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Linear Size Constant-Composition Codes
Meeting the Johnson Bound
Yeow Meng Chee, Senior Member, IEEE, and Xiande Zhang

Abstract— The Johnson-type upper bound on the maximum
size of a code of length n, distance d = 2w − 1, and constant

composition w is � n
w1

�, where w is the total weight and w1 is

the largest component of w. Recently, Chee et al. proved that
this upper bound can be achieved for all constant-composition
codes of sufficiently large lengths. Let Nccc(w) be the smallest
such length. The determination of Nccc(w) is trivial for binary
codes. This paper provides a lower bound on Nccc(w), which
is shown to be tight for all ternary and quaternary codes by
giving new combinatorial constructions. Consequently, by the
refining method, we determine the values of Nccc(w), for all
q-ary constant-composition codes, provided that 3w1 ≥ w with
finite possible exceptions.

Index Terms— Constant-composition codes, Johnson-type
bound, balanced packings, difference families.

I. INTRODUCTION

CONSTANT-COMPOSITION codes have attracted a lot
attention [1]–[21] in recent years due to their vast

applications, such as in determining the zero error decision
feedback capacity of discrete memoryless channels [22], [23],
multiple-access communications [24], [25], spherical codes for
modulation [26], DNA codes [27], [28], powerline communi-
cations [29], [30], and frequency hopping [4].

Although constant-composition codes have been used since
the early 1980s to bound error and erasure probabilities
in decision feedback channels [31], their systematic study
only began in late 1990s with Svanström [32]. Nowadays,
the problem of determining the maximum size of a constant-
composition code constitutes a central problem in their study
due to their close relations to combinatorial design the-
ory [2]–[5], [7], [9], [10], [14]–[17], [19], [20], [33], [34].

For integers m ≤ n, the set of integers {m, m + 1, . . . , n}
is denoted by [m, n]. When m = 1, the set [1, n] is further
abbreviated to [n]. If m > n, then [m, n] is defined to be
empty. The ring Z/nZ is denoted by Zn . For finite sets
R and X , RX denotes the set of vectors of length |X |, where
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each component of a vector u ∈ RX has value in R and is
indexed by an element of X , that is, u = (ux)x∈X , and ux ∈ R
for each x ∈ X .

A q-ary code of length n is a set C ⊆ Z
X
q , for some X of

size n. The elements of C are called codewords. The support
of a vector u ∈ Z

X
q is supp(u) = {x ∈ X : ux �= 0}. The

Hamming weight of a vector u ∈ Z
X
q is defined as ‖u‖ =

|supp(u)|. The distance induced by this weight is the Hamming
distance, denoted by dH (·, ·), so that dH (u, v) = ‖u − v‖, for
u, v ∈ Z

X
q .

A code C is said to have distance d if dH (u, v) ≥ d for all
distinct u, v ∈ C. The composition of a vector u ∈ Z

X
q is the

tuple w = �w1, . . . , wq−1�, where wi = |{x ∈ X : ux = i}|,
i ∈ Zq \ {0}. A code C is said to have constant weight w if
every codeword in C has weight w, and have constant compo-
sition w if every codeword has composition w. Hence, every
constant-composition code is a constant-weight code. In this
paper, attention is restricted to constant-composition codes.
For constant-weight codes, interested readers are referred
to [35].

A q-ary code of length n, distance d , and constant com-
position w is denoted an (n, d, w)q -code. The maximum
size of an (n, d, w)q -code is denoted Aq(n, d, w), and an
(n, d, w)q -code attaining the maximum size is said to be
optimal. In an (n, d, w)q -code, reordering the components of
w or deleting zero components of w will not affect the distance
and composition properties. Hence, through out this paper,
when we talk about a composition w = �w1, w2 . . . , wq−1�,
we always assume that all components are positive and listed
in non-increasing order, that is, w1 ≥ w2 ≥ · · · ≥ wq−1 ≥ 1.
For succinctness, define the total weight w := ∑q−1

i=1 wi .
The Johnson-type bound of Svanström for ternary constant-

composition codes [1] could be easily extended to the follow-
ing (see also [4]).

Proposition 1 (Johnson Bound):

Aq(n, d, �w1, w2 . . . , wq−1�)

≤
⌊

n

w1
Aq(n − 1, d, �w1 − 1, w2, . . . , wq−1�)

⌋

.

Definition 1: Let q > q ′ be two positive integers. A compo-
sition w = �w1, . . . , wq� is a refinement of v = �v1, . . . , vq ′�
if there exist pairwise disjoint sets S1, . . . , Sq ′ ⊂ [q] satisfying
∪ j∈[q ′]Sj = [q], such that

∑
i∈S j

wi = v j for each j ∈ [q ′].
Chu et al. [4] made the following observation.
Lemma 1: If w is a refinement of v , then Aq(n, d, w) ≥

Aq(n, d, v).
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In [2], Chee et al. showed that Aq(n, d, w) = O(n) if and
only if d ≥ 2w − 1. For d ≥ 2w, it is trivial to determine
values of Aq(n, d, w). For d = 2w − 1,

Aq(n, 2w − 1, w) ≤
⌊

n

w1

⌋

for all w by Proposition 1. When q = 2, we know that
A2(n, 2w−1, �w1�) = � n

w1
�, trivially. When q = 3, the values

of A3(n, 2w − 1, w) has been completely determined by
Svanström et al. [3]. Besides this, the following asymptotic
statement was proved in [2].

Theorem 1 (Chee et al. [2]): Let w = �w1, w2 . . . , wq−1�.

Then Aq(n, 2w − 1, w) = � n

w1
� for all sufficiently large n.

A. Problem Status and Contribution

In Theorem 1, the hypothesis that n is sufficiently large
must be satisfied. But how large must n be? More precisely,
for a composition w = �w1, w2 . . . , wq−1�, let

Nccc(w) = min{n0 ∈ N :
Aq(n, 2w − 1, w) =

⌊
n

w1

⌋

for all n ≥ n0},
which was first defined in [2]. For binary codes, it is trivial
that Nccc(�w1�) = 1. Explicit bounds on Nccc(w) for general
w were given in [2].

Proposition 2: For any composition w, we have

w2 − w1(w − 1) ≤ Nccc(w) ≤ 4w1(w − 1)2 + 1.

