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Splitter Sets and k-Radius Sequences
Tao Zhang, Xiande Zhang, and Gennian Ge

Abstract— Splitter sets are closely related to lattice tilings,
and have applications in flash memories and conflict-avoiding
codes. The study of k-radius sequences was motivated by some
problems occurring in large data transfer. It is observed that
the existence of splitter sets yields k-radius sequences of short
length. In this paper, we obtain several new results contributing
to splitter sets and k-radius sequences. We give some new
constructions of perfect splitter sets, as well as some nonexistence
results on them. As a byproduct, we obtain some new results on
optimal conflict-avoiding codes. Furthermore, we provide several
explicit constructions of short k-radius sequences for certain
values of n, by establishing the existence of k-additive sequences.
In particular, we show that for any fixed k, there exist infinitely
many values of n such that fk(n) = n2

2k + O(n), where fk(n)
denotes the shortest length of an n-ary k-radius sequence. This
result partially affirms a conjecture posed by Bondy, Lonc, and
Rz

‘
ażewski.

Index Terms— Splitter sets, flash memory, conflict-avoiding
codes, lattice tilings, k-radius sequences, k-additive sequences.

I. INTRODUCTION

THE study of splitter sets was motivated by constructing
codes correcting single limited magnitude errors used in

multilevel cell (MLC) flash memories. The construction of
k-radius sequences has recently become the subject of study
due to some computing problems occurring in large data
transmission. The construction of the splitter sets and k-radius
sequences are closely related and so are both studied in this
paper.

A. Flash Memories and Splitter Sets

Flash memory is a non-volatile memory technology that is
both electrically programmable and erasable. It is currently
widely used due to its reliability, high storage density and
low cost memories. Many applications of flash memories have
been found in personal computers, digital audio players, digital
cameras, mobile phones and so on.

To scale the storage density of flash memories, the mul-
tilevel memory cell is used to increase the number of stored
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bits in a cell. Thus, each multilevel memory cell stores log2(q)
bits regarded as a symbol over a discrete alphabet of size q .
The chief disadvantage of flash memories is their inherent
asymmetry between cell programming—charge injection into
cells, and cell erasure—charge removal from cells. This asym-
metry causes significant error sources to change cell levels
in one dominant direction. Moreover, many reported common
flash error mechanisms induce errors whose magnitudes are
small and independent of the alphabet size, which may be
significantly larger than the typical error magnitude. Thus,
flash errors strongly motivated the application of the limited
magnitude error model to flash memory [8], [18].

Splitter sets were first studied in [15] and [28]–[30]
with connections to lattice tilings. They attracted recent
attention again due to their equivalence to codes correcting
single limited magnitude errors in flash memories (see [7],
[13], [18]–[20], [24], [25], [32], [33] and the references
therein). In this context, a code obtained from a splitter set
B[−k1, k2](n) can correct a symbol a ∈ {0, 1, . . . , n−1} if it is
modified into a +e during transmission, where −k1 � e � k2.
Further, splitter sets are also found to be useful in constructing
conflict-avoiding codes [23], [26] and k-radius sequences [3].

Research works on splitter sets involve both existence and
nonexistence results. For the existence of such sets, a construc-
tion of perfect splitter sets for k1 = 0 can be found in [19].
Kløve et al. [20] gave a construction of perfect splitter sets
for k1 = k2. Constructions of splitter sets for 1 � k1 < k2 can
be found in [24], [32], and [33]. For the nonexistence results,
Schwartz proved that there does not exist a nonsingular perfect
splitter set for k1 = k2 − 1 in [24]. Later, Zhang and Ge [33]
showed that there does not exist a nonsingular perfect splitter
set when (k1 + 1)k1 > k2 and k1 + k2 is odd. Moreover, they
proposed the following conjecture.

Conjecture 1 [33]: There does not exist a nonsingular
perfect splitter set when 1 � k1 � k2 and k1 + k2 is odd.

One of the primary aims of this paper is to continue this
investigation and provide new constructions and nonexistence
results for perfect splitter sets. Our contributions to splitter
sets are as follows.

Contribution I:
1) We present several constructions of perfect splitter sets,

which generalize most of the known constructions;
2) we affirm Conjecture 1 when k1 + k2 is an odd prime;
3) we solve all the undetermined nonsingular cases left

in [25] and [33] for k1 = 1, k2 = 3 and n � 1000;
4) we provide a method of constructing optimal conflict-

avoiding codes from splitter sets.

B. k-Radius Sequences

The study of n-ary k-radius sequences was motivated by
a problem of fetching huge objects into small memory for
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pairwise computations, such as calculating the volume of a
tumour from a series of MRI slices. Introduced by Jaromczyk
and Lonc [16], n-ary k-radius sequences describe a First-
In First-Out caching strategy for computing functions that
require computations on all pairs taken from a set of n large
objects, where at most k + 1 objects are cached at any one
time. Recently, this problem has been extended to a more
general form: k-radius sequences for graphs [12]. In this paper,
we focus on the original version of k-radius sequences for
complete graphs in [16].

To reduce computing complexity, people are interested
in constructing short k-radius sequences. Let fk(n) be the
shortest length of an n-ary k-radius sequence. When k is fixed
and n goes to infinity, there are nice asymptotic results on
the values of fk(n). Jaromczyk and Lonc [16] showed that
when k = 2, f2(n) = 1

2 n2(1+o(1)). For general k, Blackburn
and Mckee [3] first proved that fk(n) = 1

2k n2(1 + o(1)) when
k � 204 except possibly k = 195 and when k + 1 or 2k + 1 is
a prime. In the same paper, they revealed nice connections
of k-radius sequences to tilings, discrete logarithms, and
properties of cyclotomic fields. Blackburn [2] then proved that
fk(n) = 1

2k n2(1+o(1)) for every fixed k using a probabilistic
argument. The best known estimation was established by
Jaromczyk et al. [17], who gave a general construction of
k-radius sequences by graph decompositions, and improved
the asymptotics to fk(n) = 1

2k n2 + O(n1+ε) for every fixed
k and every ε > 0. Recently, Bondy et al. [4] proposed the
following conjecture, and proved that it is true for k = 2.

Conjecture 2: For every fixed positive integer k,
fk(n) = n2

2k + O(n).
For exact values of fk(n), in a much earlier paper [14] on

the context of database applications, Ghosh studied k-radius
sequences and determined all values of fk(n) when k = 1.
When k = 2, Jaromczyk and Lonc [16] found exact values of
f2(n) for n � 7. They also proved the following lower bound
for the length of k-radius sequences,

fk(n) � n�n − 1

2k
� + Rk(n), (1)

where

Rk(n) =
{

0, for 0 < r � k;

r − k, for k < r � 2k,
(2)

and r is the unique integer such that n − 1 ≡ r (mod 2k).
Through a computer search, Chee et al. [10] found exact values
of f2(n) for n = 8, 10, 11, 12, 14, 15, 16 and 18. Later in [17],
Jaromczyk et al. determined the exact values of f2(n) when-
ever n = 2 p and p > 2 is a prime. Recently, Bondy et al. [4]
and [5] gave a general construction of the shortest or close
to the shortest k-radius sequences, and determined the values
of f2(n) for all n except when n ≡ 18, 19, 20, 21 (mod 24)
and n ≡ 7662, 7663, 7664, 7665 (mod 8760). For arbitrary n,
they proved that f2(n) � n� n−1

4 � + 66, which differs from
the lower bound only by a constant. They also determined
fk(n) when k is a power of a prime, and for every n such
that 2k2 + 1 < n � 2k(k + 1) + 1. The exact values of fk(n)
determined in [4] and [17] all meet the lower bound (1) except
for f2(9), which is equal to 21.

For the case when k is not fixed, i.e., k is a function
of n, the problem of determining fk(n) has been considered
by Jaromczyk et al. [17] and D

‘
ebski and Lonc [11]. When

k = �nα�, where α is a fixed real number such that 0 < α < 1,
it was shown in [17] that fk(n) = n2

2k + O(nβ), for some
β < 2 − α. For some values of c < 1 and sufficiently large n,
the authors in [11] found exact values of fcn(n) by providing
direct constructions of optimal sequences.

