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Multiply Constant-Weight Codes and the Reliability
of Loop Physically Unclonable Functions
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Abstract— We introduce the class of multiply constant-weight
codes to improve the reliability of certain physically unclonable
function response, and extend classical coding methods to con-
struct multiply constant-weight codes from known q-ary and
constant-weight codes. We derive analogs of Johnson bounds and
give constructions showing these bounds to be asymptotically
tight up to a constant factor under certain conditions. We
also examine the rates of multiply constant-weight codes and
demonstrate that these rates are the same as those of constant-
weight codes of corresponding parameters.

Index Terms— Constant-weight codes, doubly constant-weight
codes, multiply constant-weight codes, physically unclonable
functions.

I. INTRODUCTION

PHYSICALLY unclonable functions (PUFs), introduced by
Pappu et al. [1], provide innovative low-cost authentica-

tion methods that are derived from complex physical charac-
teristics of electronic devices. Recently, PUFs have become an
attractive option to provide security in low cost devices such as
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RFIDs and smart cards [1]–[4]. Reliability and implementation
considerations on programmable circuits for the design of
Loop PUFs [4] lead to the investigation of a new class of
codes called multiply constant-weight codes (MCWC).

In an MCWC, each codeword is a binary word of length mn
which is partitioned into m equal parts and has weight exactly
w in each part [5]. This definition therefore generalizes the
class of constant-weight codes (where m = 1) and a subclass
of doubly constant-weight codes, introduced by Johnson [6]
and Levenshteı̆n [7] (where m = 2).

In this paper, we consider upper and lower bounds for the
possible sizes of MCWCs. Our constructions make use of both
classical concatenation techniques [8], [9] and a method due
to Zinoviev (for constant-weight codes) [10], that was later
independently given by Etzion (for doubly constant-weight
codes) [11]. A construction technique using resolvable designs
is also examined. For upper bounds, we extend the techniques
of Johnson [6] and exhibit that these bounds are asymptotically
tight to a constant factor, provided m, w and d are fixed.
We also examine the rates of the MCWCs and interestingly,
demonstrate that these rates are the same as those of constant-
weight codes of length mn and weight mw.

We remark that if the codewords in an MCWC are regarded
as m by n arrays, then an MCWC can be regarded as a code
over binary matrices, where each matrix has constant row
weight w. These codes were studied by Chee et al. [12] in
an application for power line communications. The relevance
of MCWCs for the latter context is an area for future research.

The rest of this article is structured as follows. Section II
collects the necessary definitions and notation, and Section III
examines an application of MCWCs in the field of PUFs.
Section IV deals with constructions and attached lower
bounds, while Section V contains the upper bounds. Section VI
studies asymptotic versions of the bounds of Section IV
and Section V. Some of our results were initially reported
in [5] and the present paper contains many new results and
generalizations.

II. DEFINITIONS AND NOTATION

Let X be a set of q symbols. A q-ary code C of length n
over the alphabet X is a subset of X n . Elements of C are
called codewords. Endow the space X n with the Hamming
distance metric. A code C is said to have distance d if the
(Hamming) distance between any two distinct codewords of
C is at least d . A q-ary code of length n and distance d is
called an (n, d)q code.

When q = 2, we assume X = F2. An (n, d)2 code
is simply called an (n, d) code. The (Hamming) weight of
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TABLE I

TABLE OF NOTATION

a codeword u ∈ X n is given by the number of nonzero
coordinates in u. Fix m, n1, n2, . . . , nm to be positive inte-
gers and let N = n1 + n2 + · · · + nm . An (N, d)2 code
is said to be of multiply constant-weight and denoted by
MCWC(w1, n1; w2, n2; . . . ; wm, nm; d), if each codeword has
weight w1 in the first n1 coordinates, weight w2 in the next
n2 coordinates, and so on and so forth. When m = 1,
an MCWC(n, w; d) is a constant-weight code, denoted by
CWC(n, d, w); when m = 2, an MCWC(w1, n1; w2, n2; d)
is a doubly constant-weight code.

When w1 = w2 = · · · = wm = w and n1 = n2 = · · · =
nm = n, we simply denote this multiply constant-weight
code of length N = mn by MCWC(m, n, d, w). Unless
specified otherwise, a multiply constant code refers to an
MCWC(m, n, d, w) in this paper.