The upper and lower bounds on Nccc(w) in Proposition 2
differ approximately by a factor of 4w1. Our interest in this
paper is in determining the exact values of Nccc(w). In fact,
a stronger lower bound of Nccc(w) is established in Section II,
and proved to be tight for ternary constant-composition codes.
In Section III, we provide a general combinatorial construction
for optimal linear size constant composition codes. Based
on this construction, Sections IV and V show that our new
lower bound of Nccc(w) is also tight for quaternary constant-
composition codes. Finally, by refining and lengthening tech-
niques, we determine the values of Nccc(w) for all w provided
that 3w1 ≥ w. Our main result is summarized as below.

Main Theorem 1: Given a composition w with at least two
components. Let λ =  w

w1
� and s = λw1 − w. Then

Nccc(w) ≥ λ(λ − 1)w2
1 − 2(λ − 1)sw1 + w1 − �2s

λ
�.

In particular, equality holds for all w provided that
3w1 ≥ w, and w is not a refinement of any composition in
{�4, 4, 2�, �4, 3, 3�, �5, 5, 3�, �5, 4, 4�}.

Previously, exact values of Nccc(w) were known only for
binary codes or for compositions w with total weight at
most six.

II. LOWER BOUNDS

In this section, we prove the lower bound of Nccc(w) in
Main Theorem 1. Chee et al. [2] showed that the following
two conditions are necessary and sufficient for a q-ary code
C of constant weight w to have distance 2w − 1:

(C1) for any distinct u, v ∈ C, |supp(u) ∩ supp(v)| ≤ 1,
and

(C2) for any distinct u, v ∈ C, if x ∈ supp(u) ∩ supp(v),
then ux �= vx .

The idea of deducing our lower bound is based on the above
two conditions, which have been used in [2] to obtain the
lower bound in Proposition 2.

Let C = {u(1), . . . , u(|C|)} be an (n, 2w−1, w)q -code. Then,
C can be regarded as an |C| × n matrix C , whose j th row is
u( j ), j ∈ [|C|]. Let Ni be the number of nonzero entries in
column i of C , i ∈ [n]. Then,

∑

i∈[n]
Ni = |C|w. (1)

In each column of C , we associate each pair of distinct
nonzero entries with the pair of rows that contain these entries.
There are

(Ni
2

)
such pairs of nonzero entries in column i of

C . Therefore, there are
∑

i∈[n]
(Ni

2

)
such pairs in all columns

of C . Since there are no pairs of distinct codewords in C whose
support intersect in two elements, the

∑
i∈[n]

(Ni
2

)
pairs of rows

associated with the
∑

i∈[n]
(Ni

2

)
pairs of distinct nonzero entries

are also all distinct. Hence,
∑

i∈[n]

(
Ni

2

)

≤
(|C|

2

)

. (2)

We will use Eq. (2) to obtain our lower bound on Nccc(w).
Given a composition w, let λ :=  w

w1
� and s := λw1 − w.

Since q ≥ 3, we have λ ≥ 2 and 0 ≤ s < w1.
We first deal with the case when w1|n. Let n = Mw1 and

|C| = M . It is easy to show that the left hand side of Eq. (2),∑
i∈[n]

(Ni
2

)
achieves the minimum value when all Ni have

almost the same values, that is, Ni equals λ or λ−1, i ∈ [n] by
Eq. (1). Assume that there are x columns such that Ni = λ−1.
Then by Eq. (1),

Mw = λ (Mw1 − x) + (λ − 1)x .

Hence x = λMw1 − Mw = Ms. By Eq. (2), we have
(

λ

2

)

(Mw1 − Ms) +
(

λ − 1

2

)

Ms ≤
(

M

2

)

,

which yields that M ≥ λ(λ − 1)w1 − 2(λ − 1)s + 1. Let
μ := λ(λ − 1)w1 − 2(λ − 1)s. Then

n ≥ (μ + 1)w1,

that is, (μ+ 1)w1 is the smallest possible length n which is a

multiple of w1 such that Aq(n, 2w − 1, w) =
⌊

n

w1

⌋

.

Next, we deal with length n such that μw1 < n <
(μ + 1)w1. Suppose that |C| = μ and n = μw1 + r , where
1 ≤ r < w1. We need to find the smallest integer r such that
Eqs. (1) and (2) both hold. By doing the same arguments as
the case when w1|n, we deduce that λ(λ − 1)r ≥ μ, that is,

r ≥  μ

λ(λ − 1)
� = w1 −

⌊
2s

λ

⌋

.

Since r < w1, we need 2s ≥ λ in this case.
Now we have proved the following lower bound on

Nccc(w).
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Proposition 3: Given a composition w with at least two
components. Let λ =  w

w1
� and s = λw1 − w. Then

Nccc(w) ≥ μw1 +  μ

λ(λ − 1)
� = (μ + 1)w1 −

⌊
2s

λ

⌋

,

where μ = λ(λ − 1)w1 − 2(λ − 1)s.
As mentioned above, (μ + 1)w1 is the smallest possi-

ble integer n which is a multiple of w1 such that Aq(n,
2w − 1, w) = � n

w1
�. Further,

(μ + 1)w1 −
⌊

2s

λ

⌋

= w2 − w1(w − 1) + (w1s − s2 − �2s

λ
�).

Since w1s − s2 − � 2s
λ � ≥ 0 when λ ≥ 2, the lower bound in

Proposition 3 is stronger than that in Proposition 2.
Observe that in Proposition 3, the lower bound only

depends on the total weight w and the biggest component
w1. By Lemma 1, it is easy to prove the following fact.

Lemma 2: Suppose that w is a refinement of v such that
w1 = v1. If Nccc(v) achieves the lower bound in Proposition 3,
so does Nccc(w).

Now we show that for ternary constant-composition codes,
the lower bound in Proposition 3 is always achievable.

Proposition 4: For all w1 ≥ w2 ≥ 1, we have
Nccc(�w1, w2�) = 2w1w2 + w2.

Proof: Let w = �w1, w2�. Then λ = 2 and s = w1 − w2.
By Proposition 3, Nccc(w) ≥ 2w1w2 + w2. By [3],

A3(n, 2w − 1, w) = max{M : n ≥
M(w1 + max{w2 − M − 1

2
, 0})}.

