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Abstract

An ensemble is a group of learners that work together
as a committee to solve a problem. However, the exist-
ing ensemble training algorithms sometimes generate un-
necessary large ensembles, which consume extra computa-
tional resource and may degrade the performance. Ensem-
ble pruning algorithm aims to �nd a good subset of ensem-
ble members to constitute a small ensemble, which saves the
computational resource and performs as well as, or better
than, the non-pruned ensemble. This paper will introduce a
probabilistic ensemble pruning algorithm by choosing a set
of �sparse� combination weights, most of which are zero,
to prune the large ensemble. In order to obtain the set of
sparse combination weights and satisfy the non-negative re-
striction of the combination weights, a left-truncated, non-
negative, Gaussian prior is adopted over every combina-
tion weight. Expectation-Maximization algorithm is em-
ployed to obtain maximum a posterior (MAP) estimation
of weight vector. Four benchmark regression problems and
another four benchmark classi�cation problems have been
employed to demonstrate the effectiveness of the method.

1 Introduction

Ensemble of multiple learning machines, i.e. a group of
learners that work together as a committee, has received a
lot of research interests because it is thought as a good ap-
proach to improve the generalization ability [6]. Because of
the simple and effective properties, ensemble has become a
hot topic in the machine learning communities. There have
been many approaches to train ensemble, such as Bagging
[2], Boosting [10], negative correlation learning and evolu-
tionary computation based algorithms [8][7].

In general, the training of ensemble can be decomposed
into two steps, i.e., training a number of ensemble members
and then combining their predictions. In the second step,
most ensemble training algorithms employ all of the avail-

able ensemble members to constitute an ensemble, which is
sometimes unnecessarily �large� and thus consumes extra
computational resource and may degrade the performance.
Some theoretical and empirical evidences have also shown
that ensembling many of them may be better than ensem-
bling all of them [12][2].

Motivated by this point, this paper will develop a prob-
abilistic ensemble pruning algorithm, which is based on
Bayesian framework. By introducing a sparseness-inducing
prior over combination weight vector w, many of the pos-
teriors of weights are sharply distributed at zero, lead-
ing to pruning those irrelevant learning machines. A left-
truncated, non-negative prior will be adopted for wi since
it is reasonable to force the combination weight wi to be
non-negative [2]. Based on the Bayesian framework and
expectation-maximization (EM) algorithm, the Maximum a
posteriori (MAP) estimation of weights can be obtained. An
empirical study on several regression/classi�cation bench-
mark data sets also shows that our algorithm utilizes far less
component learners but performs as well as, or better than,
the non-pruned ensemble.

The rest of this paper is organized as follows. The
sparseness-inducing prior is introduced in Section 2. Sec-
tion 3 will present the probabilistic algorithm for regression
problems and Section 4 is proposed for classi�cation prob-
lems. Experimental results are presented in Section 5. Fi-
nally, Section 6 will conclude the paper.

2 Sparseness-inducing and Non-negative
Prior

In our algorithm, to encourage sparsity in the estimation
of weight vector w and satisfy the non-negative restriction,
a left-truncated, non-negative, Gaussian prior is introduced
for each weight wi:

p(w|α) = ΠM
i=1p(wi|αi) = ΠM

i=1Nt(wi|0, α−1
i ), (1)

where α =(α1, α2, · · · , αM )T and Nt(wi|0, α−1
i ) is a left-

truncated Gaussian distribution. This can be formalized in
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Figure 1. A two dimensional Gaussian prior
p(w|α) and the student-t prior p(w).

Equation (2).

p(wi|αi) =
{

2N(wi|0, α−1
i ) if wi ≥ 0

0 if wi < 0 . (2)

To follow the Bayesian inference, hierarchical hyperpri-
ors over α will be de�ned. With Gamma hyperprior [11],

p(α) = ΠM
i=1Γ(a)−1baαa−1

i e−bαi , (3)

where Γ(a) =
∫∞
0

ta−1e−tdt is the gamma function. The
complete prior can be obtained by marginalizing with re-
spect to each αi:

p(wi|a, b)

=

{
2baΓ(a+ 1

2 )√
2πΓ(a)

(w2
i

2 + b)−(a+ 1
2 ) if wi ≥ 0

0 if wi < 0
. (4)

Equation (4) shows that the hierarchical prior is equivalent
to a truncated student-t prior, which is sharply peaked at
zero and more peaky than a Gaussian prior, as illustrated in
Figure 1.

3 Ensemble Pruning for Regression Prob-
lems

In this section, we will present the model speci�cation
of ensemble pruning algorithm for regression problems and
detail expectation-maximization [3] procedures.