The novel method to construct short k-radius sequences used
in [4] depends on the existence of some other cyclic sequences
that they called k-additive sequences. However, the fact that
only a few special cases of general constructions of k-additive
sequences have been known is a limitation of this method
to construct more short k-radius sequences. In this paper,
we present some new constructions of k-additive sequences
for general k. These constructions are applications of Weil’s
theorem on multiplicative character sums, see [21].

Contribution II: We give two constructions of k-additive
sequences of lengths s such that n = 2ks + 1 is a sufficiently
large prime under certain conditions. Consequently, we prove
Conjecture 2 in part: for every fixed k, there are infinitely
many primes n such that

fk(n) = n2

2k
+ O(n).

C. Organization
This paper is organized as follows. Section II recalls some

basic facts about splitter sets and connections to k-radius
sequences. In Section III, we give some constructions of per-
fect splitter sets based on factorizations of groups, and provide
new nonexistence results on perfect splitter sets. Some results
on optimal conflict-avoiding codes obtained from splitter sets
are also presented in Section III. Section IV gives several
direct constructions of k-additive sequences. Finally Section V
concludes the paper.

II. PRELIMINARIES

The following notations are fixed throughout this paper.
• For an odd prime p, a primitive root g modulo p, and an

integer b not divisible by p, there exists a unique integer
l ∈ [0, p − 2] such that gl ≡ b (mod p). It is known as
the index of b relative to the base g, and it is denoted by
indg(b).

• For any positive integer q , let Zq be the ring of integers
modulo q and Z

∗
q = Zq \ {0}.

• Let a, b be integers such that a � b, denote

[a, b] = {a, a + 1, a + 2, . . . , b} and

[a, b]∗ = {a, a + 1, a + 2, . . . , b}\{0}.
• Unless additionally defined, we assume that a ·T = {a ·t :

t ∈ T } and T ·T ′ = {t · t ′ : t ∈ T, t ′ ∈ T ′} for any element
a and any sets T , T ′, where · is any binary operator.

A. Splitter Sets
Let q be a positive integer and k1, k2 be non-negative

integers with 0 � k1 � k2. The set B ⊆ Zq of size n is
called a splitter set if all the sets

{ab (mod q) : a ∈ [−k1, k2]∗}, b ∈ B,



ZHANG et al.: SPLITTER SETS AND K -RADIUS SEQUENCES 7635

have k1+k2 nonzero elements, and they are disjoint. We denote
such a splitter set by B[−k1, k2](q) set.

If a B[−k1, k2](q) set of size n exists, then we have

q � (k1 + k2)n + 1,

and so

n � q − 1

k1 + k2
.

A B[−k1, k2](q) set is called perfect if n = q−1
k1+k2

. Clearly,
a perfect set can exist only if q ≡ 1 (mod k1 + k2).

The paper [24] suggests that we distinguish two types of
perfect B[−k1, k2](q) sets.

Definition 3: Let k1, k2 be integers such that 0 � k1 � k2,
and let q be a positive integer. The perfect B[−k1, k2](q) set
is nonsingular if gcd(q, k2!) = 1. Otherwise, the set is called
singular. If for any prime p|q, there is some k with 0 < k � k2
such that p|k, then the perfect B[−k1, k2](q) set is called
purely singular.

The following two constructions are useful for perfect
splitter sets.

Theorem 4 [25, Th. 14]: If there is a perfect B[−k1, k2](q)
set and some positive integer d|q, gcd(d, k2!) = 1, then (k1 +
k2)d|(q − d), and there is a perfect B[−k1, k2](q/d) set.

Theorem 5 [32, Th. 5]: Let B1 be a B[−k1, k2](q1) set
and B2 be a B[−k1, k2](q2) set where gcd(q2, k2!) = 1. Let

B1 � B2 ={c + rq1 : c ∈ B1, r ∈ [0, q2−1]} ∪ {q1c : c ∈ B2}.
Then,

1) B1 � B2 is a B[−k1, k2](q1q2) set;
2) |B1 � B2| = q2|B1| + |B2|;
3) If both B1 and B2 are perfect, then B1 � B2 is perfect.
From the above two theorems, it is easy to see that there

is a perfect nonsingular B[−k1, k2](q) set if and only if there
is a perfect nonsingular B[−k1, k2](p) set for each prime p
dividing q .

B. k-Radius Sequences From Splitter Sets

Let � be an n-element alphabet. An n-ary k-radius
sequence over � is a finite sequence s0, s1, . . . , sm−1 of
elements taken from � such that, for all distinct x, y ∈ �,
there exist i, j ∈ [0, m − 1] such that si = x , s j = y and
|i − j | � k. In other words, any two distinct elements of �
are at distance of at most k somewhere in the sequence. For
example,

3, 6, 2, 7, 0, 5, 6, 4, 1, 0, 7, 3, 4, 2, 5, 1, 3

is an 8-ary 2-radius sequence of length 17 over Z8.
To reduce the computational complexity, Jaromczyk and

Lonc [16] were interested in constructing short k-radius
sequences, which is also interesting in pure combinatorics. The
example above shows that f2(8) � 17, and in fact f2(8) = 17
by [10].

The following construction of short n-ary k-radius
sequences can be found in [3, Th. 3.1] by Blackburn and
Mckee.

Theorem 6 [3, Th. 3.1]: Let n be a prime number. If there
exists a perfect B[−k, k](n) set, then there exists an n-ary
k-radius sequence of length n−1

2k (n + k − 1) + 1.
In fact, this result can be easily extended to a general perfect

B[−k1, k2](n) set as follows.
Theorem 7: Let n be a prime number. If there exists a

perfect B[−k1, k2](n) set, then there exists an n-ary k2-radius
sequence of length n−1

k1+k2
(n + k2 − 1) + 1.

Proof: If there exists a perfect B[−k1, k2](n) set
D = {d1, d2, · · · , d n−1

k1+k2
}, let T (d) = {−k1d,−(k1 − 1)

d, · · · ,−2d,−d, d, 2d, · · · , k2d}. Then
⋃

d∈D T (d)
covers Z

∗
n .

For each d ∈ D, let sd be the periodic sequence
0, d, 2d, . . . , (n − 1)d, 0, d, . . . of period n. Let sd be a finite
sequence of length n+k2 consisting of n+k2 consecutive terms
of the periodic sequence sd . Note that the sequence sd contains
all pairs (x, y) with y − x ∈ T (d). For i � 2, we choose the
first element of sdi to be equal to the final element of sdi−1 .
Then the concatenation of sequences sdi , 1 � i � n−1

k1+k2
is an

n-ary k2-radius sequence of length n−1
k1+k2

(n + k2 − 1) + 1.
Note that Theorems 6 and 7 are based on perfect splitter

sets, which yield n-ary sequences with prime n. Now we
combine a method given in [33] and the idea in Theorem 6
to construct short k-radius sequences over Zn , where n may
not be a prime. For an element d ∈ Zn , we define the set
Tk,n(d) by

Tk,n(d)

= d{±1,±2, . . . ,±k}
= {−kd,−(k − 1)d, . . . ,−2d,−d, d, 2d, . . . , (k − 1)d, kd}.

Theorem 8: Let p be a prime, t < k < p be integers
such that t|k and 2k

t |(p − 1). For 0 � i � t − 1, let
Ti = {x |x ≡ i (mod t), x ∈ [−k, k]∗}, then |Ti | = 2k

t . Let
g be a primitive root modulo p such that g ≡ 1 (mod t), and
let θ = gcd{indg(a)|a ∈ [−k, k]∗}. If

|{ indg(a)

θ
(mod

2k

t
)|a ∈ Ti }| = 2k

t

for 0 � i � t − 1 and v is a positive integer such that v|θ ,
2vk

t |(p − 1) and gcd( θ
v , 2k

t ) = 1, then there exists a (t p)-ary
k-radius sequence of length t (p−1)·(t p−1)

2k + t (3p−1)
2 .

