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a b s t r a c t

In this paper, an integrated data validation/reconstruction and fault diagnosis approach is proposed for
critical infrastructure systems. The proposed methodology is implemented in a two-stage approach. In
the first stage, sensor communication faults are detected and corrected, in order to facilitate a reliable
dataset to perform system fault diagnosis in the second stage. On the one hand, sensor validation and
reconstruction are based on the combined use of spatial and time series models. Spatial models take
advantage of the (mass-balance) relation between different variables in the system, whilst time series
models take advantage of the temporal redundancy of the measured variables by means of Holt-Winters
time series models. On the other hand, fault diagnosis is based on the learning-in-model-space approach
that is implemented by fitting a series of models using a series of signal segments selected with a sliding
window. In this way, each signal segment can be represented by one model. To rigorously measure the
‘distance’ between models, the distance in the model space is defined. The deterministic reservoir
computing approach is used to approximate a model with the input–output dynamics that exploits
spatial–temporal correlations existing in the original data. Finally, the proposed approach is successfully
applied to the Barcelona water network.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Critical infrastructure systems (CIS), including water, gas or
electricity networks, are complex large-scale systems, geographi-
cally distributed and decentralized with a hierarchical structure,
requiring highly sophisticated supervisory and real-time control
(RTC) schemes to ensure high performance achievement and
maintenance when conditions are non-favourable (Schütze et al.,
2004; Marinaki and Papageorgiou, 2005) due to e.g. sensor and
actuator malfunctions (faults). Each sub-system composing the CIS
is constituted of a large number of elements with time-varying
behaviour, having many different operating modes and subject to
changes due to operational constraints. To deal with this problem,
the use of an on-line fault diagnosis system able to detect such
faults and correct them by activating different kinds of techniques e.
g. data validation/reconstruction of sensor faults is desirable. This
will prevent the RTC from being stopped every time that a fault
appears, which is one of the main reasons why global RTC is not
widely applied in the world (Schütze et al., 2004). Furthermore, the

fault diagnosis process intends to identify which fault is causing the
monitored events, including e.g. hardware and software faults.

Generally, two main strategies are available in the literature
when addressing the fault diagnosis problem, which are hardware
redundancy (preferred in critical systems) based on the use of
extra sensors and actuators, and analytical redundancy, based on
the use of software sensors or models combining information
gathered by the sensor measurements or using other actuators to
compensate the faulty ones. Nevertheless, the use of hardware
redundancy in large-scale systems is very expensive and increases
the number of maintenance and calibration operations, which calls
for the use of combined hardware and analytical redundancy
approaches in CIS (Carrozza et al., 2008). The capability to detect
and isolate faults in these systems is important to keep their
integrity safe. This problem has been targeted by numerous
researchers from many different points of view, as overviewed in
the compilation of techniques included in Venkatasubramanian
et al. (2003a–c), and more recently in Ding (2008).

In this paper, an innovative framework that investigates the
fault diagnosis problems in the model space instead of the data/
signal space is developed. This fault diagnosis framework is
integrated with a data validation/reconstruction methodology
introduced in Quevedo et al. (2010a). ‘Learning in model space’
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(Chen et al., 2014) is implemented by fitting a series of ‘approxi-
mated’ models using a series of signal segments selected with a
sliding window, and then apply the learning techniques to
discriminate and isolate fault models from healthy models. Reser-
voir computing is chosen as an example to approximate the signal
segments. Dynamic reservoirs of reservoir models have been
shown to be ‘generic’ in the sense that they are able to represent
a wide variety of dynamical features of the input driven signals, so
that given a task at hand only the linear readout on top of reservoir
needs to be retrained (Lukoševičius and Jaeger, 2009). Hence, in
the formulation the underlying dynamic reservoir will be the same
throughout the signal – the differences in the signal characteristics
at different times will be captured solely by the linear readout
models and will be quantified in the function space of readout
models.

Here it is assumed that, for some sufficiently long initial period,
the system is in a ‘normal/healthy’ regime so that when a fault
occurs the readout models characterizing the fault will be suffi-
ciently ‘distinct’ from the normal ones. A variety of novelty/
anomaly detection techniques can be used for the purposes of
detection of deviations from the ‘normal’ regime. In this contribu-
tion, support vector machines (SVMs) in the readout model space
are used, so new faults occurring will be captured by the algorithm
proposed operating in the readout model space.

The contributions of this paper are listed as follows:

� First, data validation and reconstruction techniques are inte-
grated with learning in the model space for effective fault
diagnosis.

� Second, SVMs are used in the model space for fault detection/
isolation.

Finally, the proposed methodologies are applied to the Barcelona
water network as a case study in this paper.

2. Data validation/reconstruction approach

In systems like CIS, a telecontrol system is acquiring, storing
and validating data gathered from different kinds of sensors every
given sampling time to accurately real-time monitor the whole
system. In this process, problems in the communication system,
e.g. between sensors and data loggers or in the telecontrol system
itself, are frequent and produce data loss which may be of great
concern in order to have valid historic records. When this is
occurring, lost data should be replaced by a set of forecasted data
which should be a representative of the data lost. Another
common problem in CIS is caused by the unreliable sensors, which
may be affected by e.g. offset, drift, freezing in the measurements
(Kanakoudis and Tolikas, 2001; Kanakoudis and Tsitsifli, 2011;
Tsitsifli et al., 2011). These unreliable data should also be detected
and replaced by forecasted data, since it may be used for system
management tasks e.g. maintenance, planning, investment plans,
billing, security and operational control (Quevedo et al., 2010a)
and system fault detection and isolation (Fig. 1).