So we only need to check that for all n ≥ 2w1w2 + w2,
A3(n, 2w − 1, w) = � n

w1
�. Let

F(n) := n − M(w1 + max{w2 − M − 1

2
, 0}),

where M = � n

w1
� is a function of n. Since A3(n, 2w−1, w) ≤

� n

w1
� for all w, it suffices to check that F(n) ≥ 0 for all n ≥

2w1w2 +w2. We prove it by induction on n. It is easy to show
that F(2w1w2 + w2) = 0. Suppose that F(n) ≥ 0 for some
n ≥ 2w1w2 +w2, we want to show that F(n +1) ≥ 0 too. Let
n = Mw1+r , where 0 ≤ r < w1 and M ≥ 2w2. If r < w1−1,
then n + 1 = Mw1 + r + 1. Hence F(n + 1) = F(n) + 1 ≥ 1.
If r = w1 − 1, then n + 1 = (M + 1)w1. Hence F(n + 1) = 0.
This completes the proof.

III. A COMBINATORIAL CONSTRUCTION

In this section, we provide a general combinatorial con-
struction for optimal (n, 2w − 1, w)q -codes of size � n

w1
�,

when the length n ≥ (μ + 1)w1 − ⌊ 2s
λ

⌋
, where μ =

λ(λ − 1)w1 − 2(λ − 1)s, λ =  w
w1

� and s = λw1 − w. From
now on, we assume that n ≥ (μ+1)w1 −⌊ 2s

λ

⌋
. By Lemma 2,

we can also assume that the composition w is not a refinement
of any v such that w1 = v1.

Note that Aq(n, 2w − 1, w) ≤ M for all length n ∈
[Mw1, Mw1 + w1 − 1]. If 2s < λ, we only need to construct

optimal codes for length n which is a multiple of w1, that
is n ∈ {Mw1 : M ≥ μ + 1}. If 2s ≥ λ, we also need to
construct optimal codes for length n = (μ + 1)w1 − ⌊2s

λ

⌋ =
μw1 +  μ

λ(λ−1)�. In this case, μw1 < n < (μ + 1)w1, and
the optimal codes have size upper bounded by μ. For other
length n, apply the lengthening method (adding zeros in the
end of codewords) used in [2]. For convenience, let

S(w) = {(M, Mw1) : M ≥ μ + 1} ∪
{(μ,μw1 +  μ

λ(λ − 1)
�) : if 2s ≥ λ},

which is the collection of pairs (M, n) that we need to
construct an (n, 2w − 1, w)q -code of size M .

Before giving our construction, we introduce necessary
terminology in combinatorial design theory. A set system is
a pair (X,B) such that X is a finite set of points and B is
a set of subsets of X , called blocks. The order of the set
system is |X |, the number of points. For a set of nonnegative
integers K , a set system (X,B) is said to be K -uniform if
|B| ∈ K for all B ∈ B.

A (v, K )-packing is a K -uniform set system (X,B) of
order v, such that each pair of X occurs in at most one block
in B. The packing number D(v, K ) is the maximum number
of blocks in any (v, K )-packing. A (v, K )-packing (X,B) is
said to be optimal if |B| = D(v, K ). If K = {k}, then we
write k instead of {k} for short. The values of D(v, k) have
been determined for all v when k ∈ {3, 4} [37]. In particular,
we have

D(v, 3) =

⎧
⎪⎨

⎪⎩

⌊v

3

⌊
v−1

2

⌋⌋
− 1, if v ≡ 5 (mod 6);

⌊v

3

⌊
v−1

2

⌋⌋
, otherwise.

(3)

In fact, when v ≡ 1, 3 (mod 6), an optimal (v, 3)-packing
is also called a Steiner triple system of order v, denoted by
STS(v). In this case, each pair of points occurs exactly once.

Suppose that C is an (n, 2w−1, w)q -code of size M , where
(M, n) ∈ S(w). As in Section II, C can be regarded as an
M × n matrix C , whose rows are codewords of C. For each
column c ∈ [n], we assume that Nc = λ or λ − 1, although
it is not necessarily the case. Further, each entry from [q − 1]
occurs at most once in each column. Let the rows of C be
indexed by ZM . Then we can define a (q − 1)-tuple Ac =
(a1, a2, . . . , aq−1) ∈ (ZM ∪ {∗})q−1 for each column c, with
ai being the index of the row containing symbol i in column
c, i ∈ [q − 1]. If some symbol i does not occur in column c,
then let ai = ∗. Let A = {Ac : c ∈ [n]}, then A satisfies the
following properties.

(T1) For each c, all the elements in Ac excluding ∗ are
distinct. Let Bc be the set containing all elements
in Ac excluding ∗ and B = {Bc : c ∈ [n]}. Then
(ZM ,B) is an (M, {λ, λ − 1})-packing of size n.

(T2) For each position i ∈ [q − 1] (referring positions in
Ac), each element of ZM occurs in position i exactly
wi times in A.

Example 1: Let w = �2, 2, 1�. Then λ = 3 and s = 1. The
following is the matrix form of an optimal (18, 9, w)4-code of
size 9 from [2]. Let the rows of C be indexed with elements
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TABLE I

DISTRIBUTION OF BLOCK SIZES λ AND λ − 1

TABLE II

DISTRIBUTION OF BLOCK SIZES 3 AND 2

in Z9. Then the corresponding triples of A are listed below
each column of C .

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 2 0 0 0 0 2 0 3 0 0 0 0 0 0
0 0 1 0 0 1 2 0 0 0 0 2 0 3 0 0 0 0
0 0 0 0 1 0 0 1 2 0 0 0 0 2 0 3 0 0
0 0 0 0 0 0 1 0 0 1 2 0 0 0 0 2 0 3
0 3 0 0 0 0 0 0 1 0 0 1 2 0 0 0 0 2
0 2 0 3 0 0 0 0 0 0 1 0 0 1 2 0 0 0
0 0 0 2 0 3 0 0 0 0 0 0 1 0 0 1 2 0
2 0 0 0 0 2 0 3 0 0 0 0 0 0 1 0 0 1
0 1 2 0 0 0 0 2 0 3 0 0 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 8 1 0 2 1 3 2 4 3 5 4 6 5 7 6 8 7
7 5 8 6 0 7 1 8 2 0 3 1 4 2 5 3 6 4
∗ 4 ∗ 5 ∗ 6 ∗ 7 ∗ 8 ∗ 0 ∗ 1 ∗ 2 ∗ 3

It is easy to check that A satisfies the properties (T1)
and (T2).

The converse is true. Given a pair (ZM ,A), where
A ⊂ (ZM ∪ {∗})q−1. If A satisfies (T1) and (T2) for a
composition w, then we can construct an M ×|A| matrix C in
a natural way, where the rows of C form an (|A|, 2w−1, w)q -
code of size M . In fact, (T1) guarantees the code has minimum
distance 2w − 1, while (T2) guarantees each codeword is
of constant composition w. Such a pair (ZM ,A) is called a
w-balanced (M, q − 1)-packing.