Proof: Let

D = {g
2kv

t i+ j (mod t p)|i ∈ [0,
t (p − 1)

2kv
− 1],

j ∈ [0, v − 1]}.
Note that |D| = t (p−1)

2k . It has been proved in [33, Th. 5] that
Tk,t p(d), where d ∈ D, are pairwise disjoint in Zt p \ {0} with
each set being of size 2k. We claim that Tk,t p(d), d ∈ D cover
each element in Zt p \ {0, p, 2 p, . . . , (t − 1)p} exactly once.
In fact, since g is a primitive root modulo p, gl is nonzero in
Zp for any l, which means p � d for any d ∈ D. Noting that
k < p, we have p � kd since p is a prime.

For each d ∈ D, let sd be the periodic sequence 0,
d, 2d, . . . , (t p−1)d, 0, d, . . . of period t p. Since gcd(d, t) = 1
and gcd(d, p) = 1, we have gcd(d, t p) = 1. Then distinct
elements x, y ∈ Zt p appear at distance k or less somewhere
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within sd if and only if y − x ∈ Tk,t p(d). Let sd be a finite
sequence of length t p + k consisting of t p + k consecutive
terms of the periodic sequence sd . Order elements of D as
{d1, d2, . . . , d t (p−1)

2k
}. For each i � 2, we choose the first term

of sdi to be equal to the final term of sdi−1 . Let sp be the
reverse of the sequence

0, p, 2 p, . . . , (t − 1)p, 1, p + 1, 2 p + 1, . . . ,

(t − 1)p + 1, . . . , p − 1, 2 p − 1, . . . , t p − 1.

Then the concatenation of the sequences sp , and sdi , 1 � i �
t (p−1)

2k is a (t p)-ary k-radius sequence of length t p + t (p−1)
2k ·

(t p + k − 1) = t (p−1)·(t p−1)
2k + t (3p−1)

2 .
For t � 2, several parameters for which the conditions of

Theorem 8 hold can be found in [33, Table I]. We give one
example to illustrate this construction.

Example 9: Let p = 29, k = 4 and t = 2. Then g = 3 is a
primitive root modulo p. We have indg(1) = 0, indg(2) = 17,
indg(3) = 1, indg(4) = 6, indg(−1) = 14, indg(−2) = 3,
indg(−3) = 15, indg(−4) = 20. Hence θ = 1 and we have

indg(−1) ≡ 2 (mod 4), indg(1) ≡ 0 (mod 4),

indg(−3) ≡ 3 (mod 4), indg(3) ≡ 1 (mod 4),

and

indg(−2) ≡ 3 (mod 4), indg(2) ≡ 1 (mod 4),

indg(−4) ≡ 0 (mod 4), indg(4) ≡ 2 (mod 4).

Taking v = 1 gives

D = {34i (mod 58)|0 � i � 6} = {1, 23, 7, 45, 49, 25, 53}.
Then it is routine to check that T4,58(d), d ∈ D cover each
element of Z58\{0, 29} exactly once. Therefore, by Theorem 8,
there exists a 58-ary 4-radius sequence of length 486. Com-
bining the lower bound in (1), we have 464 � f4(58) � 486.

III. SPLITTER SETS

This section serves to provide new general constructions and
prove new nonexistence results of perfect splitter sets based
on 1-fold factorizations of groups. Further, we observe the
equivalence between splitter sets and a subclass of conflict-
avoiding codes, which enables us to determine optimal sizes
of the latter codes for new infinitely many parameters.

Let G be a finite group and let A and B be subsets of G.
If for each element h of G, there are unique elements a ∈ A
and b ∈ B such that h = a + b, then we say G = A + B
is a 1-fold factorization of group G. There have been some
research works concerning 1-fold factorization of groups. For
a survey of recent progress in this topic we refer the reader
to [31].

A. Constructions of Perfect Splitter Sets

We first give two general simple constructions.

Theorem 10: Let p = (k1 + k2)nm + 1 be a prime and g
be a primitive root modulo p. Let

A = {indg(i) (mod (k1 + k2)n) : i ∈ [−k1, k2]∗}.
If there exists a subset A′ ⊆ Z(k1+k2)n of size n such that
Z(k1+k2)n = A + A′ is a 1-fold factorization, then there exists
a perfect B[−k1, k2](p) set.

Proof: Let

B = {gb+(k1+k2)ni : b ∈ A′, i ∈ [0, m − 1]}.
Then |B| = mn and it is easy to see that B · [−k1, k2]∗ = Z

∗
p .

Hence B is a perfect B[−k1, k2](p) set.
Theorem 11: Let p = 2knm + 1 be a prime and g be a

primitive root modulo p. Let

A = {indg(i) (mod kn) : i ∈ [1, k]}.
If there exists a subset A′ ⊆ Zkn of size n such that
Zkn = A + A′ is a 1-fold factorization, then there exists a
perfect B[−k, k](p) set.

Proof: Let

B = {gb+kni : b ∈ A′, i ∈ [0, m − 1]}.
We claim that B is a perfect B[−k, k](p) set.

Suppose that

rgkni1+ j1 ≡ sgkni2+ j2 (mod p),

where r, s ∈ [−k, k]∗, i1, i2 ∈ [0, m −1] and j1, j2 ∈ A′. Then
we have

indg(r) + kni1 + j1 ≡ indg(s) + kni2 + j2 (mod p − 1).

Reducing this modulo kn, we get

indg(r) + j1 ≡ indg(s) + j2 (mod kn).

Since kn| p−1
2 , j1, j2 ∈ A′ and Zkn = A + A′ is a 1-fold

factorization, we have j1 = j2 and r = s or r = −s.
If r = s, then i1 ≡ i2 (mod 2m) and so i1 = i2. Otherwise,

r = −s, then kni1 ≡ kni2 + p−1
2 (mod p − 1), which implies

p−1
2 |kn(i1 − i2) and i1 = i2. That is m|(i1 − i2) and i1 = i2,

which is a contradiction.
Remark 12: In Theorem 10, if A = {0, n, 2n, . . . , (k1+k2−

1)n}, then we can take A′ = [0, n − 1] to satisfy the 1-fold
factorization condition. This is exactly the case appeared
in [19] and [32]. The same phenomenon appears in
Theorem 11.

In order to give new existence results of perfect splitter sets,
we define the set

S(2k, 2m+1k)

= {{0, 2 j, 4 j, . . . , 2(k − 1) j, 2mk j, (2mk + 2) j, . . . ,

(2mk + 2(k − 1)) j} : j ∈ [1, 2mk], gcd( j, 2m+1k) = 1}.
Lemma 13: Let m � 1, then for any set A ∈ S(2k, 2m+1k),

there exists a set A′ ⊂ Z2m+1k of size 2m such that A + A′ =
Z2m+1k is a 1-fold factorization.

Proof: Let A = {0, 2 j, 4 j, . . . , 2(k − 1) j, 2mk j,
(2mk + 2) j, . . . , (2mk + 2(k − 1)) j} for some j ∈ [1, 2mk]
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TABLE I

EXAMPLES OF PERFECT B[−k1, k2](p) SETS FROM COROLLARY 14

TABLE II

EXAMPLES OF PERFECT B[−k, k](p) SETS FROM COROLLARY 15

and gcd( j, 2m+1k) = 1. Then the result follows by taking
A′ = {2k ji1 + i2 : i1 ∈ [0, 2m−1 − 1], i2 ∈ [0, 1]}.

Combining Theorems 10, 11 and Lemma 13, we have the
following two corollaries.

Corollary 14: Let m � 1, p = 2m(k1+k2)n+1 be a prime,
k1+k2 be even and g be a primitive root modulo p. If {indg(i)
(mod (k1 + k2)2m) : i ∈ [−k1, k2]∗} is contained in S(k1 +
k2, (k1 +k2)2m), then there exists a perfect B[−k1, k2](p) set.