Different types of data validation methods with distinct
degrees of complexity may be considered according to the avail-
able system knowledge. Generally, two types of methods can be

considered, one for elementary ‘low-level’ signal based methods
and another for ‘high-level’ model-based methods. The first class
use simple heuristics and limited statistical information from the
sensors (Burnell, 2003; Jörgensen et al., 1998) and is typically
based on checking either signal values or variations, whilst the
second class uses models for consistency-checking of the sensor
data (Tsang, 2003). Here, the first class of data validation methods
has been used to deal with sensor communication faults.

2.1. Data validation process

The data validation process is inspirited in the Spanish AENOR-
UNE norm 500540 (Quevedo et al., 2010a). The methodology
applies a set of consecutive validation tests to a given dataset
(Fig. 2), to finally assign a certain quality level depending on the
tests passed.

In a system like the one considered here, and in telecontrolled
systems in general, one of the most common faults occurring is
sensor communication fault. This type of fault is related with level
zero of the sensor validation methodology in Quevedo et al.
(2010a). This level checks whether the data is properly recorded,
assuming that data acquisition systems sample data at a certain
fixed rate. Hence, this level allows detecting problems in the data
acquisition or communication system.

Here, communication faults are considered as the faults affect-
ing the sensor of the telecontrol system, and data validation and
reconstruction procedures are used as a prefilter to estimate the
missing data when this type of faults is occurring.

2.2. Data reconstruction process

The output of the data validation process (Fig. 2) is used to
identify the invalidated data that should be reconstructed. Spatial
and time series (TS) models (Levels 4 and 5 in Fig. 2) are used for
this purpose, depending on the performance of each model.

On the one hand, spatial models (SM) take advantage of the
relation between different variables emplaced in the system. For
example, in hydraulic systems, this relation is generally obtained
from the mass balance model of the element relating the different
measured variables involved, which states that the incoming and
outcoming flows in a tank subsystem must be equal

x̂SMðkÞ ¼ xðk�1ÞþΔtðqinðk�1Þ�qoutðk�1ÞÞ ð1Þ
where x̂SM is the spatial model tank volume estimation, x is the
measured tank volume, qin is the incoming tank flow, qout is the
outcoming tank flow and Δt is the sampling time. From this
equation, the volume estimation for a particular tank subsystem
may be stated. Estimation of other variables (e.g. q̂in, q̂out) may be
obtained from algebraic manipulation of the latter.

However, real elements include uncertainty (due to e.g. unex-
pected behaviour of the plant, inaccuracy of the model) which may
lead to the non-satisfaction of the mass balance in the element
considered. Hence, consistency of the data collected by a certain
sensor with its spatial model (Quevedo et al., 2010b), i.e. the
correlation between data coming from spatially related sensors,
may be maintained. For example, the data of the flow meters
located in different points of the same pipe in a transport water
network allows for checking the reliability of the sensor set and
performing the corresponding correction, e.g. by using a linear
regression model of input–output measured data in the pipe
(which is ideally the identity function). In the case of the tank
level estimation (1), this correction is introduced as

x̂cðkÞ ¼ ax̂SMðkÞþb ð2Þ
where x̂c is the corrected estimation of the volume using regres-
sion model parameters ½a;b� obtained with the training dataset

Data 
Validation Validated?

Data 
Reconstruction

NO

Operational 
DDBB

YES

raw sensor 
data

Model Space 
FDI

Fig. 1. Raw data validation/reconstruction and system FDI approach.
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and x̂SM is the spatial model volume estimation using measured
variables qin and qout . Parameters ½a; b� equal a¼ 1 and b¼0 in the
ideal situation, i.e. when the estimated value x̂SMðkþ1Þ equals the
measured value xðkþ1Þ.

On the other hand, TS models take advantage of the temporal
redundancy of the measured variables. A widely used method for
signal forecasting is the Holt-Winters (HW) approach (Makridakis
et al., 1998; Winters, 1960). This method is widely used because of
its simplicity. There are various versions of this method e.g.
additive or damped trend, additive or multiplicative seasonality,
single or multiple seasonality. Here, good performance has been
attained with the additive single seasonality version. In this case,
the forescasted value of which is obtained in Eq. (3) for a
forecasting horizon ℓ

x̂TSðkÞ ¼ Rðk�ℓÞþℓGðk�ℓÞþSðk�LÞ ð3Þ
where R is the level estimation removing seasonality

Rðk�ℓÞ ¼ αðxðk�ℓÞ�Sðk�L�ℓÞÞþð1�αÞðRðk�ℓ�1Þ
þGðk�ℓ�1ÞÞ; 0oαo1 ð4Þ

G is the trend estimation

Gðk�ℓÞ ¼ βðRðk�ℓÞ�Rðk�ℓ�1ÞÞ
þð1�βÞGðk�ℓ�1Þ; 0oβo1 ð5Þ

S is the seasonal component estimation

Sðk�ℓÞ ¼ γðxðk�ℓÞ�Rðk�ℓÞÞþð1�γÞSðk�ℓ�LÞ; 0oγo1 ð6Þ
and L is the season (daily) periodicity, α, β and γ are the HW
parameters (level, trend and season smoothing factors, respec-
tively), x is the measured value and x̂TSðkþTÞ is the TS model
forecasted value.