Example 2.1: The code {0101, 0110, 1010} is an
MCWC(1, 2; 1, 2; 2) or an MCWC(2, 2, 1, 2) with m = 2,
n1 = n2 = n = 2, w1 = w2 = w = 1 and d = 2.
We also observe that it is also a CWC(4, 2, 2). On the other
hand, the code {0101, 0110, 1010, 0011} is not multiply
constant-weight, but it is also a CWC(4, 2, 2).

The largest size of an (n, d)q code is denoted by Aq(n, d).
When q = 2, this size is simply denoted by A(n, d). The
largest of size of an MCWC(w1, n1; w2, n2; . . . ; wm, nm; d)
is given by T (w1, n1; w2, n2; . . . ; wm, nm; d); the largest of
size of an MCWC(m, n, d, w) is given by M(m, n, d, w); and
the largest of size of a CWC(n, d, w) is given by A(n, d, w).

In this paper, we are mainly interested in determining
M(m, n, d, w). Observe that by definition,

M(1, n, d, w) = A(n, d, w),

M(2, n, d, w) = T (w, n; w, n; d).

Moreover, the functions A(n, d, w) and T (w, n; w, n; d) have
been well studied (see [6], [11], [13]–[15]). Online tables
of the lower bounds for A(n, d, w) can be found at [16]
while upper bounds for A(n, d, w) and T (w, n; w, n; d) can
be found at [17].

In this paper, we are mainly interested in building multiply
constant-weight codes from known q-ary codes and constant-
weight codes. One such class of codes is the class of binary
linear codes. A binary linear code of length n, dimension k
and distance d is called a linear [n, k, d] code and we
denote the largest quantity 2k of a binary linear [n, k, d] code
by B(n, d).

Unfortunately, an MCWC cannot be linear and hence, we
look at possible generalization of linearity. A possible gener-
alization is given by the notion of systematic codes. A code of
size 2k is said to be systematic if there is a set I of k coordi-
nates such that the code when restricted to the coordinate set
I is exactly Fk

2. The largest sizes of a systematic (n, d) code
and a systematic CWC(n, d, w) are denoted by S(n, d) =
2s(n,d) and S(n, d, w) = 2s(n,d,w) respectively. We remark
that systematic constant-weight codes have been studied in
[18] and [19]. A summary of the notation are provided in
Table I.

Finally, as mentioned in the introduction, a codeword in an
MCWC(m, n, d, w) can be regarded as a binary m by n matrix
with constant row weight w. Throughout the rest of this paper,
we shall regard a codeword in an MCWC as either a word of
length mn or an m by n matrix.

III. APPLICATION TO LOOP PUFS

The need of an MCWC arises from the generation of some
type of PUFs in trusted electronic circuits. In this section, we
demonstrate the relevance of MCWC in the implementation of
Loop PUF on Field Programmable Gate Array (FPGA) and in
enhancing the reliability of PUF response. First, we present
the principle behind Loop PUF.

A. Loop PUF Principle
In general, the PUF provides a unique signature to a

device without the need for the user to program an internal
memory [1]. This signature allows the user to build lightweight
authentication protocols or even protect a master key in crypto-
graphic implementations. Such a key can be used for standard
cryptographic protocols, or for internal cryptography (e.g.,
memory encryption). Essentially, the PUF takes advantage
of technological process variations to differentiate between
two devices. For instance, consider two delay lines with the
same structure. In theory, the propagation time is the same
for both two delay lines. However, actual measurements of
the propagation time differ between the delay lines due to
imbalances between the physical elements. Furthermore, as
these measurements cannot be predicted accurately, they are
well suited for cryptographic purposes.

Here, we consider the Loop PUF [4] that is a set of
n identical delay lines laid out on a programmable circuit. The
delay lines form a loop that oscillates as a single ring oscillator
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Fig. 1. Loop PUF structure.

when closed by an inverter (see Figure 1) and this setup
enhances the accuracy of delay measurements. Furthermore,
each delay line is a series of m delay elements and the delay
of the i th element of the j th line is controlled by the (i, j)-th
bit of some control word u of length mn. Hence, corresponding
to a control word u, we have a delay measurement, denoted
by D(u).

For expository purposes, we illustrate how a general binary
code can be used in conjunction with the Loop PUF [4] to
generate a set of Challenge-Response pairs for authentication
purposes. For other cryptographic applications, we refer the
interested reader to [1]–[4].

Given a binary code C of length mn, the set of Challenge-
Response pairs is given by

{(
(u, v), sign(D(u) − D(v))

)
: u ̸= v, u, v ∈ C

}
.