Corollary 15: Let m � 1, p = 2m+1kn + 1 be a prime,
k be an even integer and g be a primitive root modulo p. If
{indg(i) (mod 2mk) : i ∈ [1, k]} is contained in S(k, 2mk),
then there exists a perfect B[−k, k](p) set.

Tables I and II list some parameters for which the conditions
of Corollaries 14 and 15 are satisfied, respectively. Combining
Theorem 5, Tables I and II, we can obtain infinitely many new
perfect splitter sets.

B. Nonexistence of Perfect Splitter Sets

In this section, we give some nonexistence results of perfect
splitter sets by 1-fold factorizations of groups. A subset A ⊆
Zn is said to be periodic if its stabilizer N(A) = {g ∈ Zn :
A + g = A} is a nontrivial subgroup of Zn . The following
result of periodic sets of cyclic groups can be found in [31].

Lemma 16 [31, Ths. 4.4, 4.5, and 4.6]: Assume that
Zn = A + B is a 1-fold factorization. If

1) |A| is a prime power, or
2) n is a divisor of one of the numbers:

uev, u2v2, u2vw, uvwz, where u, v,w, z are
primes and e is a positive integer,

then A or B is periodic.
Now we have the following necessary condition for perfect

splitter sets.
Theorem 17: Let p = (k1 + k2)m + 1 be a prime number

and g be a primitive element modulo p. Assume that
1) k1 + k2 is a prime power, or

2) p − 1 is a divisor of one of the numbers:
uev, u2v2, u2vw, uvwz, where u, v,w, z are primes
and e is a positive integer.

Let A = {indg(i) : i ∈ [−k1, k2]∗}. If there exists
a perfect B[−k1, k2](p) set, then A (mod (k1 + k2)l) is
a periodic subset of size (k1 + k2) in Z(k1+k2)l for
some l|m.

Proof: The proof is by induction on factors of m.
If A is periodic in Z(k1+k2)m , then we are done. If not, since

there exists a perfect B[−k1, k2](p) set, there exists a set C
of size m such that A + C = Zp−1. Note that |A| = k1 + k2
is a prime power or p − 1 is a divisor of one of the numbers:
uev, u2v2, u2vw, uvwz, where u, v,w, z are primes and e
is a positive integer. Then by Lemma 16, C is periodic in
Z(k1+k2)m . So there exists an element e ∈ Z

∗
(k1+k2)m such that

C +e = C , hence C is the union of some cosets of 〈e〉, where
〈e〉 is the subgroup of Z(k1+k2)m generated by e. We can write
C as C = 〈e〉+ D, where D is the set of representatives of the
cosets. Then Z(k1+k2)m = A + 〈e〉 + D. Assume |〈e〉| = s, we
have s|m since s|D| = m. Then Z(k1+k2) m

s
= A + D, where

the sets A and D are modulo (k1 + k2)
m
s . If A is periodic in

Z(k1+k2) m
s

, then we are done by taking l = m
s . If not, we repeat

the above step until it stops. Since m is finite, there exists an
l|m such that A (mod (k1 + k2)l) is a periodic subset of size
(k1 + k2) in Z(k1+k2)l .

Theorem 18: Suppose that k1 + k2 is an odd prime, 1 �
k1 < k2, then there does not exist a nonsingular perfect
B[−k1, k2](n) set.

Proof: If there exists a nonsingular perfect B[−k1, k2](n)
set, then gcd(n, k2!) = 1. By Theorem 4, for any prime p|n,
there exists a perfect B[−k1, k2](p) set. Hence we only need
to show that there does not exist a perfect B[−k1, k2](p) set
for any prime p ≡ 1 (mod k1 + k2). Let g be a primitive
root modulo p and a = k1 + k2. If there exists a perfect
B[−k1, k2](p) set, then A = {indg(i) : i ∈ [−k1, k2]∗}
is periodic in Zal for some l satisfying al|(p − 1). Since
|A| = a is a prime number and indg(1) = 0 ∈ A, we have A
(mod al) = {i l : i ∈ [0, a − 1]}.

Assume p−1 = alr . Note that indg(−1) = p−1
2 = alr

2 ∈ A.
Then alr

2 ≡ sl (mod al) for some 0 < s � a − 1. Hence
al|( alr

2 − sl), therefore a|( ar
2 − s). Since a is odd, then 2|r

and a|s, which is a contradiction.
By Theorem 17 and computer search, we also have the

following result.
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Theorem 19: 1) There does not exist a perfect
B[−1, 3](n) set for n = 97, 457 and 485.

2) There does not exist a perfect B[−2, 4](n) set for
n = 37, 349 and 877.

For B[−1, 3](n) set, combining Table I and Theorem 19,
we have completely solved the undetermined nonsingular
cases left in [33, Corollary 19].

C. Applications to Conflict-Avoiding Codes

Conflict-avoiding codes are used in the multiple-access
collision channel without feedback. A codeword here is a
subset I of Zn , and the weight of I is the size |I |. For a
codeword I , let

d(I ) = {a − b (mod n) : a, b ∈ I }
denote the set of differences between any two elements in I .
Note that 0 ∈ d(I ). Let d∗(I ) be the set of nonzero differences
in d(I ), that is

d∗(I ) = d(I )\{0},
which is the set of differences between any two distinct
elements of I . A collection of M codewords

C = {I1, I2, . . . , IM }
is called a conflict-avoiding code (CAC) of length n and
weight ω if

d∗(I j ) ∩ d∗(Ik) = ∅
for all j = k and |I j | = ω for all j ∈ [1, M]. We denote such
a code by (n, ω)-CAC.

Example 20: Let n = 15, ω = 3. The four code-
words {0, 5, 10}, {0, 1, 2}, {0, 7, 11}, {0, 6, 12} constitute
a (15, 3)-CAC. We can verify that the sets of nonzero
differences

d∗({0, 5, 10}) = {5, 10},
d∗({0, 1, 2}) = {1, 2, 13, 14},

d∗({0, 7, 11}) = {4, 7, 8, 11},
d∗({0, 6, 12}) = {3, 6, 9, 12},

are disjoint.
Given positive integers n and ω, consider the class of all

CACs with length n and weight ω. A CAC in this class with
maximum number of codewords is called optimal, and the
maximal number of codewords is denoted by M(n, ω). The
main problem in CAC is to determine M(n, ω) for all n and ω.
Example 20 shows that M(15, 3) � 4.

A codeword I is called equidifference if the elements in I
form an arithmetic progression in Zn , i.e.

I = {0, i, 2i, . . . , (ω − 1)i}
for some i ∈ Zn . The element i is called a generator of this
codeword. For an equidifference codeword I generated by i ,
the set of differences is

d(I ) = {0,±i,±2i, . . . ,±(ω − 1)i}.

The elements ±i,±2i, . . . ,±(ω − 1)i may not be distinct
in Zn . Hence |d∗(I )| � 2ω − 2, with equality holds if
±i,±2i, . . . , ±(ω − 1)i are all distinct. A codeword I of
weight ω is exceptional if |d∗(I )| < 2ω − 2. If all codewords
in a CAC C are equidifference, then we say that C is
equidifference, and the set of generators is denoted by �(C).

If C is an equidifference CAC of length n and weight
ω with no exceptional codeword, then the set of generators
of C forms a B[−(ω − 1), ω − 1](n) set. Conversely, if
there exists a B[−k, k](n) set, which is taken as the set of
generators of some code C , then the corresponding code C
is an equidifference CAC of length n and weight k + 1 with
no exceptional codeword. Therefore, we have the following
result.

Theorem 21: If there exists a B[−k, k](n) set with size m,
then M(n, k + 1) � m.

The following result is similar to Theorem 5, which is a
recursive construction for CACs.

Theorem 22 [23, Th. 6.1]: Let ω � 3, and n1, n2 and
s be positive integers such that n1 is divisible by s and
gcd(l, n2) = 1 for all l ∈ [2, ω − 1]. Let C1 be an
equidifference (n1, ω)-CAC consisting of m1 nonexceptional
codewords I1, . . . , Im1 so that

Zn1\ ∪m1
j=1 d∗(I j ) ⊇ n1

s
Zn1 .