Hence, analysing the historic records of a certain sensor, a HW
TS model is derived and used to forecast the data of this element
when a fault is affecting its readings.

The models' accuracy is measured by the mean squared error
(MSE) index, evaluated in the n¼48 previous values to k. The
model having the best MSE index when the communication fault
is produced (i.e. when the data validation process is not satisfac-
tory) is used to produce the reconstructed sensor signal.

3. Fault diagnosis approach

To address the challenges in learning based fault diagnosis, this
section applies deterministic reservoir computing as a model to
approximate complex multi-input/multi-output systems, and
introduces the learning in the model space approach in the
Barcelona water network.

3.1. Deterministic reservoir model

Reservoir computing (RC) (Lukoševičius and Jaeger, 2009) is a
class of state space models based on a ‘fixed’ randomly constructed
state transition mapping, realized through the so-called reservoir

and a trainable (usually linear) readout mapping from the reser-
voir. Popular RC methods include echo state networks (ESNs)
(Jaeger, 2001), liquid state machines (LSMs) (Maass et al., 2002)
and the back-propagation decorrelation neural network (Steil,
2004).

This paper is based on echo state networks, which are one of
the simplest yet effective forms of RC. Generally speaking, ESNs are
recurrent neural networks with a non-trainable sparse recurrent
part (reservoir) and a simple linear readout. Typically, the reser-
voir connection weights and the input weights are randomly
generated.

In order to satisfy the sufficient condition for the ‘echo state
property’, i.e. the reservoir is an ‘echo’ of the entire input history,
the weights in the reservoir are scaled to ensure that the spectral
radius of these weight matrix W is less than one. ESNs have been
successfully applied to many applications, such as short-term stock
price prediction (Lin et al., 2009), speech recognition (Skowronski
and Harris, 2007), nonlinear adaptive filtering (Xia et al., 2010),
and analysing grammatical structure (Tong et al., 2007).

Given the input signal u and output signal y, the reservoir
model with N reservoir (state) units can be formulated as follows:

xðtÞ ¼ tanhðR xðt�1ÞþV uðtÞÞ; ð7Þ

f ðxðtÞÞ ¼WxðtÞþa; ð8Þ
where xðtÞ ¼ ½x1;…; xN�T ARN is the state vector of reservoir activa-
tions, uðtÞ is the input signal at time t, tanhð�Þ is the state-transition
function of the reservoir, and f ðxðtÞÞ is the output1 of the linear
readout from the reservoir; R is a ðN � NÞ dynamic coupling weight
matrix; V and W are the input and output weight matrices, respec-
tively.

In order to construct a reservoir model, a number of parameters
should be specified, such as the reservoir size, sparsity of reservoir,
input connections, the reservoir topology and its weights. The
input connections, reservoir topology and the connection weights
are randomly generated and fixed during the readout training. This
specification often requires numerous trails and even luck (Xue
et al., 2007), and the weight structure and the random connectiv-
ity in the reservoir are unlikely to be optimal (Ozturk et al., 2007).
These problems are preventing ESNs from becoming a widely
accepted tool.

There has been research that proposes fixed and simple
reservoir topologies as an alternative to the randomized reservoir,
including feedforward ESNs model with tapped delay connections
(Čerňanský and Tiňo, 2008), simple cycle topology (Rodan and
Tiňo, 2011) and simple cycle topology with regular jumps (Rodan
and Tiňo, 2012). The simple cycle reservoir with regular jumps
(CRJ) could identify the minimum complexity in constructing
reservoirs, which is competitive with other ESNs algorithms. The

Level 0
Communication

Level 1
Physical range

raw sensor 
data

Level 2
Trend

Level 3
Unit

Level 4
Spatial Consistency

Level 5
Time Series Consistency

Data validation 
diagnosis 

Fig. 2. Data validation tests.

1 The output signal y is the desired output and f ðxðtÞÞ is the actual MODEL
output. In the framework of “learning in the model space”, a good representation of
multiple-input and multiple-output system by readout mapping is achieved by
minimizing the difference between y(t) and f ðxðtÞÞ.
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deterministic CRJ can approach with arbitrary accuracy the mem-
ory capacity of any non-linear recurrent networks.

The CRJ model is deterministically constructed and extremely
simple. In CRJ, the structure of R is particularly simple: reservoir
units are connected in a uni-directional cycle with bi-directional
shortcuts (jumps) (see Fig. 3). All cyclic connections have the same
weight rc40 (where the subscript c is the first letter of cycle and
indicates that the related r is the cycle weight, the subscripts i and
j in notation ri and rj appeared later have the same meaning).
Likewise, all jumps share the same weight rj40. The input weight
matrix is also highly constrained: the input connections have the
same absolute value ri40. The state space model used in this
paper is illustrated in Fig. 3.

In that case, the CRJ model has a small degree of local clustering
and a small average path length. Jaeger and Haas Jaeger and Haas,
2004 suggested that reservoirs should ideally have small cluster-
ing degree (sparse reservoirs) to spread the dynamic information
in the reservoir and a small average path length can be beneficial
for a variety of dynamical time scales. The structure of the CRJ
model is illustrated in Fig. 3.

The traditional randomize RC is largely driven by a series of
randomized model building stages, which could be unstable and
hard to understand, especially for fault diagnosis. In this paper, we
propose to use the deterministic reservoir algorithm, i.e. CRJ, to fit
the signals in fault diagnosis, because CRJ can approximate the
nonlinear function with inner memory and due to the linear
training, the CRJ model can be trained fast and run in real-time.

