, {3, 6, 8, 9}, {0, 2, 12, 15}, {4, 5, 8, 9}, {3, 6, 12, 13},
{4, 5, 11, 14}, {1, 3, 12, 15}, {9, 10, 13, 14}, {5, 6, 12, 15}, {0, 2, 8, 10}, {4, 5, 12, 13}, {0, 2, 9, 11},
{1, 3, 8, 10}, {0, 2, 13, 14}, {1, 3, 9, 11}, {4, 7, 8, 10}, {1, 3, 13, 14}, {4, 7, 9, 11}, {5, 6, 8, 10},
{2, 4, 9, 13}, {0, 3, 8, 11}, {4, 7, 13, 14}, {1, 5, 10, 12}, {0, 3, 9, 13}, {4, 7, 12, 15}, {5, 6, 13, 14},
{0, 3, 10, 12}, {2, 4, 8, 11}, {0, 3, 14, 15}, {5, 6, 9, 11}, {2, 4, 10, 12}, {1, 5, 9, 13}, {0, 4, 8, 12},
{1, 5, 14, 15}, {6, 7, 10, 12}, {2, 4, 14, 15}, {1, 5, 8, 11}, {6, 7, 9, 13}, {0, 4, 10, 14}, {6, 7, 8, 11},
{0, 4, 9, 15}, {2, 6, 11, 13}, {3, 5, 8, 12}, {0, 4, 11, 13}, {6, 7, 14, 15}, {3, 5, 11, 13}, {2, 6, 10, 14},
{3, 5, 9, 15}, {1, 7, 8, 12}, {3, 5, 10, 14}, {2, 6, 8, 12}, {1, 7, 10, 14}, {2, 6, 9, 15}, {0, 5, 8, 13},
{1, 7, 9, 15}, {0, 5, 12, 14}, {4, 6, 11, 15}, {0, 5, 9, 10}, {1, 7, 11, 13}, {4, 6, 12, 14}, {3, 7, 8, 13},
{0, 5, 11, 15}, {4, 6, 8, 13}, {3, 7, 11, 15}, {4, 6, 9, 10}, {3, 7, 12, 14}, {1, 2, 8, 13}, {3, 7, 9, 10},
{1, 2, 12, 14}, {0, 6, 13, 15}, {1, 2, 9, 10}, {0, 6, 8, 14}, {1, 2, 11, 15}, {0, 6, 9, 12}, {5, 7, 8, 14},
{1, 4, 13, 15}, {0, 6, 10, 11}, {5, 7, 13, 15}, {1, 4, 9, 12}, {5, 7, 10, 11}, {1, 4, 8, 14}, {5, 7, 9, 12},
{2, 3, 8, 14}, {1, 4, 10, 11}, {2, 3, 13, 15}, {0, 7, 9, 14}, {2, 3, 10, 11}, {0, 7, 8, 15}, {1, 6, 9, 14},
{0, 7, 11, 12}, {1, 6, 8, 15}, {2, 5, 10, 13}, {3, 4, 8, 15}, {1, 6, 10, 13}, {2, 3, 9, 12}, {0, 7, 10, 13},
{2, 5, 9, 14}, {3, 4, 10, 13}, {2, 5, 11, 12}, {3, 4, 9, 14}, {1, 6, 11, 12}, {2, 5, 8, 15}].

Lemma 3.4. There exists a BSCU(v) for each v ∈ {20, 22, 26, 34, 38}.
Proof. Here we show only the existence of a BSCU(20). Take X = Z19 ∪ {∞} as

the point set. Let

A =[{0, 4, 5, 6}, {2, 7, 12, 14}, {1, 3, 4, 9}, {0, 8, 14, 17}, {∞, 1, 7, 9}, {5, 11, 18, 2},
{0, 1, 3, 7}, {2, 6, 11, 17}, {∞, 1, 10, 13}, {14, 16, 18, 2}, {7, 15, 0, 6}, {1, 8, 9, 12},
{5, 6, 13, 15}, {1, 2, 12, 17}, {∞, 8, 9, 13}],

and S = [A, A + 1, A + 2, . . . , A + 18], where additions are taken modulo 19. Then S
is the required BSCU(20).
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4. Results obtained by recursion. First, we list some known results on 3-
designs. A t-wise balanced design (or t-BD) of order v and block sizes from K, denoted
by S(t, K, v), is a pair (X,B), where X is a set of v elements (called points), B is a
collection of subsets (called blocks) of X , each of cardinality from K, such that every
t-subset of X is contained in a unique block of B. The set of all positive integers v
such that an S(t, K, v) exists is denoted by Bt(K).