In the standard regression model, we are given a data
set of input-target training pairs {xn, tn}N

n=1, where tn is a
scalar. To follow the standard probabilistic formulation, we
assume the ensemble output is corrupted by an i.i.d. addi-
tive Gaussian noise εn = N(0, σ2) with its mean zero and
variance σ2:

tn =
M∑

i=1

wifi(xn) + εn, (5)

where fi(xn), i = 1 · · ·M is the output of ensemble mem-
ber fi at point xn. According to Equation (5), the true
value tn is distributed as a Gaussian distribution with mean∑M

i=1 wifi(xn) and variance σ2. Based on the assumption
of independence of tn, the likelihood can be represented by:

p(t|w, σ2) = (2πσ2)−N/2 exp{− 1
2σ2

‖t− Fw‖2}. (6)

where t = (t1 · · · tN )T , w = (w1 · · ·wM )T and F =
(F(x1)T,F(x2)T, · · · ,F(xN)T )T is a N × M matrix,
wherein F(xn) = (f1(xn), f2(xn), · · · , fM (xn)).

Since the prior α over weight vector w is a truncated
Gaussian, the integral in the standard Bayesian inference is
intractable. In this paper, expectation-maximization algo-
rithm will be employed to get the MAP estimation of w and
σ2, where the parameter α is regarded as hidden variable in
the EM algorithm. With the de�nition of hidden variable,
the complete log-posterior is obtained in Equation (7) by
incorporating Equation (6) and Equation (1).

log p(w, σ2|t, α)

∝ −N log σ2 − 1
σ2
‖t− Fw‖2 −wT Aw, (7)

where A is a diagonal matrix: A = diag(α1, α2, · · · , αM ).
Expectation-step: After obtaining the log-posterior, the

expectation step [1] can be done in the following equation:

Q(w, σ2|wold, (σ2)old)
= Eα[log p(w, σ2|t, α)|t,wold, (σ2)old] (8)

= −N log σ2 − 1
σ2
‖t− Fw‖2 −wT Eα[A|t,wold, (σ2)old]w,

where the expectation is with respect to the hidden value α.
The computation the expectation: Eα[A|t,wold, (σ2)old]
which can be decomposed to a diagonal matrix Ω with its
elements as Ω = diag(Eαi [αi|t,wold, (σ2)old]), since A is
a diagonal matrix: A = diag(α1, α2, · · · , αM ).

ᾱi = Eαi [αi|t,wold, (σ2)old]

=

∫∞
0

αi · p(wi|αi)p(αi)dαi∫∞
0

p(wi|αi)p(αi)dαi

=
a + 1/2
w2

i + b
. (9)

Based on Equation (9), the Q function is reorganized as
follows:

Q(w, σ2|wold, (σ2)old)

= −N log σ2 − 1
σ2
‖t− Fw‖2 −wT Ωw. (10)

Maximization-step: In this step, the optimal values of
w and σ2 can be given by analyzing the derivative of Equa-
tion (10). By setting the derivatives to zero, we can get the
update (σ2)new:

(σ2)new =
‖t− Fw‖2

N
, (11)



and wnew:

wnew = (FT F + (σ2)newΩ)−1FT t. (12)

In order to obtain a parameter-free model, the parameters
a, b will be set to zero. However, in this situation, the eval-
uation of ᾱi(= 1/(2w2

i )) is unstable when wi approaches
zero and a minor modi�cation [4] is adopted on Equation
(12).

wnew = M(MFT FM + (σ2)newI)−1MFT t, (13)

where the diagonal elements in the diagonal matrix M =
diag(m1,m2, · · · ,mM ) are

mi = (ᾱi)−1/2 =
{ √

2wi if wi ≥ 0
0 if wi < 0

. (14)

4 Ensemble Pruning for Classi�cation Prob-
lems

In the standard classi�cation model setting, we are given
a data set of input-target training pairs {xn, yn}N

n=1, con-
sidering two-class classi�cation only, i.e. yi ∈ {−1, +1}.
Probit link function will be used to allow a steep and smooth
transition between two classes.

Φ(x) =
∫ x

−∞
N(t|0, 1)dt, (15)

where Φ(x) is the Gaussian cumulative distribution func-
tion. After incorporating the probit link function, the en-
semble model becomes:

l(x;w) = Φ(
M∑

i=1

wifi(x)) = Φ(F(x)w). (16)

where l is the probabilistic output, which is bounded by the
interval l ∈ [0, 1], we can map l to [−1, +1] by y = 2l − 1.