In other words, each challenge is an ordered pair of distinct
codewords (u, v) from the binary code and the corresponding
response is the sign of the delay difference between the pair
of codewords.1

For the set of Challenge-Response pairs to be used for
authentication, it is important that we are unable to infer the
sign of the delay difference with only knowledge of u and v.
To achieve this unpredictability of response, we show that C
needs to be an MCWC in Section III-B. On the other hand, it is
also important that the measured response (or the sign of delay
difference) remains the same despite environmental noise.
The reliability of response is then shown to be associated
with the minimum distance of the code C in Section III-C.
Therefore, MCWCs are needed to satisfy both requirements
of unpredictability and reliability.

B. MCWC to Achieve Unpredictability on FGPAs

Programmable circuits, like FPGAs, have a hierarchical
layout. It is thus convenient to organize the PUF with two
levels, namely with a structure of n clusters of m cells
each.2 For this technology, it is rather easy to copy/paste
exactly the logic of one cluster to generate all of them, in an
indistinguishable manner (logically, not physically). Thus the
Loop PUF can be easily constructed from a set of n clusters
of m cells just by replicating the base cluster of m cells.
As the routing inside a cluster between the m elements is not

1Here, we consider a response that consists of one bit. A different control
strategy can be used to extract a response with more bits and this is described
in [4].

2Logic Array Block (LABs) for ALTERA and Configurable Logic Blocks
(CLBs) for XILINX.

Fig. 2. Delay chain layout.

constrained, the PUF designer can easily port this structure to
any FPGA family.

Consider an MCWC(n, w1; · · · ; n, wm; d) and choose a
control word u = (ui j )1≤i≤m,1≤ j≤n. Let di j (ui j ) be the
resulting delay of the i th delay element in the j th line and
hence, the total measured delay D(u) due to u is given by∑m

i=1
∑n

j=1 di j (ui j ).
Ideally, di j (ui j ) = µ+ ϵi j (ui j ), where ϵi j is a small timing

variation on the j th delay element on the i th line caused by
technological dispersion and µ is the average delay that is
independent of the position on the circuit. However, the latter
is not true due to manufacturing constraints. In particular, a
designer has no control about the routing within an FPGA
cluster and hence, it is hardly possible to get balanced delay
elements within a cluster. But fortunately due to copy / paste
operation, the internal routing of a cluster can be faithfully
reproduced from one cluster to another (see Figure 2).

In other words, we have

di j (ui j ) = µi (ui j ) + ϵi j (ui j ),

where ϵi j is a small timing variation and µi is the average
delay dependent on the controlled bit and the position of the
delay element. We compute the total delay due to u, and we
have

D(u) =
m∑

i=1

n∑

j=1

di j (ui j )

=
m∑

i=1

n∑

j=1

µi (ui j ) + ϵi j (ui j )

=
(

m∑

i=1

(n − wi )µi (0) + wiµi (1)

)

+

⎛

⎝
m∑

i=1

n∑

j=1

ϵi j (ui j )

⎞

⎠. (1)

The last equality follows from the fact that u belongs
to an MCWC(n, w1; n, w2; · · · ; n, wm; d). Furthermore, we
observe that all codewords from the MCWC have the same
expected response. Therefore, the delay difference between
any pair of control words from the MCWC has expecta-
tion zero and the sign of the difference is dependent only



CHEE et al.: MULTIPLY CONSTANT-WEIGHT CODES AND THE RELIABILITY OF LOOP PUFs 7029

on ϵi j ’s. In other words, the response depends entirely on the
unpredictable physical characteristics of the individual delay
elements.

C. Hamming Distance to Improve the PUF Reliability

The PUF response is very sensitive to environmental noise
as the ϵi j can be very low in comparison to the delays. Hence
it is necessary to choose pairs of control words which offer
the largest possible difference between their delays.

From (1), we see that

D(u) − D(v) =
m∑

i=1

n∑

j=1

ϵi j (ui j ) − ϵi j (vi j )

=
∑

ui j ̸=vi j

ϵi j (ui j ) − ϵi j (vi j ).

Therefore, the greater the Hamming distance between u and v,
the greater the delay difference D(u) − D(v). Hence, by
choosing a code of high distance, we improve the reliability
of the PUF response.

The arguments in this section demonstrate the relevance of
MCWC in the design of reliable Loop PUF. In the remaining
of the paper, we examine the possible lower and upper bounds
for optimal MCWCs, focusing our attention to the case where
w1 = w2 = · · · = wm = w.