Theorem 4.1. (see [13]). There exists a CQS(6n : 0) for any positive integer n.
Theorem 4.2. (see [5]). B3({4}) = {v > 0 | v ≡ 2, 4 (mod 6)}.
Theorem 4.3. (see [11]). B3({4, 5, 6}) = {v > 0 | v ≡ 0, 1, 2 (mod 4) and v 
=

9, 13}.
Lemma 4.4. (see [15]). There exists a BSCU(v) for v ∈ {14, 16, 32, 46, 56}.
Lemma 4.5. If there exists a CSCU-GDD(gn), then there exists a CSCU-GDD

((mg)n) for any integer m ≥ 3.
Proof. Combining Lemma 3.2 with Theorem 2.7, we know that there exists a

CSCU-GDD(m4) for any m ≥ 3.
Let S = [b0, . . . , bq−1] be the CSCU-GDD(gn). For any bi ∈ S, there is a CSCU-

GDD(m4), denoted Si, on the point set bi × Im for any integer m ≥ 3. Let S′ =
[S0, . . . , Sq−1]. Then it is easy to check that S′ is a CSCU-GDD((mg)n).

Lemma 4.6. There exists a CSCU-CQS(12n : s) for each s ∈ {8, 10} and n ≥ 4.
Proof. For each n ≡ 0, 1 (mod 3) and n ≥ 4, there exists an S(3, 4, 2n + 2) by

Theorem 4.2. Deleting two points from this 3-BD yields a 2-FG(3, ({3}, {3}, {4}), 2n)
of type 2n. By counting the numbers of blocks in the S(3, 4, 2n + 2) containing t,
where t = 0, 1, 2 common points, we can know that in the 2-FG(3, ({3}, {3}, {4}), 2n)
of type 2n, when n ≥ 4, there exist two disjoint blocks with one of size 4 and the other
of size 3. For each s ∈ {8, 10}, applying Theorem 2.4 with a CSCU-CQS(63 : s − 6)
and a CSCU-GDD(64), we obtain a CSCU-CQS(12n : s). Here, the ingredient designs
come from Theorem 2.7 and Lemma 3.1.

For any n ≡ 2 (mod 3) and n ≥ 5, there is a CQS(6
n+1
3 : 0) by Theorem 4.1.

For n = 5, 8, 11, it can be checked from the detailed construction in [13] for each
of these CQS(6

n+1
3 : 0) that there exist two disjoint blocks a and b intersecting two

groups, say, g1 and g2, in two points, respectively. So there are two points y ∈ g1 and
z ∈ g2 not covered by a and b. Choose x ∈ a ∩ g2 and delete x, y. Then we obtain a
2-FG(3, ({3, 5}, {3, 5}, {4, 6}), 10) of type 2n with two disjoint blocks a\{x} ∈ B1 and
b ∈ T . For n ≥ 14, let x, y be two points from different groups gx, gy, respectively,
and g be a group disjoint from a block containing x, y. By deleting x and y, we obtain
a 2-FG(3, ({3, 5}, {3, 5}, {4, 6}), 2n) of type 2n with two disjoint blocks gx \ {x} ∈ B1

and g ∈ T . Then for each s ∈ {8, 10}, by applying Theorem 2.4 with a CSCU-
CQS(63 : s− 6), a CSCU-CQS(65 : s− 6), a CSCU-GDD(64), and a CSCU-GDD(66),
we obtain a CSCU-CQS(12n : s), where the ingredient designs come from Theorem 2.7
and Lemmas 3.1 and 3.2.

Lemma 4.7. There exists a BSCU(v) for each v ≡ 8, 10 (mod 12) and v ≥ 12.
Proof. For each v ∈ {20, 22, 32, 34, 46}, there is a BSCU(v) by Lemmas 3.4 and 4.4.