We follow the standard probabilistic formulation and as-
sume that

∑M
i=1 wifi(xn) is corrupted with an additive ran-

dom noise εn, where εn ∼ N(0, 1). According to the probit
link model, if h(xn) = F(xn)w + εn ≥ 0, yn will be set to
1 and if h(xn) = F(xn)w + εn < 0, yn = −1, otherwise.
We can reconstruct the probit mode by the random noise εn.

p(yn = 1|xn,w)
= p(F(xn)w + εn ≥ 0) = Φ(F(xn)w). (17)

From Equation (17), h(xn) is a hidden variable because εn

is an unobserved variable. If h(xn) is known, the likeli-
hood of w can be given by standard probabilistic formula-
tion: p(h(xn)|w) = N(h(xn)|F(xn)w, 1). Take the N ×
M matrix form F = (F(x1)T,F(x2)T, · · · ,F(xN)T )T ,
wherein F(xn) = (f1(xn), f2(xn), · · · , fM (xn)), and

vector form for H = (h(x1), h(x2), · · · , h(xN ))T , we ob-
tain

p(H|w) = (2π)−N/2 exp{−1
2
‖H − Fw‖2}. (18)

In order to obtain the complete log-posterior of w, we need
two hidden variables: H = (h(x1), h(x2), · · · , h(xN ))T

and α =(α1, α2, · · · , αM )T .
With the de�nitions of hidden variables, the complete

log-posterior is obtained in Equation (19).

log p(w|y,H, α) ∝ wT FT (2H − Fw)−wT Aw, (19)

Expectation-step: After obtaining the log-posterior, the
expectation step [1] can be done in the following equation:

Q(w|wold) = 2wT FT E[H|y,wold]−wT FT Fw

−wT E[A|y,wold]w, (20)

where the expectation is with respect to the hidden vari-
ables: H, α. The computation of Q function reduces to
compute the expectations E[H|y,wold] and E[A|y,wold].

h̄n = E[h(xn)|yn,wold]

=
{

znΦ(zn) + N(zn|0, 1) if yn = +1
znΦ(−zn)−N(zn|0, 1) if yn = −1 (21)

where zn = F(xn)w.
Note that yn in Equation (21) is to restrict the integral

bound: when yn = +1, p(h(xn)|yn,wold) is distributed as
a left-truncated Gaussian from zero to in�nity with mean
F(xn)w and when yn = −1, p(h(xn)|yn,wold) is dis-
tributed as a right-truncated Gaussian from negative in�nity
to zero with mean F(xn)w.

Since A is a diagonal matrix: A =
diag(α1, α2, · · · , αM ), the expectation E[A|y,wold, bold]
can be decomposed to a diagonal matrix Ω with its elements
as Ω = diag(E[αi|y,wold]).

ᾱi = E[αi|y,wold]

=

∫∞
0

αi · p(wi|αi)p(αi)dαi∫∞
0

p(wi|αi)p(αi)dαi

=
a + 1/2
w2

i + b
, (22)

Based on Equations (21) and (22), the Q function is or-
ganized as follows:

Q(w|wold) = 2wT FT H̄ −wT FT Fw −wT Ωw (23)

where H̄ is a vector or h̄n: H̄ = (h̄1, h̄2, · · · , h̄N )T .
Maximization-step: In this step, the gradient of w can

be given by analyzing the derivative of Equation (23). By
setting the derivative to zero, we get the update weight vec-
tors:

wnew = (FT F + Ω)−1FT H̄ (24)



Table 1. Average Test MSE, Standard De-
viation and their normalized mean for four
Benchmark Data sets based on 30 runs.

SincG SincU Fried. Hous. Mean
Non-Pruned 0.0028 0.0183 7.4546 27.8699 1

S.D. 0.0008 0.0056 0.7663 8.5879 1
Pruned 0.0015 0.0173 5.7161 17.5307 0.72

S.D. 0.0006 0.0058 0.5676 6.3944 0.82

As same as regression problem, a minor modi�cation
[4] is adopted on Equation (24) to allow a stable numeri-
cal computation in practice.

wnew = M(MFT FM + I)−1MFT H̄ , (25)

where the diagonal elements in the diagonal matrix M =
diag(m1,m2, · · · ,mM ) are same as Equation 14.

5 Experimental Results

This section will present the experimental results of our
algorithm for regression problems and classi�cation prob-
lems, respectively.

Neural networks with single hidden layer, which has 5
hidden units, are employed as ensemble members. The
training set for these neural network is generated via boot-
strap sampling from the training set. An ensemble is com-
posed of 25 neural networks. In the training process,
the generalization error is estimated by a validation set,
which is bootstrap sampled from the training set, every �ve
epoches. Once the estimated generalization error does not
change or tends to increases, the training process will be
terminated to avoid over�tting. The average weights, i.e.
the weights of Bagging, will be adopted as the initialized
weight vector w for expectation-maximization algorithm.