IV. LOWER BOUNDS

A. Coding Constructions

In this section, we study constructions of MCWCs using
known unrestricted codes. Our first construction is based on
concatenation.

Proposition 4.1: Let q ≤ A(n, d1, w). We have

M(m, n, d1d2, w) ≥ Aq(m, d2).

Proof: Consider a concatenation scheme [8], [9] where
the outer code C is an (m, d2)q code of size Aq(m, d2)
over X and the inner code D is a CWC(n, d1, w) of size
q . Let φ : X → D be an injective map. For each codeword
u = (u1, u2, . . . , um) in C , we construct the binary codeword
(φ(u1),φ(u2), . . . ,φ(um )). Then the resulting code is an
MCWC(m, n, d1d2, w) of size Aq(m, d2).

A special case of concatenation is the product code con-
struction. Recall that if C and D are two binary linear codes
then their product C ⊗ D is the code of length nm consisting
of m by n arrays whose rows belong to C and columns belong
to D. If C and D are linear [m, k, d] and [n, l, e] codes, then
the code C ⊗ D has parameters [nm, kl, de] [9, Lemma 2.8].

We generalize this construction by relaxing certain require-
ments.3 In particular, we require only the rows of our arrays
to be in C , while not all the columns need to be in D.

Formally, consider a systematic CWC(n, d1, w) C of
size 2k1 and a systematic (m, d2) code D of size 2k2 . Given
a binary k2 by k1 matrix M, we replace each column of
length k2 of M with its corresponding codeword in D to
obtain a binary m by k1 matrix M′. Next replace each row

3See Appendix for a discussion on the necessity of this relaxation.

of length k1 of M′ with its corresponding codeword in C .
This results in a binary m by n matrix with constant row
weight w. In particular, each row of the matrix belongs to the
constant-weight code C while the first k1 columns belong to
the code D. Hence, the collection of all 2k1k2 matrices from
this construction results in an MCWC(m, n, d1d2, w). We call
this construction a pseudo-product code construction.

We remark that as with product construction, the pseudo-
product code construction is a special case of concatenation.
In addition, the pseudo-product construction coincides with
the construction given by Amrani [20, Definition 1]. The
following follows immediately from the pseudo-product code
construction.

Proposition 4.2: We have

M(m, n, d1d2, w) ≥ 2s(n,d1,w)s(m,d2)

≥ B(m, d2)
s(n,d1,w).

Example 4.1: Consider the systematic constant-weight code
{0011, 0101, 1010, 1100} of distance two. Taking its pseudo-
product with a binary linear [6, 2, 4] code yields a lower bound
of 22·2 = 16 on M(6, 4, 8, 2).

We give a simple but robust construction technique for
systematic constant-weight codes due to Böinck and van
Tilborg.

Proposition 4.3 (Böinck and van Tilborg [18, Construc-
tion 4.1]): We have

S(2n, 2d, n) ≥ S(n, d) ≥ B(n, d).

Proof: Let C be a systematic code of size S(n, d).
Construct a constant-weight code by the rule

D = {(x, x)| x ∈ C},
where the bar denotes complementation. The code D hence
has twice the distance of C and is systematic because C is.

Example 4.2: Observe that B(2m−1, 2m−2) = 2m fol-
lows from the Plotkin bound and the Reed Muller code
RM(1, m − 1) [21, Ch. 13]. Proposition 4.3 therefore yields
S(2m , 2m−1, 2m−1) ≥ 2m .

We extend the code construction in Proposition 4.3 by
appending each codeword with a codeword from a suitable
constant-weight code.

Proposition 4.4: If 2k ≤ A(n, d, w) we have

s(n + 2k, d + 2, w + k) ≥ k.

Proof: Let C be a constant-weight code of size A(n, d, w).
Let φ : Fk

2 → C be an injective map. Let

D = {(x, x,φ(x))| x ∈ Fk
2},

where x denotes the addition of the all one vector to x .
The code D is systematic with information set the first
k coordinates and has the required parameters.

The next construction generalizes a construction by
Zinoviev [10] (see also [22]) and by Etzion [11, Th. 16] to
construct multiply constant-weight codes from q-ary codes.