Let C2 be an equidifference (sn2, ω)-CAC with m2 codewords.
The code C of length n1n2 generated by

�(C) = {i + jn1 : i ∈ �(C1), j ∈ [0, n2 − 1]}
∪{(n1/s)k : k ∈ �(C2)}

is an equidifference (n1n2, ω)-CAC with m1n2 + m2 code-
words.

Given a subset I ⊆ Zn , recall that the stabilizer
N(I ) = {g ∈ Zn : I + g = I } is a subgroup of Zn . The
authors in [26] showed that d(I ) ⊇ N(d(I )) for any subset
I ⊆ Zn . In the same paper, they gave a general upper bound
on M(n, ω).

Theorem 23: [26, Corollary 5] Let C be an (n, ω)-CAC.
If there are E exceptional codewords I1, I2, . . . , IE in C, then

|C| �
n − 1 + ∑E

j=1(|N(d(I j ))| − 1)

2ω − 2
.

Moreover, they determined many new values of M(n, ω).
Using a similar idea, we obtain the following theorem. For the
sake of completeness, we give the proof.

Theorem 24: Let ω � 3. Suppose n is an integer such that
n−1 is divisible by 2ω−2 and gcd(n, (2ω−2)!) = 1. If there is
a perfect B[−(ω−1), ω−1](n) set and an integer t such that
ω � t � 2ω − 2, and gcd(t, (ω − 1)!) = 1, then M(tn, ω) =
t n−1

2ω−2 + 1.
Proof: If there exists a perfect B[−(ω−1), ω−1](n) set,

then there exists an equidifference (n, ω)-CAC C1 with n−1
2ω−2

nonexceptional codewords. Let C2 be a trivial (t, ω)-CAC
consisting of only one codeword generated by 1. Applying
Theorem 22 with s = 1, n1 = n, n2 = t to C1 and C2,
we have a (tn, ω)-CAC with t n−1

2ω−2 + 1 codewords.
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It suffices to show that any (tn, ω)-CAC contains at most
t n−1

2ω−2 + 1 codewords. Let C be a (tn, ω)-CAC. Suppose that
there are E exceptional codewords I j , j ∈ [1, E], in C . For
each j , let N j be the stabilizer of d(I j ). Then the size of N j

is strictly less than 2ω − 1 since |N j | � |d(I j )| � 2ω − 2.
We claim that any subgroup G of Ztn of size less than

2ω − 1 is a subgroup of

〈n〉 = {0, n, 2n, . . . , (t − 1)n}.
Suppose on the contrary that there exists an element a ∈ G
which is not divisible by n. Then the order of a in Ztn is bigger
than 2ω − 2 since gcd(n, (2ω − 2)!) = 1, which contradicts to
the fact that |G| < 2ω − 1.

Hence we have N j ⊂ 〈n〉 for each j . By Theorem 23,
we obtain

|C| �
tn − 1 + ∑E

j=1(|N j | − 1)

2ω − 2

� tn − 1 + t − 1

2ω − 2

� t
n − 1

2ω − 2
+ t − 1

ω − 1
.

Since ω � t � 2ω − 2, we conclude that
M(tn, ω) = t n−1

2ω−2 + 1.
Since we have obtained infinitely many new perfect splitter
sets in Section III-A, infinitely many new values of M(n, ω)
can be determined by Theorem 24.

IV. SHORT k-RADIUS SEQUENCES

In this section, we investigate short k-radius sequences by
constructing new infinite families of k-additive sequences.
We begin by reviewing some necessary techniques used
in [11].

Assume that the terms of a sequence s0, s1, . . . , sm−1 are
arranged in a “cyclic way”, i.e. s0 is the successor of sm−1.
By the cyclic distance between any two indices i and j ,
we mean the Lee metric for Zm , that is, dL(i, j) = min(|i − j |,
m − |i − j |). A cyclic sequence over A is a cyclic k-
radius sequence, if every two different elements in � have
indices of cyclic distance at most k somewhere in the
sequence. We denote by gk(n) the length of the short-
est cyclic k-radius sequence over an n-element alphabet.
Observe that if s0, s1, . . . , sm−1 is a cyclic k-radius sequence,
then s0, s1, . . . , sm−1, s0, s1, . . . , sk−1 is a noncyclic k-radius
sequence. Hence, gk(n) � fk(n) � gk(n) + k.

By counting the occurrences of a random element of � in
a cyclic k-radius sequence, Bondy et al. [4] showed that

gk(n) � n�n − 1

2k
�. (3)

Bondy et al. [4] also showed the importance of the case
n ≡ 1 (mod 2k) when constructing the shortest (cyclic)
k-radius sequences.

Lemma 25 [4, Lemma 2.1]: If gk(n) = n� n−1
2k � for some

n ≡ 1 (mod 2k), then
(i) fk(n′) = n′� n′−1

2k � + Rk(n′),
(ii) gk(n′) = n′� n′−1

2k �

for every n′ such that n−2k < n′ � n, where Rk(n′) is defined
in (2).

By Lemma 25, it is reasonable to focus on constructing short
k-radius sequences over an alphabet of size n ≡ 1 (mod 2k).
Let s > k be a positive integer and n = 2ks + 1. A cyclic
sequence a0, a1, . . . , as−1 of elements of the cyclic group Zn

is called k-additive if for every nonzero element a ∈ Zn the
set

{ai , ai + ai+1, . . . , ai + ai+1 + · · · + ai+k−1 : i ∈ [0, s − 1]}
contains exactly one of the elements a and −a = n − a. Note
that the indices in this definition are computed modulo s. Let
σ := ∑s−1

i=0 ai . The construction of cyclic k-radius sequences
from k-additive sequences was shown in the following lemma.

Lemma 26: [4, Lemma 4.1] Let k and s be positive integers
such that k < s and let n = 2ks+1. If there exists a k-additive
sequence a0, a1, . . . , as−1 over Zn such that gcd(σ, n) = d,
then there are d cyclic sequences x0, x1, . . . , xd−1 over Zn,
each of them of length ns

d , such that every two elements of Zn

are at distance at most k in exactly one of these sequences
and exactly once in the sequence.

Applying Lemma 26 with d = 1, Lemma 25 and the lower
bounds (1) and (3), it is immediate to get the following result.

Theorem 27 [4, Th. 4.2]: If there exists a k-additive
sequence a0, a1, . . . , as−1 such that gcd(σ, 2ks + 1) = 1, then

fk(n) = n�n − 1

2k
� + Rk(n) and gk(n) = n�n − 1

2k
�

for every n such that 2k(s − 1) + 1 < n � 2ks + 1.
For every cyclic sequence xt appearing in Lemma 26,

0 � t < d , let xt be the noncyclic sequence obtained from xt

by adjoining its k initial terms at the end of xt . The length
of each sequence xt is ns

d + k. Clearly, the concatenation of
the sequences xt , t = 0, 1, . . . , d − 1 is a noncyclic k-radius
sequence of length ns + dk.

Theorem 28 [4, Th. 4.3]: If there exists a k-additive
sequence a0, a1, . . . , as−1 such that gcd(σ, n) = d and
n = 2ks + 1, then

gk(n) � fk(n) � ns + dk = n · n − 1

2k
+ dk.

By Theorems 27 and 28, the existence of a k-additive
sequence of length s implies that of a (cyclic) n-ary k-radius
sequence of the shortest possible or close to the shortest
possible length, for certain values of n. However, there are
very limited results on the existence of k-additive sequences,
especially the ones satisfying Theorem 27. We summarize
them in the following lemma.

Lemma 29 [1], [4], [5], [27]:
(i) There exists a 2-additive sequence of length s for all

s � 3. If s ≡ 5 (mod 6) and s ≡ 1916 (mod 2190),
then there exists a 2-additive sequence of length s such
that gcd(σ, 4s + 1) = 1.

(ii) If k is a power of a prime, then there exists a k-additive
sequence of length k+1 such that gcd(σ, 2k(k+1)+1)=1.