3.2. Reservoir model distance

Learning in the model space is proposed by Chen et al. (2014)
based on the idea of using a model to approximate multi-input/
multi-output systems that generate a model-induced feature
space, and then construct some machine learning algorithms in
the model-induced feature space.

There are several ways to generate the model-induced feature
space from the original signal space. One possible way is to use the
parameter vector of each model as an individual point in the
model space. Generally speaking, the parametric space is not
equivalent to the model space, especially for non-linear models.
The following will define the distance in the model space.

In the model-induced feature space, the 2-norm distance
between model f 1ðxÞ and model f 2ðxÞ can be defined as follows:

L2ðf 1; f 2Þ ¼
Z
C
ðf 1ðxÞ� f 2ðxÞÞ2 dpðxÞ

� �1=2

; ð9Þ

where ðf 1ðxÞ� f 2ðxÞÞ2 is to measure the difference between f 1ðxÞ
and f 2ðxÞ, p(x) is the probability density function of x and C is the
integral range. Here, x is assumed to be uniformly distributed.2

In the following, the application of the distance definition in
the model space for linear models has been demonstrated. The
linear model, e.g. auto regressive model, reservoir model,3 can be
represented by the following equation:

f 1ðxÞ ¼W1xþa;

where x¼ ½x1;…; xN�T is a state vector or basis function, N is the
number of variables in the model, W1 is the parameters (O�N
matrix) in the model, O is the number of output vectors and
a¼ ½a1;…; ao� is the bias vector for output nodes.

The distance between two readouts from the same reservoir
can be calculated based on the following equation (Chen et al.,
2014):

L2ðf 1; f 2Þ ¼
Z
C
JWxJ2þ JaJ2 dx

� �1=2

¼ 2N

3
∑
N

j ¼ 1
∑
O

i ¼ 1
w2

i;jþ2N JaJ2
 !1=2

where wT
i is the i-th row of W, wi;j is the (i,j)-th element of W,

f 1ðxÞ ¼W1xþa1, f 2ðxÞ ¼W2xþa2, W ¼W1�W2 and a¼ a1�a2.
Scaling the squared model distance (L22ðf 1; f 2Þ) by 2�N leads to

1
3

∑
N

j ¼ 1
∑
O

i ¼ 1
w2

i;jþ JaJ2;

which differs from the squared Euclidean distance of the readout
parameters

∑
N

j ¼ 1
∑
O

i ¼ 1
w2

i;jþ JaJ2;

by the factor 1/3 applied to the differences in the linear part W of
the affine readouts. Hence, more importance is given to the ‘offset’
than to the ‘orientation’ of the readout mapping.

The above analysis assumed that the distribution of x is uni-
form in the integral range C. When the distribution of x is non-
uniform, sampling techniques and analytical techniques using e.g.
a Gaussian mixture model can be employed to calculate the
distance.

3.3. Support vector machines for fault diagnosis

In fault diagnosis, it should be determined whether a running
sub-system (or component) is under a healthy operation condi-
tion, or whether a faulty situation is occurring. Based on the
‘learning in the model space’ framework, support vector machines
will be employed in the model space for fault diagnosis.

Support vector machines are supervised learning models that
analyse data and recognize patterns used for classification. The tradi-
tional SVM is only applicable for binary classification. The one-against-
one approach and the one-against-the-rest approach can be employed
to extend it for multi-class classification. Here, one-the against-one
approach is used for multi-class learning problems since it is more
efficient than the one-against-the-rest approach.

In the learning in the model space approach, a sliding window
is used to select signal segments to train reservoir models. The
sliding window is moved forward by one step at a time, which can
reduce fault detection delays. When the sliding window is moving
forward, more reservoir models are obtained. Thus, the pairwise
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Fig. 3. Illustration of the CRJ model. The model has a fixed topology, i.e. a uni-
directional cycle with bi-directional jumps. There are only three parameters in this
model: the cyclic connection weights rc40; the jumps weight rj40; and the input
weight ri40.

2 In practice, non-uniform distribution of x could be employed by estimating
the density of x using Gaussian mixture models and sampling techniques for more
accurate distance measures.

3 Reservoir model can approximate non-linear mapping using a linear readout
training by keeping the randomly constructed non-linear reservoir unchanged in
the training.
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model distance L2ðf i; f jÞ can be obtained. The calculated model
distance will be used in the Gaussian RBF kernel to replace the
data distance with the model distance L2ðf i; f jÞ
ϕsðf i; f jÞ ¼ expf�s � L2ðf i; f jÞg:

where s is the kernel parameter and will be tuned by cross
validation.

4. Case study: Barcelona water supply network

4.1. Description

The Barcelona water network, used as the case study here,
supplies water to about three million consumers, distributed in 23
different municipalities covering an area of 424 km2. Water
supplied may be extracted from both surface and underground
sources, Ter (surface source) and Llobregat (both surface and
underground source) being the most important ones in terms of
capacity and use. Water coming from these sources is conducted
through about 4645 km of pipes to 218 different demand sectors
(district metered areas – DMAs) with about 400 control points
installed. Currently, the Barcelona SCADA system receives real-
time data gathered by 200 local monitoring stations, mainly flow
meters and some pressure sensors. Most of these flow meter
control points are installed in the inlet of the DMA, so that their
measurement is highly representative of the whole DMA water
demand. Summarizing, the complete Barcelona supply network is
modelled by 63 storage tanks, 7 underground sources, 3 surface
sources, 79 pumps, 50 valves, 18 nodes and 88 demands.