Proposition 4.5: We have

M(m, qw, 2d, w) ≥ Aq(mw, d).
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Proof: Consider an (mw, d)q code of size Aq(mw, d) over
the alphabet X . We extend each word of length mw to a word
of length qmw by replacing each symbol with a binary word
of length q . Specifically, replace each symbol in the codeword
with the following characteristic function φ : X → {0, 1}X ,

φ(x)y =
{

1, if x = y,

0, otherwise.

We check that the new binary word of length qmw com-
prises m parts each of weight w.

It remains to check that the distance of the code is 2d.
Observe that for any pair of distinct symbols x, y ∈ X ,
the distance between φ(x) and φ(y) is two. Hence, since
the distance between two q-ary codewords is at least d , the
distance between the corresponding binary codewords is at
least 2d .

When q is a prime power and q ≥ mw − 1, there exists
a q-ary Reed Solomon code of length mw and distance d .
Hence, Aq(mw, d) ≥ qmw−d+1 and the following corollary is
immediate.

Corollary 4.1: If q is a prime power and q ≥ mw−1, then

M(m, qw, 2d, w) ≥ qmw−d+1.

On the other hand, when w = 1, we observe that we are
able to reverse the construction so as to construct an n-ary
codeword of length m from an m by n matrix with constant
row weight one. Hence, the following corollary is immediate.

Corollary 4.2: We have

M(m, n, 2d, 1) = An(m, d).

B. Designs Constructions

Here, we consider a construction from designs, in particular,
resolvable t-designs.

A t-(v, k, 1) design, or t-design, is a pair (X,B) such that
|X | = v and B is a collection of k-subsets of X , called blocks,
with the property that every t-subset of X is contained in
exactly one block. A t-design (X,B) is resolvable if the blocks
in B can be partitioned into parallel classes, each of which is
a partition of X .

Suppose (X,B) is a resolvable t-(v, k, 1) design with M =
k
(v

t

)
/v

(k
t

)
parallel classes. Let m = v/k and n = v. For each

parallel class, we construct a binary m by n matrix, where the
support of each row is given by a corresponding block. Hence,
we form a binary m by n matrix with constant row weight k.
Since every pair of blocks intersect at most in t − 1 places,
the distance between every pair of binary matrices is at least
2m(k − t + 1). Hence, we obtain an MCWC(m, n, 2m(k −
t + 1), k) of size M . We summarize the construction in the
following proposition.

Proposition 4.6: Suppose there exists a resolvable
t-(v, k, 1) design. Then

M
(v

k
, n, 2(k − t + 1)

v

k
, k

)
≥ k

(v
t

)

v
(k

t

) .

Existence results for resolvable 2-(v, k, 1) design are sur-
veyed by Abel et al. [23, Table 7.35]. When t ≥ 3, existence
results are given by Laue [24] (see also [25]–[27]).

V. UPPER BOUNDS

Trivially, an MCWC(m, n, d, w) is a CWC(mn, d, mw).
Hence, we have our first upper bound.

Proposition 5.1: We have

M(m, n, d, w) ≤ A(nm, d, mw).

Next, we extend the techniques of Johnson [6] to
obtain the following recursive bounds on T (w1, n1;
w2, n2; . . . ; wm, nm; d). Let i ∈ [m]. From [6, eq. (15), (16),
and (19)], we have

T (w1, n1; . . . ; wm, nm; d)

≤
⌊

ni

wi
T (w1, n1; . . . ; wi −1, ni −1; . . . ; wm, nm; d)

⌋
, (2)

T (w1, n1; . . . ; wm, nm; d)

≤
⌊

ni

ni − wi
T (w1, n1; . . . ; wi , ni −1; . . . ; wm, nm; d)

⌋
, (3)

T (w1, n1; . . . ; wm, nm; d)

≤
⌊

u

w2
1/n1 + w2

2/n2 + · · · + w2
m/nm − λ

⌋

, (4)

where d = 2u and λ = w1 + w2 + · · · + wm − u. Since
M(m, n, d, w) = T (w, n; w, n; . . . ; w, n; d), we apply the
recursive bound (2) iteratively for m times to have

M(m, n, d, w)

= T (w, n; w, n; . . . ; w, n; d)

≤
⌊ n

w
T (w − 1, n − 1; w, n; . . . ; w, n; d)

⌋

≤
⌊

n2

w2 T (w − 1, n − 1; w − 1, n − 1; . . . ; w, n; d)

⌋

≤ · · ·
≤

⌊
nm

wm T (w − 1, n − 1; w−1, n − 1; . . . ; w−1, n−1; d)

⌋

=
⌊

nm

wm M(m, n − 1, d, w − 1)

⌋
.