(iii) There is no 3-additive sequence of length five. There
exists a 3-additive sequence of length s ∈ {4, 12, 13, 16}
such that gcd(σ, 6s + 1) = 1.
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By computer search, we show that there exists a k-additive
sequence of length s such that gcd(σ, 2ks + 1) = 1, for k = 2
and s ∈ {5, 11, 17, 23, 29}, k = 3 and 6 � s � 17, and
k = 4 and s ∈ {5, 6, 8, 9}. These sequences are available upon
request.

In the remainder of this section, we provide several general
constructions of k-additive sequences over Zn , where n is a
prime. The first two constructions are applications of Weil’s
Theorem. Given a prime p ≡ 1 (mod r) and a primitive
element g ∈ Zp , we use Cr

0 to denote the multiplicative
subgroup {gir : 0 � i < (p − 1)/r} of the r -th powers
modulo p, and Cr

j to denote the coset of Cr
0 in Zp , i.e.,

Cr
j = g j · Cr

0, 0 � j < r . Here is an application of Weil’s
theorem on multiplicative character sums, which can be found
in [6], [9], and [34].

Theorem 30 [9, Th. 3.2]: Let p ≡ 1 (mod r) be a prime
satisfying the inequality

p −
[

l−2∑
i=0

(
l

i

)
(l − i − 1)(r − 1)l−i

]
√

p − lr l−1 > 0.

Then, for any given l-tuple ( j1, j2, . . . , jl) ∈ [0, r − 1]l and
any given l-tuple (c1, c2, . . . , cl) of pairwise distinct elements
of Zp, there exists an element x ∈ Zp such that x + ci ∈ Cr

ji
for each i ∈ [1, l].

From Theorem 30, it is immediate to have the following
consequence.

Corollary 31: For any integers l and r , there exists
p ≡ 1 (mod r) large enough such that for any given
l-tuple ( j1, j2, . . . , jl) ∈ [0, r − 1]l and any given
l-tuple (c1, c2, . . . , cl) of pairwise distinct elements of Zp,
x + ci ∈ Cr

ji
, i ∈ [1, l] have a solution in Zp.

Now, we describe our constructions of k-additive sequences
in the following subsections according to their lengths.

A. Lengths mk With Odd m

Before giving the general construction, we illustrate our
main idea by constructing 3-additive sequences.

Let n = 36t + 19 = 6(6t + 3) + 1 be a prime for some
integer t , and let g be a primitive element of Zn . We would
like to construct a 3-additive sequence of length 6t + 3 of the
form

1, x, y, h, hx, hy, . . . , h2t , h2t x, h2t y,

where h = g18 for some x, y ∈ Zn . By the definition of
3-additive sequences, we need the union M of the multisets

{1, x, y, h, hx, hy, . . . , h2t , h2t x, h2t y},
{1 + x, x + y, y + h, h + hx, hx + hy, . . . , h2t + h2t x,

h2t x + h2t y, h2t y + 1} and

{1 + x + y, x + y + h, y + h + hx, h + hx + hy, . . . ,

h2t + h2t x + h2t y, h2t x + h2t y + 1, h2t y + 1 + x}
to contain exactly one of the elements ±a. Let R =
{1, x, y, x + 1, x + y, y + h, 1 + x + y, x + y + h, y + h + hx},
then M = R · C18

0 . Since −1 = g18t+9 ∈ C18
0 , if R is a

representative system for the coset classes in {C9
i : i ∈ [0, 8]},

then M contains exactly one of the elements ±a. We apply
Corollary 31 separately to find elements x and y, which are
combined to satisfy this required condition of R. Since 0 and
1 are distinct elements in Zn , by Corollary 31, there exists an
element x ∈ Zn such that x ∈ C9

1 and x + 1 ∈ C9
2 if n is

sufficiently large. Next, we need to find the element y such
that {y, y + x, y + h, y + x + 1, y + x + h, y + h + hx} is a
representative system for the coset classes in {C9

i : i ∈ [3, 8]}.
Since x ∈ C9

1 , x + 1 ∈ C9
2 and h ∈ C9

0 , it is easy to check
that elements in {0, x, h, x + 1, x + h, h + hx} are all distinct.
Then by Corollary 31, the desired element y ∈ Zn also exists
when n is sufficiently large.

Now we give our first general construction of k-additive
sequences.

Theorem 32: Let k and t be positive integers, and let
n = 2k(2kt + k) + 1 = 4k2t + 2k2 + 1. If n is a sufficiently
large prime, then there exist xi ∈ Zn, i = 2, . . . , k, such that

1, x2, x3, . . . , xk, h, hx2, . . . , hxk, . . . , h2t , h2t x2, . . . , h2t xk

is a k-additive sequence of length (2t + 1)k, where h = g2k2

and g is a primitive element of Zn.
Proof: Let M be the collection of sums of at most k

consecutive elements in the given cyclic sequence. For conve-
nience, let x1 = 1. Then M = R · C2k2

0 , where R is the union
of the following three sets:


1 = {
j∑

i=l

xi : 1 � j � k, 1 � l � j},


2 = {xk + h
j∑

i=1

xi : 1 � j � k − 1}, and


3 = {h
j∑

i=1

xi +
k∑

i=l

xi : 1 � j � k − 2, j + 1 � l � k − 1}.

Note that |
1| = ∑k
j=1 j , |
2| = k − 1, |
3| = ∑k−2

j=1
(k −1− j), and hence |R| = k2. We need to find elements x j ,
j ∈ [2, k], such that R is a representative system for the coset
classes in C = {Ck2

j : j ∈ [0, k2 − 1]}.
We partition C into k parts C j , j ∈[1, k], such that |C j |= j ,

j � k − 1 and |Ck | = 2k − 1 + (k−1)(k−2)
2 . In particular, let

C1 = {Ck2

0 }. We also partition R into k sets R j , j ∈ [1, k],
such that R j consists of all elements of R in which the largest
index of unknowns is j . That is,

R j = {
j∑

i=l

xi : 1 � l � j}, j ∈ [1, k − 1], and

Rk = {
k∑

i=l

xi : 1 � l � k} ∪ 
2 ∪ 
3.

Note that |R j | = |C j | for all j . Further, R j+1 = x j+1 +
(R j ∪ {0}) when j < k − 1. We will find x j one by one by
Corollary 31 such that R j is a representative system for the
coset classes in C j , 2 � j � k, and consequently R is a
representative system for those in C .

When j = 2, it is easy to show that there exists an
element x2 such that x2, x2 + 1 in R2 represent coset classes
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TABLE III

ELEMENTS IN Ri WHEN k = 3

in C2 if n is sufficiently large. When j = 3, since 0, x2, x2 +1
are distinct elements, there exists an element x3 such that
x3, x3 + x2, x3 + x2 + 1 in R3 represent coset classes in C3
if n is sufficiently large. Suppose that there exists an element
x j ( j < k − 1) such that R j is a representative system of the
coset classes in C j . Then elements in R j ∪{0} are all distinct,
so there exists an element x j+1 such that elements in R j+1
represent coset classes in C j+1. Finally, we need to find xk

such that elements in Rk represent those in Ck . Since

Rk = xk + (Rk−1 ∪ {0} ∪ (
2 − xk) ∪ (
3 − xk)),

we need to show that elements in Rk −xk are all distinct. Note
that the difference of any two elements in Rk − xk must have
one of the forms

j2∑
i= j1

xi , h
j2∑

i= j1

xi or h
j2∑

i= j1

xi ±
l2∑

i=l1

xi ,

where 1 � j1 � j2 � k − 1, and 1 � l1 � l2 � k − 1. For any
1 � j1 � j2 � k − 1, we know that

∑ j2
i= j1

xi appears in some

R j , j < k. So
∑ j2

i= j1
xi and

∑l2
i=l1

xi are either in different

coset classes or
∑ j2

i= j1
xi = ± ∑l2

i=l1
xi . But in both cases, the

difference with any of the four forms can not be zero. This
completes the proof.