Proposition 5: If there exists a w-balanced (M, q − 1)-
packing of size n, then there exists an (n, 2w − 1, w)q-code
of size M.

We aim to construct optimal (n, 2w − 1, w)q -codes of size
M by establishing the existence of w-balanced (M, q − 1)-
packings of size n for (M, n) ∈ S(w). By the similar argu-
ments as in Section II, we can compute the numbers of blocks
of sizes λ and λ − 1 in the (M, {λ, λ − 1})-packing defined
in (T1). The details of these numbers are listed in Table I.

The next two sections will study linear size quater-
nary constant-composition codes. Given a composition w =
�w1, w2, w3�, if w1 ≥ w2 + w3, then w is a refinement of
�w1, w2 + w3�. By Lemma 2 and Proposition 4, the value of
Nccc(w) can be determined for this case. Hence we assume
that w1 < w2 + w3, that is, μ = 6w1 − 4s, λ = 3 and
s = 2w1 −w2 −w3 in the remaining of this paper. Distribution
of different block sizes in this case is listed in Table II.

IV. CONSTRUCTIONS FOR n ≥ (μ + 1)w1

In this section, we show that A4(n, 2w − 1, w) = � n

w1
� for

all n ≥ (μ+1)w1 = 6w2
1 −4sw1 +w1 based on the existence

of difference families.

A. Difference Families

Let B = {b1, . . . , bk} be a k-subset of Zn . The list of
differences from B is the multiset �B = {bi − b j : i, j ∈ [k],
i �= j}. A collection {B1, . . . , Bt } of k-subsets of Zn forms
an (n, k; t) difference packing, or t-DP(n, k), if every nonzero
element of Zn occurs at most once in �B1 ∪ · · · ∪ �Bt . The
sets Bi are base blocks. If every nonzero element of Zn occurs
exactly once in �B1 ∪ · · · ∪ �Bt , it is known as an (n, k)
difference family, or DF(n, k) [36]. The parameter t is omitted
since it could be computed from n and k, that is, t = n−1

k(k−1) .
Since t must be an integer, if a DF(n, k) exists, we must have
n ≡ 1 (mod k(k − 1)).

The sizes of base blocks are the same in a difference
packing. It is natural to generalize difference packings to a
collection of subsets with the same property but with varying
block sizes. If t = e1 + . . .+es , and if there are ei base blocks
of size ki , then the generalized difference packing is of block
type ke1

1 · · · kes
s , and denoted by GDP(n, ke1

1 · · · kes
s ). Without

loss of generality, we assume that k1 ≥ · · · ≥ ks ≥ 2.
Given a triple A = (a1, a2, a3) ∈ (ZM ∪ {∗})3, define

OrbZM A = {(a1 + i, a2 + i, a3 + i) : i ∈ ZM },
where ∗ + i = ∗ for any i ∈ ZM .

Proposition 6: Suppose that there exists a GDP(M, 3e1 2e2).
Let w1 = e1 + e2, w2 and w3 be integers such that w1 ≥
w2 ≥ w3 and w2 + w3 = 2e1 + e2. Then there exists a w-
balanced (M, 3)-packing of size n, where n = w1M and w =
�w1, w2, w3�.

Proof: Given a GDP(M, 3e12e2), partition the set B of
base blocks into three parts B1, B2 and B3, where B1 consists
of all e1 blocks of size three, B2 contains w2 − e1 blocks of
size two, and B3 contains the remaining w3 −e1 blocks of size
two. For any B = {a, b, c} ∈ B1, define AB = (a, b, c); for
any B = {a, b} ∈ B2, define AB = (a, b, ∗) and; for any B =
{a, c} ∈ B3, define AB = (a, ∗, c). Let A = ∪B∈BOrbZM AB ,
then (ZM ,A) is a w-balanced (M, 3)-packing of size n, where
n = w1 M and w = �w1, w2, w3�.
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In a DF(n, k), the t blocks Bi = {bi,1, . . . , bi,k}, i ∈ [t],
form a perfect (n, k) difference family over Zn if the
tk(k − 1)/2 differences bi,h − bi,g (i ∈ [t], 1 ≤ g < h ≤ k)
cover the set {1, 2, . . . , (n − 1)/2}. If instead, they cover the
set {1, 2, . . . , (n − 3)/2} ∪ {(n + 1)/2}, then the difference
family is quasi-perfect. We denote them by PDF(n, k) and
quasi-PDF(n, k) respectively. The existences of PDF(n, k)s
and quasi-PDF(n, k)s are known when k = 3.

Theorem 2 [36]: A PDF(n, 3) exists when n ≡ 1 or
7 (mod 24), and a quasi-PDF(n, 3) exists when n ≡ 13 or
19 (mod 24).

Corollary 1: Let e1, e2 ≥ 0 be two integers. Then a
GDP(M, 3e12e2) exists for all M ≥ 6e1 +2e2 +1 except when
e1 ≡ 2 or 3 (mod 4) and (M, e2) = (6e1 + 2, 0).

Proof: For each e1 ≡ 0 or 1 (mod 4), let m = 6e1 + 1.
By Theorem 2, there exists a PDF(m, 3) over Zm . Let B be
the collection of all e1 base blocks. Given any e2 ≥ 0, let
Pi = {0, m−1

2 + i}, i ∈ [e2]. Then B ∪ {Pi : i ∈ [e2]} is a
GDP(M, 3e1 2e2) for all M ≥ m + 2e2.

For each e1 ≡ 2 or 3 (mod 4), let m = 6e1 + 1.
By Theorem 2, there exists a quasi-PDF(m, 3) over Zm , which
is also a GDP(M, 3e1) for all M ≥ m except when M = m+1.
Let B be the collection of all e1 base blocks. Given any
e2 ≥ 1, let P1 = {0, m−1

2 } and Pi = {0, m−1
2 + i} for all

i ∈ [2, e2]. Then B ∪ {Pi : i ∈ [e2]} is a GDP(M, 3e1 2e2) for
all M ≥ m + 2e2.

By the relations among all parameters in Proposition 6, it is
easy to show that 6e1 + 2e2 + 1 = 6w1 − 4s + 1 = μ + 1.
Combining Corollary 1, Propositions 5 and 6, it is immediate
that the following result holds.