Similarly, we obtain the following recursive upper bounds
from (3) and (4).

Proposition 5.2: We have

M(m, n, d, w) ≤
⌊

nm

wm M(m, n − 1, d, w − 1)

⌋
, (5)

M(m, n, d, w) ≤
⌊

nm

(n − w)m M(m, n − 1, d, w)

⌋
, (6)

M(m, n, d, w) ≤
⌊

d/2
mw2/n − (mw − d/2)

⌋
. (7)

Suppose s = mw − d/2 + 1 ≤ m. Applying (2)
for s iterations, we have M(m, n, d, w) ≤ ns

ws T (w − 1,
n − 1; . . . ; w − 1, n − 1; w, n; . . . ; w, n; d) and T (w − 1,
n − 1; . . . ; w − 1, n − 1; w, n; . . . , w, n; d) is trivially one.
Hence, we obtain the next upper bound.

Proposition 5.3: If mw − d/2 + 1 ≤ m, then

M(m, n, d, w) ≤
( n
w

)mw−d/2+1
. (8)

We remark that when w = 1, Proposition 5.3 reduces to the
classical Singleton bound.
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Given m, d , w, let i be the smallest integer such that
m(w − i) − d/2 + 1 ≤ m. Then i iterative applications
of (5), followed by an application of (8), yields the following
corollary.

Corollary 5.1: Given m, d , w, let i be the smallest integer
such that m(w− i)−d/2+1 ≤ m and t = m(w− i)−d/2+1.
Then we have

M(m, n, d, w)

≤
⌊

nm

wm

⌊
(n − 1)m

(w − 1)m · · ·
⌊

(n − i + 1)m

(w − i + 1)m

⌊
(n − i)t

(w − i)t

⌋⌋
· · ·

⌋⌋

≤ nmw−d/2+1

(w − i)mw−d/2+1 .

When the m, d and w are fixed, we establish tightness of
the bound given by Corollary 5.1.

Corollary 5.2: Fix m, d and w. Let s = mw − d/2 + 1 and
i be the smallest integer such that m(w − i) − d/2 + 1 ≤ m.

Consider M(m, n, d, w) as a function of n. We have

1 ≤ lim sup
n→∞

M(m, n, d, w)

ns/ws ≤ ws

(w − i)s . (9)

In addition, when s ≤ m, n/w ≥ mw − 1 and n/w is a prime
power, we have

M(m, n, d, w) = ns

ws .

Proof: When n/w ≥ mw − 1 and n/w is a prime power,
setting q = n/w in Corollary 4.2 establishes that

M(m, n, d, w) ≥
( n
w

)mw−d/2+1
= ns

ws .

Hence, lim supn→∞ M(m, n, d, w)/(ns/ws) ≥ 1. The other
inequality of (9) follows from Corollary 5.1. In addition, when
s ≤ m, we have M(m, n, d, w) ≤ (n/w)s from Proposition 5.3
and this yields the value of M(m, n, d, w).

VI. ASYMPTOTICS

In this section, we consider the asymptotic rate of
M(m, n, d, w) when m is large, n is a function of m, d =
⌊δnm⌋ and w = ⌊ωn⌋ for 0 < δ,ω < 1. Specifically, we
determine the value µ(δ,ω), where

µ(δ,ω) := lim sup
m→∞

log2 M(m, n, ⌊δmn⌋, ⌊ωn⌋)
mn

.

In the following discussion, we make use of the following
better known exponents.

αq(δ) := lim sup
n→∞

logq A(n, ⌊δn⌋)
n

,

α(δ) := lim sup
n→∞

log2 A(n, ⌊δn⌋)
n

,

α(δ,ω) := lim sup
n→∞

log2 A(n, ⌊δn⌋, ⌊ωn⌋)
n

,

σ (δ) := lim sup
n→∞

log2 S(n, ⌊δn⌋)
n

,

σ (δ,ω) := lim sup
n→∞

log2 S(n, ⌊δn⌋, ⌊ωn⌋)
n

.

First, we reduce the problem of determining µ(δ,ω) to
problem of determining α(δ,ω).

Lemma 6.1: We have

A(nm, d, mw) ≤
(mn

mw

)
(n
w

)m M(m, n, d, w).

Lemma 6.1 is analogous to Elias-Bassalygo [21, Th. 33,
Ch. 17] by regarding the set of m by n matrices with constant
row weight w as a subset of the set of words of length mn
with constant-weight mw. As the proof requires some graph
theoretical techniques, its proof is deferred to Section VI-B.