Regarding the actual SCADA system implemented in the net-
work, a datalogger is recording raw data every 10 min from the
ground sensors. These data are sent once a day using the ModBus
communication protocol via the GSM radio/telephone XTC net-
work to an ORACLE operational database of the telecontrol system
(Fig. 4) which is implemented by a TopKapi SCADA (http://www.
areal.fr/). These collected data are hourly averaged by the company
and supplied for further use.

Before utilising the sensor data recorded by the SCADA system
in the network management system, these data must be treated
with two operations, which are the raw data insertion process and
the data validation and replacement process.

4.2. Raw data insertion process

This is the procedure involving the data acquisition by the
operational database in the SCADA system from the data-loggers,
which may be affected by different kinds of malfunctions
e.g. communication faults or missing sensor/data-logger data.

This data loss, which will affect further management processes
such as statistic and hydraulic balance studies, must be recovered
by the use of replacement artificial data (Tsitsifli and Kanakoudis,
2009). The fault detection in this particular casuistic is trivial, since
the data gap is easily detected and reported by the communication
system itself by an attached error message. A more challenging
problem is the replacement of these lost data by some virtual
dataset which is a representative of the missed sensor readings if
the malfunction would not occurred.

4.3. Data pre-filter

At present, there is an automatic data pre-filter, using data
validation and reconstruction procedures implemented at each
control point. This pre-filtering process, described in Section 2, is
activated when a sensor communication fault is occurring, which
is detected at Level 0 test in the data validation procedure (Fig. 2),
in order to achieve a complete sensor dataset to fulfil further
methods needing this information, despite this faulty situation.

5. Results

5.1. Fault scenarios

To illustrate the methodologies proposed here, a part of the
Barcelona water network that includes two subsystems, known as
Orioles and Cervelló (Figs. 5 and 6, respectively), is being used.
This part of the network includes the following elements:

Tanks: d175LOR, d147SCC, d205CES, d263CES
Actuators with flow sensors: iOrioles, iStaClmCervello, iCesal-

pina1, iCesalpina2
Demands with flow sensors: c175LOR, c147SCC, c205CES,

c263CES
Level sensors: xd175LOR, xd147SCC, xd205CES, xd263CES

Fig. 4. Telecontrol of Barcelona water network system.
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Fig. 5. Orioles subsystem.
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A simulator of the network has been developed in MATLAB/
SIMULINK in order to test the proposed methodologies before
being implemented in the real system. The model used by this
simulator has been fully calibrated/validated using real-world
data, providing a good degree of representativeness of the real

network behaviour (in terms of MSE index) after this process
(Pascual et al., 2013).

The simulator also includes the possibility to introduce faults in
the different elements of the network. The faults that will be
studied are located in actuator sensors and demand sensors. The
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Fig. 6. Cervelló subsystem.

Table 1
Parameterizations of faults. MFD stands for maximum flow/demand.

ID Faulty element Type Magnitude

1 iOrioles 1 �25%
2 iOrioles 2 �25%
3 iOrioles 2 �10%
4 iOrioles 3 0.001%
5 iOrioles 3 0.1%
6 iOrioles 4 0.1%
7 iOrioles 4 0.01%
8 iOrioles 5 –

9 iOrioles 6 2
10 c175LOR 1 �20%
11 c175LOR 2 �15%
12 c175LOR 3 0.01%
13 c175LOR 4 0.1%
14 c175LOR 5 –

15 iStaClmCervello 1 �15%
16 iStaClmCervello 2 �7.5%
17 iStaClmCervello 3 0.01%
18 iStaClmCervello 4 0.5%
19 iStaClmCervello 5 –

20 iStaClmCervello 6 4
21 iCesalpina1 1 10%
22 iCesalpina1 2 �15%
23 iCesalpina1 3 0.01%
24 iCesalpina1 4 0.25%
25 iCesalpina1 5 –

26 iCesalpina1 6 0.75%
27 c263CES 1 30%
28 c263CES 2 �15%
29 c263CES 3 0.025%
30 c263CES 4 0.25%
31 c263CES 5 –

32 iOrioles 7 –

33 c175LOR 7 –

Type Details and parameter

1 Additive offset (%MFD)
2 Additive incipient offset (%MFD)
3 Noise (variance %MFD)
4 Additive drift (%MFD)
5 Abrupt freezing (–)
6 Multiplicative offset (divided by)
7 Communication fault (–)
8

J. Quevedo et al. / Engineering Applications of Artificial Intelligence 30 (2014) 18–29 23



Author's personal copy

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5 x 10−3 x 10−3

time

flo
w

(m
3 /s

)

iOrioles: fault 2

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

time

iOrioles: fault 9

0 50 100 150 200 250
2

4

6

8

10

12

14

time

c175LOR: fault 12

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

time

iStaClmCervello: fault 17

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

time

iCesalpina1: fault 24

0 50 100 150 200 250
2

3

4

5

6

7

8

9

10

time

c263CES: fault 31

flo
w

(m
3 /s

)
flo

w
(m

3 /s
)

flo
w

(m
3 /s

)
flo

w
(m

3 /s
)

flo
w

(m
3 /s

)

x 10−4

x 10−3

Fig. 7. Examples of faulty signals.
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simulator allows introducing different kinds of faults in these
elements, which are detailed next:

Sensor communication: When this fault is occurring, a loss of new
measured data gathered by the sensor affected is
produced.