5.1 Results for Regression Problems

The four benchmark regression data sets will be em-
ployed in our paper. The �rst two data sets are sinc =
sin(x)/x with different noises, where 100 x's are equally
sampled in the interval [−10, 10]. The �rst data set is
Sinc-G with zero-mean Gaussian noise and standard devi-
ation 0.1; The second is Sinc-U with a uniform noise in
[−0.1, 0.1]. In both cases, the test sets are consisted of 1000
noise-free data points. The third problem is the synthetic
Friedman function [5]. For the data set, 200 training points
and 1000 noise-free test points are generated randomly. The

Table 2. Size of Training Set, Size of Pruned
Ensemble and Computational Time of Our Al-
gorithm.

SincG SincU Friedman House
Training Size 100 100 200 400

Size 2.7±0.8 2.5±0.6 4.7±1.4 4.7±1.2
Time (s) 0.016 0.017 0.031 0.03

last data set is Boston Housing from UCI Machine Learning
Repository [9]. For this data set, 400 training points and the
remaining 106 test points are sampled randomly.

For every data set, we run thirty times and record the
average mean squared error (MSE) and the standard devia-
tion (S.D.) on test set for the non-pruned ensemble and the
pruned ensemble. By way of summary, the our algorithm
statistics are also normalized by those of the non-pruned
ensemble and the overall average is displayed in Table 1.
For our algorithm, the measure of �sparseness�, i.e. the av-
erage number of neural networks in the ensemble and the
standard deviation, has also been recorded.

Table 1 shows the performance of non-pruned ensemble
versus pruned ensemble based on thirty independent runs.
We also show the number of selected ensemble members
and running time versus the size of training set for these
four data sets in Table 2. The performance of pruned en-
semble on these four benchmark problems is far better than
non-pruned ensemble in terms of generalization ability and
sparsity. Pruned ensemble achieves better performance by
employing only a few of the available neural networks (25
in total).

5.2 Sparse Classification Ensemble

In this subsection, we will use four benchmark classi�ca-
tion data sets: waveform, diabetics, titanic and credit card,
to compare the performance of pruned ensemble with non-
pruned ensemble. All of the data sets are obtained from UCI
Machine Learning Repository [9].

The training set and test set are generated randomly from
these four data sets and the number of training and test
points are 1000, 4000 for waveform, 400, 368 for diabet-
ics, 500, 1701 for titanic and 400, 390 for credit card. For
every data set, we run thirty times and record the average
error rate and the standard deviation on test set of the two
ensemble: pruned ensemble and non-pruned ensemble. By
way of summary, the our algorithm statistics are also nor-
malized by those of the non-pruned ensemble and the over-
all average is displayed in Table 3. For our algorithm, the



Table 3. Average Test error, Standard De-
viation and their normalized mean for four
Benchmark Data sets based on 30 runs.

wave diab. Titanic Card Mean
NonPruned 0.1013 0.2305 0.2172 0.1416 1

S.D. 0.0078 0.0183 0.0085 0.0237 1
Pruned 0.0994 0.2304 0.2170 0.1443 1.00

S.D. 0.0072 0.0163 0.0087 0.0239 0.96

Table 4. Size of Training Set, Size of Pruned
Ensemble and Computational Time of Our Al-
gorithm.

wave diabe. Titanic Card
Training Size 1000 400 500 400

Size 6.4±0.8 6.4±0.8 5.3±3.1 4.2±1.0
Time (s) 0.266 0.172 0.203 0.109

measure of �sparseness�, i.e. the average number of neural
networks in the ensemble and the standard deviation, also
has been recorded.

Table 3 shows the performance comparison of non-
pruned ensemble versus our algorithm based on thirty inde-
pendent runs and we also show the number of selected en-
semble members and running time versus the size of train-
ing set for these four data sets in Table 4. The error rate of
our algorithm is comparable with non-pruned ensemble but
employs fewer component neural networks. The ensemble
pruning algorithm can achieve the sparseness in ensemble
without hurting the generalization ability. It provides a way
to reduce the computational complexity and make the en-
semble more compact.

6 Conclusion

In this paper, a probabilistic ensemble pruning algorithm
has been proposed in order to get a set of sparse combina-
tion weights to prune the ensemble by introducing a left-
truncated, non-negative, Gaussian prior over every combi-
nation weight. Our algorithm offers a way to estimate the
combination weights and prune the ensemble with the fol-
lowing compelling advantages: a) Good generalization abil-
ity. Although our algorithm employs only a few of the en-
semble members, they performs as well as, or better than,

the non-pruned ensemble; b) The highly spare model is ob-
tained by the sparseness-inducing prior and behaves opti-
mally compact; c) No parameters to tune.

However, the present algorithm is not applicable to large
ensemble (e.g. roughly M > 1000) because the EM up-
date rules involve an inverse operation of matrix, which re-
quires O(M3) complexity, where M is the number of se-
lected ensemble members. Although the pruning process in
EM algorithm will reduce M to a manageable size in most
problems, M may be very large at initialization when the
non-pruned ensemble is very large and this will cost a lot of
training times.
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