For v = 44, there is a BSCU(v) by applying Theorem 1.1.(1) with a BSCU(22).
For each v ≡ 8, 10 (mod 12) and v ≥ 56, there is a CSCU-CQS(12n : s) where

v = 12n+s, n ≥ 4, and s ∈ {8, 10} by Lemma 4.6. Then by applying Theorem 2.3 with
a CSCU-HSQS(12+s : s), we obtain a CSCU-HSQS(12n+s : 12+s), and furthermore,
by applying Theorem 2.2 with a BSCU(12 + s), we obtain a BSCU(12n + s), where
the ingredient CSCU-HSQS comes from Lemma 3.3.

Lemma 4.8. There exists a CSCU-GDD(12u) for each u ∈ {5, 6}.
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Proof. From Lemma 3.2, we know that there exists a CSCU-GDD(45). Applying
Lemma 4.5 with m = 3, we obtain a CSCU-GDD(125).

From Theorem 2.1, we know that there exists a GDD(36). Applying Corollary 2.6
with a CSCU-GDD(44) from Lemma 3.2, we obtain a CSCU-GDD(126).

Lemma 4.9. There exists a CSCU-CQS(12n : s) for each n ∈ {5, 8} and s ∈
{2, 4}.

Proof. For each n ∈ {5, 8}, there is an S(3, 5, 3n + 2) in [6]. Deleting two points
gives a 2-FG(3, ({4}, {4}, {5}), 3n) of type 3n, which is also a 1-FG(3, ({4}, {4, 5}), 3n)
of type 3n. By counting the numbers of blocks in the S(3, 5, 3n+2) containing t, where
t = 0, 1, 2 common points, we can know that in the 2-FG(3, ({4}, {4}, {5}), 3n) of type
3n, when n = 5, 8, there exist two disjoint blocks with one of size 5 and the other of
size 4. For each s ∈ {2, 4}, by applying Theorem 2.5 with a CSCU-CQS(44 : s), a
CSCU-GDD(44), and a CSCU-GDD(45), which come from Lemmas 3.1 and 3.2, we
obtain a CSCU-CQS(12n : s).

Lemma 4.10. There exists a CSCU-CQS(12n : s) for s ∈ {2, 4} and n ≡ 0, 1, 3
(mod 4), n ≥ 7, n 
= 8, 12.

Proof. For each n ≡ 0, 1, 3 (mod 4), n ≥ 7, and n 
= 8, 12, there exists an
S(3, {4, 5, 6}, n + 1) (X,B) by Theorem 4.3. Let x, y be two points of X , and
b1, b2, . . . , bw be the blocks in B containing both x and y. Then {b1 \ {x, y}, b2 \
{x, y}, . . . , bw \ {x, y}} is a partition of X \ {x, y}, and 2 ≤ |bi \ {x, y}| ≤ 4 for
i = 1, 2, . . . , w. Let u ∈ b1 \ {x, y}, v ∈ b2 \ {x, y}, and b be a block containing
both u and v. If w ≥ 7, which would happen if n ≥ 27, then there must exist one
bi \ {x, y}, say, i = i0, which is disjoint with b. Deleting u from this 3-BD yields a
1-FG(3, ({3, 4, 5}, {4, 5, 6}), n) of type 1n with two disjoint blocks b \ {u} ∈ B1 and
bi0 ∈ T . For each n ≡ 1, 3 (mod 6), there exists an S(3, 4, n+1) by Theorem 4.2. By
counting the numbers of blocks in the S(3, 4, n+1) containing t, where t = 0, 1, 2 com-
mon points, we can know that there exist two disjoint blocks b, b′ when n ≥ 7. Deleting
one point x ∈ b from this 3-BD yields a 1-FG(3, ({3}, {4}), n) of type 1n with two
disjoint blocks b\{x} ∈ B1 and b′ ∈ T . For n = 16, there exists an S(3, 5, 17) from [6].
By the same method as above, we know that there exists a 1-FG(3, ({4}, {5}), n) of
type 1n with two disjoint blocks, one in B1 and the other in T . For n = 20, 24, there
exist an S(3, 6, 22) and an S(3, 6, 26) from [6]. In a similar fashion, we can prove the
existence of two disjoint blocks in each of these two Steiner systems. Deleting two
points from one of these two disjoint blocks yields a 1-FG(3, ({4, 5}, {5, 6}), n) of type
1n with two disjoint blocks, one in B1 and the other in T . For n = 11, 17, 23, just as
in the proof of Lemma 4.6, we can know that there exist two disjoint blocks in the
CQS(6

n+1
6 : 0). Deleting one point from one of these two disjoint blocks yields a 1-

FG(3, ({3, 5}, {4, 6}), n) of type 1n with two disjoint blocks, one in B1 and the other in
T . Now for each s ∈ {2, 4}, by applying Theorem 2.4 with a CSCU-CQS(12h : s) and
a CSCU-GDD(12h+1) for each h ∈ {3, 4, 5}, we obtain a CSCU-CQS(12n : s). Here,
the ingredient designs come from Theorem 2.7 and Lemmas 3.1, 4.8, and 4.9.