Freezing: When this fault is taking place, the signal remains
constant after a given fault initial time.

Offset: When this fault is occurring, an unknown constant
magnitude is added to the sensor measurements after a
given fault initial time

Drift: When this fault appears, a ramp function is added to the
sensor measurements after a given fault initial time

Sensor noise degradation: When this fault occurs, a zero-mean
Gaussian noise with variance s2 is added to the sensor
measurements after a given fault initial time.

To test and adjust the methodology proposed in this paper,
different fault scenarios have been defined, all considering a
dataset of one month period. On the one hand, sensor commu-
nication faults have been considered, appearing along the 12th day
(before any other system fault is appearing) and causing the loss of

new recorded data of the sensor affected whilst they are occurring.
In many actual telecontrolled systems, these faults are notified by
an external indicator provided by the communication system
itself, with its detection being a trivial problem. On the other
hand, further system faults have been considered, appearing at the
beginning of the 16th day. The system faults considered are both
abrupt or incipient nature. The parametrization of these faults is
depicted in Table 1.

Several examples of faulty signals are illustrated in Fig. 7.

5.2. Data validation/reconstruction results

One month of data has been used to perform sensor data
validation and reconstruction: the first four days of data have been
used for model training (both spatial and TS, as described in
Section 2) and the rest of the data have been used to test the
method. The validation and reconstruction algorithms have been
implemented in an on-line fashion, which is of paramount
importance for a method to be applied in a real-time system.
Sensor communication faults have been considered, particularly in
demand and actuator sensors, as detailed in Section 5.1. These
faults are occurring along day 12 (hour 288) and endure 2 days

Table 2
Fault detection ability of iOrioles.

Fault SVM CART Bagging Adaboost

FDR FAR Delay FDR FAR Delay FDR FAR Delay FDR FAR Delay

iOrioles-1 100 0 0 100 0 25 100 0 25 100 0 25
iOrioles-2 98.02 0 13 92.88 0.23 9 94.72 0 79 93.14 0.06 78
iOrioles-3 91.42 0 44 81.27 0.88 48 79.82 0 79 60.16 0.20 116
iOrioles-4 98.81 0 1 88.79 0.15 3 95.78 0 6 95.38 0.59 4
iOrioles-5 99.74 0 0 99.34 0.03 2 99.60 0 3 99.34 0 3
iOrioles-6 88.79 0 13 65.83 0.88 11 67.28 0 12 4.22 0.32 157
iOrioles-7 40.90 0.91 79 35.22 2.78 15 26.52 0 79 1.58 0.09 225
iOrioles-8 100 0 0 100 0 33 100 0 40 100 0 40
iOrioles-9 100 0 0 97.76 0.09 25 98.81 0 25 97.76 0.09 25

Table 3
Fault detection ability of c175LOR.

Fault SVM CART Bagging Adaboost

FDR FAR Delay FDR FAR Delay FDR FAR Delay FDR FAR Delay

c175LOR-1 50.79 0 0 20.32 2.99 3 15.04 0 1 3.82 1.38 237
c175LOR-2 41.69 0 24 21.64 3.16 13 11.48 0 79 1.98 1.38 212
c175LOR-3 100 0 0 100 0 4 100 0 4 0 0 113
c175LOR-4 82.45 0 30 44.20 1.64 2 39.45 0 59 4.49 1.02 150
c175LOR-5 100 0 0 100 0 0 100 0 0 100 0 0

Table 4
Fault detection ability of iStaClmCervello.

Fault SVM CART Bagging Adaboost

FDR FAR Delay FDR FAR Delay FDR FAR Delay FDR FAR Delay

iStaClm-1 95.12 0 2 81.79 0.53 2 82.32 0 16 44.06 2.25 101
iStaClm-2 76.39 0.44 74 63.06 1.20 6 63.85 0 79 25.20 2.05 110
iStaClm-3 95.12 0 3 85.09 0.56 1 93.54 0 1 59.89 3.37 2
iStaClm-4 96.31 0 17 89.45 0.12 47 91.69 0 47 79.68 0.38 47
iStaClm-5 100 0 0 100 0 0 100 0 0 100 0 0
iStaClm-6 99.47 0 0 96.31 0.12 9 96.83 0 18 95.38 0.18 19

J. Quevedo et al. / Engineering Applications of Artificial Intelligence 30 (2014) 18–29 25



Author's personal copy

(until hour 336), whilst there is no new data available from the
sensor affected. When the fault occurs, the Level 0 data validation
test (Fig. 2) notifies a communication fault and the data recon-
struction process is activated. The reconstruction is performed via
the SM or TS model, depending on their particular performance,
which is measured by the MSE index as described in Section 2,
with n¼48 samples.

First, a communication fault in the Orioles subsystem pump
sensor (ID.32 in Table 1) is produced, achieving the results depicted
in Fig. 8. Model parameters obtained using the training dataset are
[a¼0.627, b¼1.04] for the spatial model and α¼ 2:698e�2,
β¼ 1e�5, γ ¼ 1 for the TS model with a prediction horizon of
ℓ¼ 20 samples, assuming daily periodicity (L¼24 samples). When
the communication fault is produced, the spatial model obtains
better MSE index, so it is used for sensor reconstruction, achieving
good performance for this particular sensor.