Proposition 7: Let w = �w1, w2, w3�. Then A4(n, 2w −
1, w) = � n

w1
� for all n = Mw1, where M ≥ μ + 1, except

when w1 = w2 = w3 ≡ 2 or 3 (mod 4) and n = 6w2
1 + 2w1.

B. Exceptions in Proposition 7

Now we settle the exceptional cases in Proposition 7. That
is, we need to prove that

A4(6w2
1 + 2w1, 2w − 1, �w1, w1, w1�) = 6w1 + 2

for all w1 ≡ 2 or 3 (mod 4).
By Proposition 5, we need to construct a w-balanced

(6w1 + 2, 3)-packing of size 6w2
1 + 2w1 for all w1 ≡ 2 or

3 (mod 4), where w = �w1, w1, w1�. Actually, they exist
for all positive integers w1. Before stating our general con-
struction, we give a small example first. Note that in this
case, s = 0, so there are only blocks of size three in the
(6w1 +2, {3, 2})-packing by Table II, which is further optimal
by the packing number in Eq. (3).

Example 2: Let w1 = 2 and G = Z5 ⊕Z3. Write xy for the
pair (x, y) ∈ Z5 ⊕Z3. Let B0 = (00, 01, 02), B1 = (00, 20, 11)
and B2 = (00, 40, 21). Let B′ = ∪i∈[0,2]OrbG Bi . If we
consider all triples in B′ as unordered 3-subsets, then B′ is
the block set of an STS(15) over G due to Skolem [38]. Let
B = B′ \ {B ∈ B′ : 42 ∈ B} and X = G \ {42}, then (X,B)
is an optimal (14, 3)-packing of size 28 if again consider
triples as unordered sets. We show the reordering procedures
in Table III.

TABLE III

REORDERING PROCEDURES IN EXAMPLE 2

First look at the set OrbG B1∪OrbG B2, in which each
element from G occurs twice in each position. After delet-
ing triples containing the element 42, elements 21, 31, 02, 22
occurs only once in the first position, elements 01, 11, 12, 32
occurs only once in the second position, and elements
00, 10, 20, 30 occurs only once in the third position. It is nat-
ural to think of reordering triples from OrbG B0 to increase the
occurrences of these elements. After reordering the remaining
triples of OrbG B0 as in Table III, element 12 occurs three
times in the first position but only once in the second position,
while element 22 occurs only once in the first position but three
times in the second position. Finally, we exchange the first two
elements in the triple (12, 32, 20) from OrbG B1 and (32, 22, 00)
from OrbG B2 to balance the occurrences.

Proposition 8: For all positive integers w1, there exists a
w-balanced (6w1 + 2, 3)-packing of size 6w2

1 + 2w1, where
w = �w1, w1, w1�.

Proof: Let u = 2w1 +1. We start from an STS(3u) which
is due to Skolem [38]. Let G = Zu ⊕ Z3. Choose base blocks
A0 = (00, 01, 02) and Ax = (00, (2x)0, x1), x ∈ [w1]. It is
easy to see that |OrbG A0| = u and |OrbG Ax | = 3u, x ∈ [w1].
Let A′ = ∪x∈[0,w1]OrbG Ax , A = A′ \ {A ∈ A′ : (2w1)2 ∈ A}
and X = G \ {(2w1)2}. If we consider triples as unordered
sets, then (G,A′) is an STS(3u), and (X,A) is an optimal
(6w1 + 2, 3)-packing of size 6w2

1 + 2w1.
Note that A doesn’t satisfy (T2) at this moment. The first

three rows of Table IV point out the sets of elements occurring
w1 − 1 or w1 + 1 in each position, all others occur in the
corresponding positions exactly w1 times in A. The w1 − 1
occurrences happen when deleting triples from OrbG Ax ,
x ∈ [w1], while w1 + 1 happens because of triples from
OrbG A0.

For convenience, denote ι = �w1
2 � and κ = w1

2 �. We fol-
low the steps below.

(S1) In OrbG A0, change ((2i +1)0, (2i +1)1, (2i +1)2) to
((2i +1)1, (2i +1)2, (2i +1)0) for all i ∈ [ι, w1 − 1].

(S2) In OrbG A0, change ((2i)0, (2i)1, (2i)2) to ((2i)1,
(2i)2, (2i)0) for all i ∈ [κ,w1 − 1].
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TABLE IV

ABNORMAL OCCURRENCES IN THREE POSITIONS IN PROPOSITION 8

(S3) In OrbG A0, change (i0, i1, i2) to (i2, i1, i0) for all
i ∈ [0, w1 − 1].

(S4) Finally, in OrbG Aκ , change ((2i + 1)2, (2κ + 2i +
1)2, (κ + 2i + 1)0) to ((2κ + 2i + 1)2, (2i + 1)2,
(κ + 2i + 1)0) for all i ∈ [0, ι − 1]. At the same
time, in OrbG Aw1 , change ((2i + 1)2, (2i)2, (w1 +
2i + 1)0) to ((2i)2, (2i + 1)2, (w1 + 2i + 1)0) for
all i ∈ [κ,w1 − 1]. Note that {(2κ + 2i + 1)2 : i ∈
[0, ι − 1]} = {(2i + 1)2 : i ∈ [κ,w1 − 1]}.

After each step, all elements occur at least w1 − 1 and
at most w1 + 1 times in each position. We list the elements
occurring w1 − 1 or w1 + 1 in each position after each step
in Table IV. It is routine to check that after (S4), all elements
occur w1 times in each position. Thus triples in A can be
reordered to satisfies (T2).

The following consequence is immediate.
Proposition 9: For all positive integers w1 and

n = 6w2
1 + 2w1,

A4(n, 2w − 1, �w1, w1, w1�) = 6w1 + 2.

Combining Propositions 7 and 9, we have shown that
A4(n, 2w−1, �w1, w2, w3�) = � n

w1
� for all n = Mw1, where

M ≥ μ + 1. By the lengthening method (adding zeros in
the end of codewords) used in [2], we have A4(n, 2w − 1,

�w1, w2, w3�) = � n

w1
� for all n ≥ (μ + 1)w1.

V. CONSTRUCTIONS FOR n = μw1 + μ
6 �

To determine values of Nccc(w), we still need to prove that
A4(n, 2w − 1, �w1, w2, w3�) = � n

w1
� for n = μw1 + μ

6 � if

2s ≥ λ = 3. From now on, we assume that s ≥ 2, that is
2w1 ≥ w2 + w3 + 2.