B. Lengths mk With Even m

Note that the k-additive sequences constructed in Lemma 32
are of lengths which are odd multiples of k. This subsection
gives a similar construction but the lengths of sequences are
even multiples of k. We again begin with examples of k = 3
and 4.

Let n = 72t +37 = 6(12t +6)+1 be a prime. We construct
a 3-additive sequence of length 12t + 6 of the form

1, x, y, g, gx, gy, g36, g36x, g36y, g37, g37x, g37y, . . . , g72t ,

g72t x, g72t y, g72t+1, g72t+1x, g72t+1y,

where g is a primitive element of Zn . Let M be the collection
of sums of at most three consecutive elements. Let R = R1 ∪
R2 ∪ R3 which are listed in Table III. Then M = R · C36

0 .
We need R to be a representative system for the coset classes
in {C18

i : i ∈ [0, 17]} as before so that M covers exactly one

of the elements ±a. This could be satisfied if

x ∈ C18
2 , y ∈ C18

6 , y + g ∈ C18
12 ,

x + 1 ∈ C18
4 , y + x ∈ C18

8 , y + g + x ∈ C18
13 ,

y + x + 1 ∈ C18
10 , y + g + gx ∈ C18

14 ,

y + g35 ∈ C18
14 ,

y + g35 + x ∈ C18
15 ,

y + g35 + g35x ∈ C18
16 .

It is easy to show that there exists an element x such that
x ∈ C18

2 , x + 1 ∈ C18
4 when n is sufficiently large by

Corollary 31. To apply Corollary 31 to y, we need to prove
that elements in {0, x, x+1, g, g+x, g+gx, g35, g35+x, g35+
g35x} are all distinct. Note that x, x + 1, g, g + gx, g35, g35 +
g35x represent coset classes C18

i , i ∈ {2, 4, 1, 5, 17, 3}. If the
element x also satisfies x +g ∈ C18

a and x +g35 ∈ C18
b , where

0 � a = b � 17 and {a, b} ∩ {2, 4, 1, 5, 17, 3} = ∅, then we
are done. Fortunately, we could add these extra conditions
when we find the element x . Since elements in {0, 1, g, g35}
are distinct, there exists an element x such that x ∈ C18

2 ,
x + 1 ∈ C18

4 , x + g ∈ C18
a and x + g35 ∈ C18

b when n is
sufficiently large. Consequently, the desired element y exists
by Corollary 31.

Note that in the above example when k = 3, we need extra
constraints on x for the convenience to apply Corollary 31 to y.
This phenomenon occurs more often in the next example and
is essential in the proof of the final general construction.

Let n = 128t + 65 = 8(16t + 8) + 1 be a prime. We would
like to construct a 4-additive sequence of length s = 16t + 8
of the form

1, x, y, z, g, gx, gy, gz, g64, g64x, g64y, g64z, g65, g65x, g65y,

g65z, . . . , g128t , g128t x, g128t y, g128t z, g128t+1, g128t+1x,

g128t+1y, g128t+1z,

where g is a primitive element of Zn . Let M be the collection
of sums of at most four consecutive elements in the sequence.
Let R = R1 ∪ R2 ∪ R3 ∪ R4 which are listed in Table IV.

Then M = R ·C64
0 . Now we need to find elements x, y and

z such that R is a representative system of the coset classes in
{C32

i : i ∈ [0, 31]}. One of the patterns of sufficient constraints
on elements in R is listed in Table V.

Now we solve x, y and z of these constraints in the
following steps by Corollary 31, provided that n is sufficiently
large.

(S1) There exists an element x such that x ∈ C32
2 and

x + 1 ∈ C32
4 .

(S2) There exists an element y such that y ∈ C32
6 , y +x ∈

C32
8 and y +x +1 ∈ C32

10 since 0, x, x +1 are distinct
elements.

(S3) Finally, we need to find z to satisfy the remaining
conditions in Table V. By Corollary 31, we need
to show that all elements c in the form z + c in
Table V are distinct. We list these elements and the
distribution of some of them in Table VI.

There are six elements c in Table VI that we do not know
the coset classes they represent. If they form a representative
system of the coset classes C32

bi
, i ∈ [1, 6], where bi are distinct

numbers in [0, 31] \ {6, 8, 10, 1, 5, 11, 31, 3, 9}, then elements



7642 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 12, DECEMBER 2017

TABLE IV

ELEMENTS IN Ri WHEN k = 4

TABLE V

SUFFICIENT CONDITIONS OF ELEMENTS IN R WHEN k = 4

TABLE VI

DISTRIBUTION OF ELEMENTS c WHEN k = 4

in Table VI are all distinct. To satisfy this, we modify (S2) as
follows.

(S2’) Find y such that y ∈ C32
6 , y + x ∈ C32

8 , y + x + 1 ∈
C32

10 , and y+{g, g+x, g(1+x), g63, g63+x, g63(1+
x)} represent C32

bi
, i ∈ [1, 6].

By Corollary 31, such an element y exists if elements in
{0, x, x +1, g, g + x, g(1+ x), g63, g63 + x, g63(1+ x)} are all
distinct. This could be obtained if we go back further to (S1)
and modify it as follows.

(S1’) Find x such that x ∈ C32
2 , x + 1 ∈ C32

4 , x + g ∈
C32

a1
and x + g63 ∈ C32

a2
, where a1, a2 are different

numbers in [0, 31] \ {2, 4, 1, 5, 31, 3}.
Since {0, 1, g, g63} are all distinct, such an element x exists
by Corollary 31. Consequently, we could solve y and z
by (S2’) and (S3).

Now we give our second general construction of k-additive
sequences.

Theorem 33: Let k and t be positive integers. Let n =
2k(4kt+2k)+1 = 8k2t+4k2+1 be a prime. If n is sufficiently
large, then there exist elements x2, x3, . . . , xk in Zn such that
the following sequence

1, x2, x3, . . . , xk, g, gx2, gx3, . . . , gxk,

g4k2
, g4k2

x2, . . . , g4k2
xk, g4k2+1, g4k2+1x2, . . . , g4k2+1xk,

· · · ,

g8k2t , g8k2t x2, . . . , g8k2t xk, g8k2t+1, g8k2t+1x2, . . . , g8k2t+1xk

is a k-additive sequence of length 2(2t + 1)k, where g is a
primitive element of Zn.

Proof: By the definition of k-additive sequences, we need
the set M of sums of at most k consecutive elements in the
sequence contains exactly one of the elements ±a, for each
a ∈ Z

∗
n . Denote x1 = 1. For each j ∈ [1, k], let

ϒ j = {x j + g
m∑

i=1

xi : 1 � m � j − 1},


 j = {g
m∑

i=1

xi +
j∑

i=l

xi : 1 � m � j − 2,

m + 1 � l � j − 1},
� j = {x j + g4k2−1

m∑
i=1

xi : 1 � m � j − 1}, and

 j = {g4k2−1
m∑

i=1

xi +
j∑

i=l

xi : 1 � m � j − 2,

m + 1 � l � j − 1}.
Define

R j = {1, g} × {
j∑

i=l

xi : 1 � l � j}, j ∈ [1, k − 1] and

Rk = {1, g} × {
k∑

i=l

xi : 1 � l � k} ∪ ϒk ∪ 
k ∪ g�k ∪ gk .

Let R be the union of R j , then M = R · C4k2

0 . Since −1 =
g4k2t+2k2

/∈ C4k2

0 , we need to show that there exist elements
x2, x3, . . . , xk such that R is a representative system for the
coset classes in C = {C2k2

j : j ∈ [0, 2k2 − 1]}. It is easy
to check that the pattern (4) (on the top of next page) of
constraints on elements in R is sufficient.

Now we claim that (4) has solutions when n is sufficiently
large. Let R′

j = {∑ j
i=l xi : 1 � l � j} ∪ ϒ j ∪ 
 j ∪ � j ∪  j ,

for each j � k. It is routine to check the following facts hold
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⎧⎪⎨
⎪⎩

∑ j
i=l xi ∈ C2k2

j ( j+1)−2l, for 1 � l � j, 1 � j � k,

elements in ϒk ∪ 
k represent C2k2

r , k(k + 1) � r � k(k + 1) + k(k−1)
2 − 1, and

elements in �k ∪ k represent C2k2

r , k(k + 1) + k(k−1)
2 − 1 � r � 2k2 − 2.