Also, a communication fault in the Orioles subsystem demand
sensor (ID.33 in Table 1) is introduced, reaching the results in Fig. 9.
Model parameters obtained using the training dataset are [a¼0.627,
b¼1.04] for the spatial model and α¼ 8:622e�1, β¼ 1e�5,
γ ¼ 3:526e�1 for the TS model with a prediction horizon of ℓ¼ 20
samples, assuming daily periodicity (L¼24 samples). When the
communication fault is produced, the TS model obtains better MSE
index in this case, so it is used for sensor reconstruction, also attaining
suitable performance for this particular sensor.

5.3. Fault diagnosis results

Since the default setting of MATLAB is to optimize the classifica-
tion and regression trees (CART) algorithm,4 the default setting in
MATLAB for CART has been used. Bagging and Adaboosting are
ensemble algorithms with decision trees (CARTs) as based learners
(CARTs have been optimized by MATLAB). They have only one
parameter5 to specify, i.e. the number of trees in the ensembles. A
popular choice (100 decision trees) is adopted in these comparisons.

The fault detection performance is measured by fault detection
rate (FDR) and false alarm rate (FAR). In fault isolation, the
performance is measured by precision, recall (or sensitivity), and
specificity. The precision, recall and specificity are defined as
follows:

precision¼ tp
tpþ fp

;

recall¼ tp
tpþ fn

;

specificity¼ tn
tnþ fp

;

Table 5
Fault detection ability of iCesalpina1.

Fault SVM CART Bagging Adaboost

FDR FAR Delay FDR FAR Delay FDR FAR Delay FDR FAR Delay

iCesalp-1 80.21 0 2 52.24 1.34 19 47.76 0 23 7.12 0.50 17
iCesalp-2 94.06 0 79 69.92 1.17 17 68.47 0 79 23.49 1.02 22
iCesalp-3 100 0 1 84.17 0.56 7 89.05 0 17 67.15 1.41 24
iCesalp-4 99.87 0 21 86.81 0.59 18 90.50 0 24 72.69 1.64 24
iCesalp-5 100 0 0 100 0 0 100 0 0 100 0 0
iCesalp-6 98.55 0 16 66.62 0.88 2 69.00 0 23 47.63 2.66 17

Table 6
Fault detection ability of c263CES.

Fault SVM CART Bagging Adaboost

FDR FAR Delay FDR FAR Delay FDR FAR Delay FDR FAR Delay

c263CES-1 29.55 0 0 14.64 3.02 1 0.53 0 4 0.92 0.35 42
c263CES-2 27.7 0 45 21.11 3.07 1 4.49 0 79 0.13 0.15 156
c263CES-3 100 0 0 99.74 0 4 100 0 4 100 0 4
c263CES-4 83.64 0 16 58.58 1.05 16 60.68 0 43 25.07 1.90 117
c263CES-5 100 0 0 100 0 0 100 0 0 100 0 0

Table 7
Confusion matrix of iOrioles.

Fault Name iOrioles-1 iOrioles-2 iOrioles-3 iOrioles-4 iOrioles-5 iOrioles-6 iOrioles-7 iOrioles-8 iOrioles-9

iOrioles-1 758 0 0 0 0 0 0 0 0
iOrioles-2 8 728 3 0 0 9 1 0 9
iOrioles-3 2 19 643 1 0 37 38 0 18
iOrioles-4 0 7 0 738 3 0 1 0 0
iOrioles-5 0 0 0 0 758 0 0 0 0
iOrioles-6 0 10 19 2 1 633 81 0 12
iOrioles-7 0 6 38 2 0 75 633 0 4
iOrioles-8 0 0 0 0 0 0 0 758 0
iOrioles-9 2 2 6 0 0 1 1 0 746

4 In matlab function ‘classregtree’, the default is to compute the full tree and
the optimal sequence of pruned subtrees.

5 Different variants of Bagging and Adaboosting may require more parameters.
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where tp, tn, fp, fn indicate true positive, true negative, false
positive, false negative, respectively. Precision measures the pro-
portion of positive test results that are true positives, also referred
to as positive predictive value. Recall measures the proportion of
actual faults which are correctly identified as such and specificity
measures the proportion of normal data which are correctly
identified.

As introduced in Section 5.1, since there are four components
with faults, four deterministic reservoir computing models, each
with 25 nodes in the reservoir, have been employed in the
proposed framework.

For each dataset, 50% of data have been employed as training
data and the remaining 50% of data have been used as testing data.
The experiments are run for 100 times.

In fault diagnosis, the first step to perform is to discriminate
faulty situations from faultless situations. Tables 2–6 reported the
fault detection results using the proposed algorithm. In this table,
fault detection rate (FDR), false alarm rate (FAR) and detection

delay are employed as three different metrics. According to these
tables, it is observed that SVM outperformed all other algorithms.

The fault isolation ability of the proposed algorithm is reported
in Tables 7–11. In these tables, the confusion matrices are
illustrated to demonstrate the fault isolability capabilities of the
method. The confusion matrix is a specific table layout that allows
visualization of the performance of the fault diagnosis algorithm.
Each column of the matrices represents the instances in a
predicted class/fault, whilst each row represents the instances in
an actual class/fault. The name stems from the fact that it makes
easy to see if the system is confusing two classes (i.e. commonly
mislabelling one as another). A confusion matrix displays the
number of correct and incorrect predictions made by the fault
isolation model compared with the actual classification in the test
data. The matrix is N�N, where N is the number of faults in
this study.