By Proposition 5, we need to construct a w-balanced (μ, 3)-
packing of size μw1+μ

6 � for all w = �w1, w2, w3� satisfying
that s ≥ 2. Here we use a different method from that in
Proposition 8. We first find a candidate of A satisfying (T2),
then try to modify it to satisfy (T1). We show this idea in the
following example.

Example 3: Let M = 10 and w = �3, 2, 2�. Let A1 =
(0, 1, 6), A2 = (0, 2, ∗) and A3 = (0, ∗, 3). Then A =

∪i∈[3]OrbZ10 Ai is a candidate satisfying (T2) over Z10 ∪ {∗}.
Note that the difference 5 occurs twice in �A1. We first do
the following changes to triples in OrbZ10 A1:

(0, 1, 6) → (0, ∗, 6),

(1, 2, 7) → (1, 2, ∗),

(3, 4, 9) → (3, ∗, 9),

(4, 5, 0) → (4, 5, ∗),

(7, 8, 3) → (7, 8, ∗).

Then add two more triples

(∗, 1, 0),

(∗, 4, 3).

Finally, change the following triple in OrbZ10 A2

(1, 3, ∗) → (1, 3, 7).

Note that we do not change the positions of symbols from
Z10 appearing in A. For example, in the first triple (0, 1, 6),
the symbol 1 in the second position disappears, but appears
later in (∗, 1, 0) in the same position. Further, the pairs newly
occurring in the last two steps are pairs deleted in the first
step. For example, the pair {0, 1} appears in the second step
when adding (∗, 1, 0), but it was deleted in the first step when
changing (0, 1, 6) to (0, ∗, 6). So the pair {0, 1} still occurs
only once after these three steps. Thus it is easy to check that
we have a set of 32 triples satisfying both (T1) and (T2),
which yields that A4(32, 13, �3, 2, 2�) = 10 and
Nccc(�3, 2, 2�) = 32.

Proposition 10: Let e1 ≥ 0, e2 ≥ 3, 2|M and M ≥ 8
be integers. Suppose that there exists a GDP(M, 3e12e2) with
three specified base blocks {0, 1}, {0, 2} and {0, M/2 − 1}.
Let w1 = e1 + e2 − 1, w2 and w3 be any integers such that
w1 ≥ w2 ≥ w3 and w2 + w3 = 2e1 + e2. Then there exists a
w-balanced (M, 3)-packing of size n = Mw1 +  M

6 �, where
w = �w1, w2, w3�.

Proof: Suppose that B′ is the given set of base blocks
of a GDP(M, 3e1 2e2) over ZM . Let B1 = {0, 1, M/2 + 1},
B2 = {0, 2} and

B = (B′ \ {{0, 1}, {0, M/2 − 1}}) ∪ {B1}.



CHEE AND ZHANG: LINEAR SIZE CONSTANT-COMPOSITION CODES MEETING THE JOHNSON BOUND 915

TABLE V

MODIFICATIONS MADE ON TRIPLES OF A IN PROPOSITION 10

Note that B has e1 + e2 − 1 = w1 blocks. Partition B into
three parts B1, B2 and B3, where B1 consists of all e1 + 1
blocks of size three, B2 contains w2 − e1 − 1 blocks of size
two including B2 specifically, and B3 contains the remaining
w3 −e1 −1 blocks of size two. For each block B ∈ B1, let AB

be an ordered triple with elements from B . For each block B =
{a, b} ∈ B2, let AB = (a, b, ∗). For each block B = {a, c} ∈
B3, let AB = (a, ∗, c). Specifically, let AB1 = (0, 1, M/2 + 1)
and AB2 = (0, 2, ∗). Let A = ∪B∈BOrbZM AB , then A is a
candidate of Mw1 triples over ZM ∪ {∗} satisfying (T2).

Now we do modifications on triples in A to make it satisfy
both (T1) and (T2). The main idea is as follows. The set A
does not satisfy (T1) since the difference M/2 occurs twice
in �B1. Thus, we first choose M/2 triples from OrbZM AB1,
then change one symbol from each repeated pair to ∗. Besides
the M/2 repeated pairs, there are M/2 other pairs also broken
in this step. We let them appear somewhere else by adding
 M

6 � triples of type (∗, ·, ·), and changing the symbol ∗ in
M/2 − 2 M

6 � triples from OrbZM AB2 to some symbol of
ZM . Details for different congruent classes of M are listed
in Table V.

By Proposition 10, we need to construct a GDP(μ, 3e12e2)
with three specified base blocks {0, 1}, {0, 2} and {0, μ/2−1},
where e1 = w1 − s − 1 and e2 = s + 2, for all
w1 > s ≥ 2.

Proposition 11: Given integers w1 > s ≥ 2 and (w1, s) �∈
{(4, 2), (5, 2)}, let e1 = w1 − s − 1 and e2 = s + 2. Then
there exists a GDP(μ, 3e12e2) over Zμ with three specified
base blocks {0, 1}, {0, 2} and {0, μ/2 − 1}.

Proof: We split it into four cases based on the values of
w1 − s. For all cases, the e2 base blocks of size two are of
type {0, d}, where d covers the values of all differences that
do not appear in the list of differences from base blocks of
size three. To save space, we only list the e1 base blocks of
size three in each case. Note that the differences 1, 2, μ/2 and
μ/2 − 1 do not appear in any base block of size three. Thus
the GDP contains the three mentioned base blocks of size two.
Note that in the first two cases, that is when w1 − s ≡ 0 or
1 (mod 4), the set of base blocks of size three are obtained
by modifying some blocks of a DF(μ, 3) in [39].

When w1 − s = 4k, then μ = 24k + 2s and e1 = 4k − 1.
If k ≥ 2, then use e1 base blocks of size three as below.

{0, 6k − 1, 18k + 2s − 1},
{0, 4k − 1, 9k − 1},
{0, 2k, 10k − 1},
{0, 4k, 10k},
{0, 2k + 2r − 1, 7k + r − 1}, r ∈ [1, k − 1],
{0, 2k + 2r, 11k + r − 1}, r ∈ [1, k − 1],
{0, 2r + 1, 10k + r}, r ∈ [1, k − 1],
{0, 2r, 6k + r}, r ∈ [2, k − 1].

If k = 1, and s = 2, that is μ = 28, then three base blocks are
{0, 3, 11}, {0, 4, 9}, {0, 6, 16}. If s ≥ 3, then three base blocks
are {0, 3, 13}, {0, 4, 12}, {0, 5, 11}.