As a consequence, we have that the asymptotic exponent
of M(m, n, d, w) is equal to the asymptotic exponent of
A(mn, d, mw).

Proposition 6.1: We have

µ(δ,ω) = α(δ,ω).

Proof: Observe that

lim
n→∞ log

(mn
mw

)
(n
w

)m = mnH (ω) − mnH (ω) = 0.

Then applying limits on n, m and taking logarithms for
Lemma 6.1, we have α(δ,ω) ≤ µ(δ,ω).

On the other hand, asymptotic version of Proposition 5.1
yields α(δ,ω) ≥ µ(δ,ω) and the proof is complete.

Unfortunately, the value of α(δ,ω) is in general not known.
Estimates of α(δ,ω) are provided by McEliece et al. [28] and
Ericson and Zinoviev [29]. In the following subsection, we
focus on the case where ω = 1

2 and evaluate the asymptotic
behavior of the constructions given in Section IV-A.

A. Asymptotics for ω = 1
2

The next result follows from the best known upper bound
on α(δ,ω) due to McEliece et al.

Proposition 6.2 (McEliece et al. [28, eq. (2.16)]): We have
µ(δ,ω) ≤ g(u2), with g(x) = H ((1 − √

1 − x)/2), and

u = −δ +
√

δ2 − 2δ + 4ω(1 − ω).

In particular,

µ(δ, 1/2) ≤ H (1/2 −
√

δ(1 − δ)). (10)

Our first construction is based on Proposition 4.1, using
geometric Goppa codes as outer codes. In particular, fix q to
be a prime power and a square, and fix 0 ≤ δ ≤ 1 − 1√

q−1 .
Tsfasman et al. [30] exhibited the existence of a family of
geometric codes with relative distance δ and rate

αq (δ) ≥ 1 − δ − 1√
q − 1

.

Suppose we pick a CWC(n, d, n/2) of size q as the inner
code. For the outer code, we pick a Goppa (m, ⌊δmn/d⌋)q
code of rate at least 1 − nδ/d − 1/(

√
q − 1). Applying

Proposition 4.1, we obtain an MCWC(m, n, ⌊δmn⌋, n/2) of
size at least

qm(1−nδ/d−1/(
√

q−1))
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Taking logarithm, we have our first lower bound for
µ(δ, 1/2).

Theorem 6.1: If there exists a CWC(n, d, n/2) of size q ,
then for δ ≤ d/n(1 − 1/(

√
q − 1)),

µ(δ, 1/2) ≥ log q
d

(
d
n

(
1 − 1√

q − 1

)
− δ

)
.

Searching through the online table of lower bounds for
A(n, d, w) [16], we pick the following constant-weight codes
as inner codes:

(i) a CWC(12, 4, 6) of size 112,
(ii) a CWC(28, 14, 14) of size 72,

(iii) a CWC(28, 4, 14) of size 12372.
Applying Theorem 6.1, we have

µ(δ, 1/2) ≥ log 11
6

(
3

10
− δ

)
, (11)

µ(δ, 1/2) ≥ log 7
14

(
5

12
− δ

)
, (12)

µ(δ, 1/2) ≥ log 1237
14

(
1235
8652

− δ

)
. (13)

Our next construction makes use of the pseudo-product code
construction given by Proposition 4.2. The asymptotic version
of this proposition is as follows.

Proposition 6.3: We have

µ(δ,ω) ≥ σ (δ1,ω)σ (δ2),

where 0 < δ1, δ2 < 1 with δ = δ1δ2.
Theorem 6.2: We have for δ ≤ 1/4,

µ(δ, 1/2) ≥ (1 − H (
√

δ))2/2. (14)

Proof: By applying Varshamov-Gilbert (VG) bound
[21, Th. 30, Ch. 17] to systematic codes, we get

σ (δ2) ≥ 1 − H (δ2).

Combining VG bound for linear codes with Proposition 4.3
we get

σ (δ1, 1/2) ≥ (1 − H (δ1))/2.

Using Proposition 6.3 with δ1 = δ2 =
√

δ, the result
follows.

Our final construction follows from setting q = 2 in
Proposition 4.5.