(4)

{∑ j
i=l xi ∈ C2k2

j ( j+1)−2l, for 1 � l � j, and

elements in ϒ j ∪ 
 j ∪ � j ∪  j represent coset classes in C j .
(5)

for all j < k.

ϒ j+1 = x j+1 + g{
m∑

i=1

xi : 1 � m � j},


 j+1 = x j+1 + (ϒ j ∪ 
 j ),

� j+1 = x j+1 + g4k2−1{
m∑

i=1

xi : 1 � m � j} and

 j+1 = x j+1 + (� j ∪  j ).

Then for each j < k, we have

R′
j+1 = x j+1 + (R′

j ∪ {0} ∪ ({g, g4k2−1}

× {
m∑

i=1

xi : 1 � m � j})). (6)

Note that |ϒ j ∪ 
 j ∪ � j ∪  j | = j ( j − 1). For each j < k,
let

C j ⊂ [0, 2k2 − 1] \ ({ j ( j + 1) − 2l : 1 � l � j} ∪
{m(m + 1) − 1, m(m + 1) − 3 : 1 � m � j})

such that |C j | = j ( j − 1). Now we will find x j , for each
2 � j � k −1, such that elements in R′

j satisfy the constraints
(5) on the top of this page.

We prove that elements x j , 2 � j < k − 1, exist by
induction. When j = 2, R′

2 = {x2, x2 +1, x2 +g, x2+g4k2−1},
then there exists an element x2 satisfying (5) by Corollary 31.
Suppose that there exists an element x j such that (5) is
satisfied. By the definition of C j , we know that elements in

R′
j ∪ {0} ∪ ({g, g4k2−1} × {

m∑
i=1

xi : 1 � m � j})

are all distinct. Hence, by Eq. (6) and Corollary 31, there exists
an element x j+1 such that (5) holds for j + 1.

In particular, there exists an element xk−1 such that (5)
holds, which means that elements in

R′
k−1 ∪ {0} ∪ ({g, g4k2−1} × {

m∑
i=1

xi : 1 � m � k − 1})

are all distinct. Hence, by Corollary 31, there exists an
element xk such that elements in R′

k satisfy the corresponding
constraints in (4).

Combining all pieces, we prove that there exist elements x j ,
2 � j � k such that (4) holds, that is, R forms a representative
system of the coset classes C2k2

j , j ∈ [0, 2k2 − 1]. This
completes the proof.

C. Lengths Independent of k

In the previous two subsections, we give constructions of
k-additive sequences of lengths which are multiples of k.
In this subsection, we provide two constructions where the
lengths are independent of k.

Theorem 34: Let k and t be positive integers. Let n =
2k(2t + 1) + 1 = 4kt + 2k + 1 be a prime. If there exists
a primitive root g ∈ Zn such that {1, 1 + g2k, 1 + g2k +
g4k, . . . , 1 + g2k + g4k + · · · + g2k(k−1)} is a representative
system of the coset classes Ck

i , i ∈ [0, k − 1], then

1, g2k, g4k, . . . , g4kt

is a k-additive sequence of length (2t + 1).
Proof: We prove it by definition. Let R = {1, 1+g2k, 1+

g2k + g4k, . . . , 1 + g2k + g4k + · · · + g2k(k−1)} and M be
the collection of sums of at most k consecutive elements in
the given cyclic sequence. Then M = R · C2k

0 . Since −1 =
g2kt+k ∈ C2k

0 , the fact that R is a representative system of the
coset classes in {Ck

i : i ∈ [0, k − 1]} implies that M covers
exactly one of elements ±a for each a ∈ Z

∗
n .

A slightly different version of Theorem 34 is given below,
which yields sequences of even length.

Theorem 35: Let k and t be positive integers. Let n =
2k(4t + 2) + 1 = 8kt + 4k + 1 be a prime. If there exists
a primitive root g ∈ Zn such that {1, g} × R forms a repre-
sentative system of the coset classes in {C2k

i : i ∈ [0, 2k − 1]},
then

1, g, g4k, g4k+1, g8k, g8k+1, . . . , g8kt , g8kt+1

is a k-additive sequence of length (4t + 2), where R is
the collection of sums of the first j terms in the sequence,
1 � j � k.

Proof: We prove it by definition. Let M be the collection
of sums of at most k consecutive elements in the given cyclic
sequence. Then M = {1, g} · R · C4k

0 . Since −1 = g4kt+2k ∈
C4k

0 , the fact that {1, g} · R is a representative system of the
coset classes in {C2k

i : i ∈ [0, 2k − 1]} implies that M covers
exactly one of elements ±a for each a ∈ Z

∗
n .

Although we give two constructions of k-additive sequences in
Theorems 34 and 35 based on a special primitive root of Zn ,
the proof of the existence of this special root may be beyond
the authors’ present knowledge in number theory. We list in
Tables VII and VIII, the thirteen smallest primes n for each
case, for which there exists a primitive root satisfying the
corresponding conditions. In fact, for Theorem 34, we find
the required primitive root of Zn for all primes of n between
67 and 5000 when k = 3, between 521 and 5000 when k = 4,
and between 2591 and 10000 when k = 5. For Theorem 35,
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TABLE VII

GIVEN k , THE SMALLEST PRIMES n AND CORRESPONDING g2k SATISFYING CONDITIONS OF LEMMA 34

TABLE VIII

GIVEN k , THE SMALLEST PRIMES n AND CORRESPONDING g SATISFYING CONDITIONS OF LEMMA 35

the required primitive root of Zn exists for all primes of n
between 541 and 10000 when k = 3, and between 3697 and
20000 when k = 4. Our experimental results may suggest
positive answers for both cases when n is a sufficiently large
prime.

Before closing this section, we note that for all the
k-additive sequences constructed in this section,
gcd(σ, n) = n. Hence, by Lemma 28, an upper bound
fk(n) � n(n−1)

2k + nk is obtained for these values of n. Other
more complicated schemata have produced more k-additive
sequences that are not worth mentioning here.

V. CONCLUDING REMARKS

In this paper, we are devoted to the constructions of splitter
sets and k-radius sequences. They are connected by a con-
struction of short k-radius sequences from splitter sets. For
splitter sets, we present some new constructions of perfect
splitter sets, as well as some nonexistence results on them.
It should be noted that we have given a necessary condition for
perfect splitter sets B[−k1, k2](p) (p is a prime) with certain
parameters in Theorem 17. That is, the set A = {indg(i) : i ∈
[−k1, k2]∗} (g is a primitive element modulo p) is a periodic
set of size |A| when restricted in some subgroup Z(k1+k2)l of
Zp−1. To the best of our knowledge, this property is satisfied
for all the known constructions of nonsingular perfect splitter
sets. Hence we put forward the following problem.

Problem 36: Let p be a prime number and 1 � k1 � k2,
if there exists a perfect splitter set B[−k1, k2](p), then it is
not clear whether the following conclusion holds or not. That
is, there exists an integer l with (k1 + k2)l|(p − 1) and a
primitive element g modulo p, such that the set A = {indg(i) :
i ∈ [−k1, k2]∗} is a periodic set of size |A| in the subgroup
Z(k1+k2)l .

For k-radius sequences, we give two constructions of
k-additive sequences by applying Weil’s theorem, which shows
that for any fixed k, there exist infinitely many values of n
such that fk(n) = n2

2k + O(n). This result partially answers a

conjecture recently proposed by Bondy, Lonc and Rz
‘
ażewski.

Note that a recent paper [22] by Lonc shows a similar
result from the existence of difference families. We also
present some constructions based on the existence of special
primitive roots modulo some prime under certain conditions.
Our experimental results may suggest that when the prime
is sufficiently large, there always exist such primitive roots
satisfying conditions especially in Theorems 34 and 35.
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