When w1 −s = 4k +1, then μ = 24k +2s +6 and e1 = 4k.
If k ≥ 2, then the e1 base blocks of size three are

{0, 6k, 18k + 2s + 4},
{0, 4k − 1, 9k},
{0, 4k, 10k + 1},
{0, 4k + 1, 12k + 1},
{0, 2k, 12k},
{0, 2k + 2r − 1, 7k + r}, r ∈ [1, k − 1],
{0, 2k + 2r, 11k + r}, r ∈ [1, k − 1],
{0, 2r + 1, 10k + r + 1}, r ∈ [1, k − 1],
{0, 2r, 6k + r + 1}, r ∈ [2, k − 1].

If k = 1, and s ≥ 2, then four base blocks are
{0, 3, 14}, {0, 4, 12}, {0, 5, 15}, {0, 6, 13}.

When w1 − s = 4k + 2, then μ = 24k + 2s + 12 and
e1 = 4k + 1. If k ≥ 1, then the e1 base blocks are

{0, 4k + 1, 10k + 6},
{0, 4k + 3, 10k + 7},
{0, 2r, 6k + r + 5}, r ∈ [2, 2k + 1],
{0, 2r + 1, 10k + r + 7}, r ∈ [1, k],
{0, 2k + 2r + 1, 11k + r + 7}, r ∈ [1, k − 1].
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If k = 0, and s ≥ 3, then let {0, 3, 7} be the only base block
of size three.

When w1 − s = 4k + 3, then μ = 24k + 2s + 18 and
e1 = 4k + 2. If k ≥ 1, then the e1 base blocks are

{0, 4k + 1, 10k + 9},
{0, 4k + 3, 10k + 10},
{0, 4k + 4, 8k + 9},
{0, 2r, 6k + r + 7}, r ∈ [2, 2k + 1],
{0, 2r + 1, 10k + r + 10}, r ∈ [1, k − 1],
{0, 2k + 2r − 1, 11k + r + 9}, r ∈ [1, k].

If k = 0, and s ≥ 3, then two base blocks are
{0, 3, 8}, {0, 4, 10}.

Combining Propositions 5, 10 and 11, we obtain the fol-
lowing result.

Proposition 12: Given a composition w = �w1, w2, w3�
such that 2 ≤ s < w1, where s = 3w1 − w. We have

A4(μw1 + μ

6
�, 2w − 1, �w1, w2, w3�) = μ,

for all w1 ≥ w2 ≥ w3 ≥ 1 such that (w1, s) �∈ {(4, 2), (5, 2)}.
By Propositions 7, 9, 12 and the lengthening method,

we have determined the value of Nccc(w) for almost all com-
positions with three components. We state it in the following
proposition.

Proposition 13: Given a composition w = �w1, w2, w3�
such that w1 < w2 + w3. We have

Nccc(w) = 6w2
1 − 4sw1 + w1 − �2s

3
�,

where s = 3w1 − w, except possibly when w ∈
{�4, 4, 2�, �4, 3, 3�, �5, 5, 3�, �5, 4, 4�}.

VI. CONCLUSION

New direct constructions for optimal quaternary constant-
composition codes have been given based on combinatorial
methods. Consequently, we determine the values of Nccc(w),

the smallest length n such that A4(n′, 2w − 1, w) = � n′

w1
�

for all n′ ≥ n, with only four possible exceptions. The exact
values of Nccc(w) show that our newly established lower
bound of Nccc(w) is tight in these cases. Our main result,
Main Theorem 1 follows from Propositions 3, 4, 13 and the
refining method in Lemma 2.

REFERENCES

[1] M. Svanstrom, “Constructions of ternary constant-composition codes
with weight three,” IEEE Trans. Inf. Theory, vol. 46, no. 7,
pp. 2644–2647, Nov. 2000.

[2] Y. M. Chee, S. H. Dau, A. C. H. Ling, and S. Ling, “Linear
size optimal q-ary constant-weight codes and constant-composition
codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 140–151,
Jan. 2010.

[3] M. Svanström, P. R. J. Östergård, and G. T. Bogdanova, “Bounds and
constructions for ternary constant-composition codes,” IEEE Trans. Inf.
Theory, vol. 48, no. 1, pp. 101–111, Jan. 2002.

[4] W. Chu, C. J. Colbourn, and P. Dukes, “On constant composi-
tion codes,” Discrete Appl. Math., vol. 154, no. 6, pp. 912–929,
Apr. 2006.

[5] C. Ding and J. Yin, “Combinatorial constructions of optimal constant-
composition codes,” IEEE Trans. Inf. Theory, vol. 51, no. 10,
pp. 3671–3674, Oct. 2005.

[6] Y. Luo, F.-W. Fu, A. J. H. Vinck, and W. Chen, “On constant-
composition codes over zq ,” IEEE Trans. Inf. Theory, vol. 49, no. 11,
pp. 3010–3016, Nov. 2003.

[7] C. Ding and J. Yuan, “A family of optimal constant-composition codes,”
IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3668–3671, Oct. 2005.

[8] C. Ding and J. Yin, “Algebraic constructions of constant composition
codes,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1585–1589,
Apr. 2005.

[9] C. Ding and J. Yin, “A construction of optimal constant composi-
tion codes,” Designs, Codes Cryptogr., vol. 40, no. 2, pp. 157–165,
Aug. 2006.

[10] Y. M. Chee, A. C. H. Ling, S. Ling, and H. Shen, “The PBD-closure
of constant-composition codes,” IEEE Trans. Inf. Theory, vol. 53, no. 8,
pp. 2685–2692, Aug. 2007.

[11] G. T. Bogdanova and S. N. Kapralov, “Enumeration of optimal ternary
constant-composition codes,” Problems Inf. Transmiss., vol. 39, no. 4,
pp. 346–351, Oct. 2003.

[12] C. Ding, “Optimal constant composition codes from zero-difference
balanced functions,” IEEE Trans. Inf. Theory, vol. 54, no. 12,
pp. 5766–5770, Dec. 2008.

[13] S. Huczynska, “Equidistant frequency permutation arrays and related
constant composition codes,” Designs, Codes Cryptogr., vol. 54, no. 2,
pp. 109–120, Feb. 2010.

[14] Y. M. Chee, G. Ge, and A. C. H. Ling, “Group divisible codes and their
application in the construction of optimal constant-composition codes of
weight three,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3552–3564,
Aug. 2008.