Lemma 4.11. There exists a BSCU(12n + s) for s ∈ {2, 4}, n ≡ 0, 1, 3 (mod 4),
n ≥ 4, and n 
= 12.

Proof. For each n ≡ 0, 1, 3 (mod 4), n ≥ 4, and n 
= 12, there exists a CSCU-
CQS(12n : s) for s ∈ {2, 4} by Lemmas 3.1, 4.9, and 4.10. Then by applying The-
orem 2.3 with a CSCU-HSQS(12 + s : s) and Theorem 2.2 with a BSCU(12 + s),
we obtain a BSCU(12n + s). Here, the ingredient designs come from Theorem 1.1
and Lemmas 3.3 and 4.4, where the BSCU(14) in Theorem 1.1 is actually a CSCU-
HSQS(12 + 2 : 2).
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Lemma 4.12. There exists a BSCU(48n + 26) for any n ≥ 0.
Proof. A BSCU(26) was shown in Lemma 3.4. For each integer n ≥ 1, as was

shown in the proof of Lemma 4.6, there exists a 2-FG(3, ({3}, {3}, {4}), 2(3n + 1))
of type 23n+1 with two disjoint blocks, one being of size 4 and the other of size 3.
Applying Theorem 2.4 with a CSCU-CQS(83 : 2) and a CSCU-GDD(84), we obtain a
CSCU-CQS(163n+1 : 10). Then by applying Theorem 2.3 with a CSCU-HSQS(26 : 10)
and Theorem 2.2 with a BSCU(26), we obtain a BSCU(48n+26). Here, the ingredient
designs come from Theorem 2.7 and Lemmas 3.1, 3.3, and 3.4.

Lemma 4.13. There exists a BSCU(12n + s) for n ∈ {1, 3, 12} and s ∈ {2, 4}.
Proof. For each v ∈ {14, 16, 38}, there is a BSCU(v) by Lemmas 3.4 and 4.4. For

each v ∈ {40, 148}, there is a BSCU(v) by applying Theorem 1.1.(1) with a BSCU(u)
for u ∈ {20, 74} in Lemmas 3.4 and 4.12, respectively.

For v = 146, there exists an S(3, 6, 26) in [6]. Deleting two points gives a 2-
FG(3, ({5}, {5}, {6}), 24) of type 46, which is also a 1-FG(3, ({5}, {5, 6}), 24) of type
46. It can be easily shown that this 2-FG(3, ({5}, {5}, {6}), 24) has two disjoint
blocks with one of size 6 and the other of size 5. Applying Theorem 2.4 with a
CSCU-CQS(65 : 2), a CSCU-GDD(65), and a CSCU-GDD(66), we obtain a CSCU-
CQS(246 : 2). Then applying Theorem 2.3 with a CSCU-HSQS(26 : 2) and Theo-
rem 2.2 with a BSCU(26), we obtain a BSCU(146). Here, the ingredient designs come
from Theorem 1.1 and Lemmas 3.1 and 3.2, where the BSCU(26) in Theorem 1.1 is
actually a CSCU-HSQS(26 : 2).

Lemma 4.14. There exists a BSCU(v) for v ≡ 28 (mod 48).
Proof. Combining Lemmas 4.11 and 4.13, we have the fact that there exists a

BSCU(12n + 2) for each n ≡ 1 (mod 2). Then apply Theorem 1.1.(1).

5. Concluding remarks. Combining Lemmas 4.7 and 4.11–4.14, we have the
following conclusion.

Theorem 5.1. The necessary conditions for the existence of a BSCU(v), namely,
v ≡ 2, 4 (mod 6) and v ≥ 4, are also sufficient, with two exceptions v = 8, 10.
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