Theorem 6.3: We have for δ ≤ 1/2,

µ(δ, 1/2) ≥ 1 − H (δ). (15)

Proof: Setting q = 2 in Proposition 4.5 and applying
VG bound, we have

M(m, 2w, 2d, w) ≥ A(mw, d) ≥ 2mw(1−H(d/mw)).

Taking logarithms, we obtain (15).
Coincidentally, (15) can be obtained directly by observing

that µ(δ, 1/2) = α(δ, 1/2) = α(δ).
We summarize all the constructions given in this subsection

in Figure 3. The top graph compares the lower bounds
resulting from Theorem 6.1 with various constant-weight

Fig. 3. Upper and lower bounds for ω = 1/2.

codes as inner codes, while the bottom graph compares the
lower bounds resulting from Theorem 6.1, Theorem 6.2 and
Theorem 6.3. We observe that the construction given by
Proposition 4.5 (or Theorem 6.3) provides the best lower
bound.

B. Proof of Lemma 6.1

El Rouayheb and Georghiades [31] generalized the methods
of Elias-Bassalygo using graph theoretical methods. Below
we introduce certain concepts necessary for the proof of
Lemma 6.1.

Given two graphs G = (VG, EG ) and H = (VH , EH ),
a mapping φ : VG → VH is called a graph homomorphism if
u, v are adjacent in G implies that φ(u),φ(v) are adjacent
in H . When G = H and φ is a bijection, then φ is
called an automorphism of G. Observe that the set of all
automorphisms of G is a group under composition; it is called
the automorphism group of G. A graph is then vertex transitive
if the action of its automorphism group on its vertex set is
transitive.

Given a graph G, a subset X of the vertices is said to be
independent if every pair of vertices in X is not adjacent in G.
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The independence number of G, denoted by α(G), the maxi-
mum size of an independent set in G. The following theorem
gives the relation between the independence numbers of two
graphs that are related by a graph homomorphism (see also
[32, Ch. 7]).

Theorem 6.4 (El Rouayheb and Georghiades [31, Th. 4]):
If H is vertex transitive and there is a graph homomorphism
from G to H , then

α(H ) ≤ V (H )

V (G)
α(G).

Therefore, Lemma 6.1 is a straightforward application of
Theorem 6.4. Let G be the graph whose vertices are the
m by n arrays with constant row weight w and two vertices
are adjacent if the distance between the corresponding arrays
is less than d . It is then not difficult to observe that an
independent set in G corresponds to a multiply constant-
weight code of distance d and hence, α(G) = M(m, n, d, w).

Similarly, let H be the graph whose vertices are codewords
of length mn with constant row weight mw and two vertices
are adjacent if the distance between the corresponding arrays
is less than d . We also have α(H ) = A(mn, d, mw).

Finally, observe that G is a subgraph of H and hence, we
have a graph homomorphism from G to H . Since H is vertex
transitive, we apply Theorem 6.4 to obtain Lemma 6.1.

VII. CONCLUSION

Motivated by PUFs, we introduced a new class of
codes, called multiply constant-weight codes, that general-
izes constant-weight codes and doubly constant-weight codes.
Using known q-ary codes and constant-weight codes as
ingredients, we construct families of multiply constant-weight
codes. We also provide analogues of the Johnson bound and
show that the bound is asymptotically tight up to a constant
factor, assuming certain conditions. We then demonstrate
that the asymptotic rates of multiply constant-weight codes
and constant-weight codes are the same. An analysis of the
asymptotic rates of our code constructions are also given.

Finally, we remark that the tabulating the estimates of
M(m, n, d, w) for modest values of the four parameters is
a worthwhile project. In addition, the function S(n, d, w) is
also worth tabulating and has other applications [18], [19].

APPENDIX

ON PSEUDO-PRODUCT CONSTRUCTION

We discuss the necessity to relax the requirements for
the pseudo-product construction described in Section IV-A.
In particular, we demonstrate that the pseudo-production con-
struction cannot guarantee that all columns in any matrix
codeword belongs to the code D.

Indeed, consider the following systematic codes given in
Example 4.2,

C = {0011, 0101, 1010, 1100},
D = {000000, 101011, 010111, 111100}.

Then one possible codeword from the pseudo-product con-
struction is given by

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1
1 1 0 0
1 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and we see that the last two columns do not belong to D.
This arises mainly from the fact that replacing the columns
before the rows result in a matrix codeword different from
one obtained by replacing the rows before the columns.

In general, more structure is required on both codes C and D
to fulfill the requirements of the usual product construction and
this is discussed in detail by Chee et al. [33].
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