According to Tables 7–11, fault type 1 is often confused with
fault type 2. This is because type 1 and type 2 are both additive
offset faults with similar magnitudes, and the only difference is
that fault type 1 is abrupt and fault type 2 is incipient (slowly
developing). Therefore, fault type 2 will be similar to fault type
1 after some time when fault type 2 develops to the desired
magnitude.

Table 12 reports the fault isolation performance in model
spaces measured by precision, recall (or sensitivity) and specificity.
Based on this table, Bagging and SVM outperform other classifiers
in terms of three metrics. Adaboost seems to overfit the noise and
leads to inferior results.

Some examples of faulty signals and fault diagnosis results
obtained using the ‘learning in model space’ approach are pre-
sented in Fig. 10. Based on Tables 7–12 and this figure, it is easy to
see that ‘additive incipient offset’ and ‘additive drift’ faults are
difficult to detect and usually with relatively large delay, since
these two types of faults are similar to normal signal in the
beginning.

6. Conclusion

In this paper, an effective fault diagnosis framework has been
proposed to tackle the challenge in complex engineering systems
like CIS, with unstructured and time-varying environments. Com-
bined two-stage successful method has been proposed to detect
and correct sensor communication faults using a data pre-filter in
the first stage, in order to guarantee a reliable dataset to perform
system fault diagnosis of faults of different nature in the second
stage. Regarding the sensor data pre-filter, sensor data validation
and reconstruction using combined spatial and time series models
have been implemented with successful results when commu-
nication faults occur in the telecontrol system, which is one of the
most common faults affecting this kind of systems. After pre-
filtering the sensor data, the ‘learning in model space’ method is
implemented by fitting a series of ‘generative’ models using a
series of signal segments selected with a sliding window. Each
signal segment can be represented by one model. To rigorously
measure ‘distance’ between models, the distance in model space
has been defined and an example to use deterministic reservoir
computing to act as a ‘generative’ model has been shown. The
deterministic reservoir computing can approximate a model with
input–output dynamics and it can exploit spatial–temporal corre-
lations that exist in collected data, thus it fits the framework well.

‘Learning in model space’ is a generic learning framework for
cognitive fault diagnosis, and it is applicable to any systems,
including complex multiple-input and multiple-output (MIMO)
systems. In order to maintain the generality of our approach and to

Table 8
Confusion matrix of c175LOR.

Fault Name c175LOR-1 c175LOR-2 c175LOR-3 c175LOR-4 c175LOR-5

c175LOR-1 422 198 0 138 0
c175LOR-2 217 417 0 124 0
c175LOR-3 0 0 754 4 0
c175LOR-4 112 64 0 582 0
c175LOR-5 0 0 0 0 758

Table 9
Confusion matrix of iStaClmCervello.

Fault Name iStaClm-1 iStaClm-2 iStaClm-3 iStaClm-4 iStaClm-5 iStaClm-6

iStaClm-1 615 102 17 15 0 9
iStaClm-2 86 645 18 3 0 6
iStaClm-3 81 13 654 2 0 8
iStaClm-4 1 1 4 671 0 81
iStaClm-5 0 0 0 0 758 0
iStaClm-6 9 0 15 16 0 718

Table 10
Confusion matrix of iCesalpina1.

Fault name iCesalp-1 iCesalp-2 iCesalp-3 iCesalp-4 iCesalp-5 iCesalp-6

iCesalp-1 651 26 20 19 0 42
iCesalp-2 51 604 18 27 0 58
iCesalp-3 15 9 715 17 0 2
iCesalp-4 16 17 11 699 0 15
iCesalp-5 0 0 0 0 758 0
iCesalp-6 34 56 10 39 0 619

Table 11
Confusion matrix of c263CES.

Fault name c263CES-1 c263CES-2 c263CES-3 c263CES-4 c263CES-5

c263CES-1 457 217 0 84 0
c263CES-2 137 553 0 68 0
c263CES-3 0 0 758 0 0
c263CES-4 105 74 0 579 0
c263CES-5 0 0 0 0 758

J. Quevedo et al. / Engineering Applications of Artificial Intelligence 30 (2014) 18–29 27



Author's personal copy

Table 12
Comparisons of fault isolation ability using supervised learning techniques.

Fault SVM CART Bagging Adaboost

prec. recall spec. prec. recall spec. prec. recall spec. prec. recall spec.

iOrioles 93.21 93.26 99.16 87.38 87.35 98.42 93.43 93.42 99.18 62.83 60.10 95.01
c175LOR 72.73 72.92 90.97 65.47 65.67 88.56 70.23 70.52 90.17 60.24 52.67 84.22
iStaClmCervello 90.58 90.47 97.62 82.87 82.66 95.67 90.82 90.79 97.70 48.93 48.87 87.22
iCesalpina1 87.22 87.18 96.79 72.01 71.93 92.98 84.43 84.51 96.13 30.81 36.94 84.23
c263CES 78.00 78.03 92.67 67.28 67.55 89.18 72.31 72.53 90.85 61.71 53.89 84.63
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Fig. 10. Examples of faulty signals and fault diagnosis results using the ‘learning in model space’ approach.
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illustrate how this generic approach works, the reservoir model is
adopted here. In addition, other fitted models and learning
algorithms in the model space can also be used in this framework.
Future work includes more in-depth studies of different generative
(fitted) models and learning algorithms that best suit the sug-
gested framework.
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