[15] J. Yan and J. Yin, “A class of optimal constant composition codes from
GDRPs,” Designs, Codes Cryptogr., vol. 50, no. 1, pp. 61–76, Jan. 2009.

[16] F. Gao and G. Ge, “Optimal ternary constant-composition codes of
weight four and distance five,” IEEE Trans. Inf. Theory, vol. 57, no. 6,
pp. 3742–3757, Jun. 2011.

[17] Y. JianXing and T. Yu, “A new combinatorial approach to the construc-
tion of constant composition codes,” Sci. China Ser. A, Math., vol. 51,
no. 3, pp. 416–426, Mar. 2008.

[18] Y. Ding, “A construction for constant-composition codes,” IEEE Trans.
Inf. Theory, vol. 54, no. 8, pp. 3738–3741, Aug. 2008.

[19] M. Zhu and G. Ge, “Quaternary constant-composition codes with
weight 4 and distances 5 or 6,” IEEE Trans. Inf. Theory, vol. 58, no. 9,
pp. 6012–6022, Sep. 2012.

[20] H. Wei, H. Zhang, M. Zhu, and G. Ge, “Optimal ternary constant-
composition codes with weight four and distance six,” Discrete Math.,
vol. 338, no. 3, pp. 72–87, Mar. 2015.

[21] Y. M. Chee, F. Gao, H. M. Kiah, A. C. H. Ling, H. Zhang, and
X. Zhang, “Decompositions of edge-colored digraphs: A new tech-
nique in the construction of constant-weight codes and related fam-
ilies,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun./Jul. 2014,
pp. 1436–1440.

[22] P. Moulin, “The log-volume of optimal constant-composition codes for
memoryless channels, within O(1) bits,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2012, pp. 826–830.

[23] J. Scarlett, A. Martinez, and A. G. Guillén i Fàbregas, “Refinements
of the third-order term in the fixed error asymptotics of constant-
composition codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2015, pp. 2954–2958.

[24] A. G. Dyachkov, “Random constant composition codes for multiple
access channels,” Problems Control Inf. Theory, vol. 13, no. 6, pp. 357–
369, 1984.

[25] J. Scarlett, A. Martinez, and A. Guillén i Fàbregas, “Second-order rate
region of constant-composition codes for the multiple-access channel,”
IEEE Trans. Inf. Theory, vol. 61, no. 1, pp. 157–172, Jan. 2015.

[26] T. Ericson and V. Zinoviev, “Spherical codes generated by binary
partitions of symmetric pointsets,” IEEE Trans. Inf. Theory, vol. 41,
no. 1, pp. 107–129, Jan. 1995.

[27] O. D. King, “Bounds for DNA codes with constant GC-content,”
Electron. J. Combinat., vol. 10, no. 1, p. 33, 2003.

[28] Y. M. Chee and S. Ling, “Improved lower bounds for constant
GC-content DNA codes,” IEEE Trans. Inf. Theory, vol. 54, no. 1,
pp. 391–394, Jan. 2008.

[29] W. Chu, C. J. Colbourn, and P. Dukes, “Constructions for permutation
codes in powerline communications,” Designs, Codes Cryptogr., vol. 32,
no. 1, pp. 51–64, May 2004.



CHEE AND ZHANG: LINEAR SIZE CONSTANT-COMPOSITION CODES MEETING THE JOHNSON BOUND 917

[30] C. J. Colbourn, T. Kløve, and A. C. H. Ling, “Permutation arrays for
powerline communication and mutually orthogonal latin squares,” IEEE
Trans. Inf. Theory, vol. 50, no. 6, pp. 1289–1291, Jun. 2004.

[31] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. Cambridge, U.K.: Cambridge Univ. Press,
2011.

[32] M. Svanström, “Ternary codes with weight constraints,”
Ph.D. dissertation, Linköpings Univ., Linköping, Sweden, 1999.

[33] C. Ding and C. Li. (2016). “Infinite families of 2-designs and 3-designs
from linear codes.” [Online]. Available: https://arxiv.org/abs/1607.04813

[34] V. D. Tonchev, “Codes and designs,” in Handbook of Coding Theory,
vol. 2. Amsterdam, The Netherland: Elsevier, 1998, pp. 1229–1267.

[35] D. H. Smith, L. A. Hughes, and S. Perkins, “A new table of constant
weight codes of length greater than 28,” Electron. J. Combin., vol. 13,
no. 1, 2006, Art. no. 2.

[36] R. J. R. Abel and M. Buratti, “Difference families,” in CRC Handbook
of Combinatorial Designs. Boca Raton, FL, USA: CRC Press, 2007,
pp. 392–410.

[37] D. R. Stinson, R. Wei, and J. Yin, “Packing,” in CRC Handbook
of Combinatorial Designs. Boca Raton, FL, USA: CRC Press, 2007,
pp. 550–556.

[38] T. Skolem, “Note 16,” in E. Netto. Kombinatorik, A. Teubner, Ed.,
2nd ed. Leipzig, Germany, 1927.

[39] J. H. Dinitz and P. Rodney, “Disjoint difference families with block
size 3,” Utilitas Math., vol. 52, pp. 153–160, 1997.

Yeow Meng Chee (SM’08) received the B.Math. degree in computer science
and combinatorics and optimization and the M.Math. and Ph.D. degrees in
computer science from the University of Waterloo, Waterloo, ON, Canada, in
1988, 1989, and 1996, respectively.

Currently, he is a Professor at the Division of Mathematical Sciences,
School of Physical and Mathematical Sciences, Nanyang Technological Uni-
versity, Singapore. Prior to this, he was Program Director of Interactive Digital
Media R&D in the Media Development Authority of Singapore, Postdoctoral
Fellow at the University of Waterloo and IBMs Zürich Research Laboratory,
General Manager of the Singapore Computer Emergency Response Team,
and Deputy Director of Strategic Programs at the Infocomm Development
Authority, Singapore.

His research interest lies in the interplay between combinatorics and com-
puter science/engineering, particularly combinatorial design theory, coding
theory, extremal set systems, and electronic design automation.

Xiande Zhang received the Ph.D. degree in mathematics from Zhejiang
University, Hangzhou, Zhejiang, P. R. China in 2009. From 2009 to 2015, she
held postdoctoral positions in Nanyang Technological University and Monash
University. Currently, she is a Research Professor at school of Mathematical
Sciences, University of Science and Technology of China. Her research
interests include combinatorial design theory, coding theory, cryptography, and
their interactions. She received the 2012 Kirkman Medal from the Institute of
Combinatorics and its Applications.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


