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Abstract— This paper proposes a probabilistic robust hy-
perbola mixture model based on a classification expectation
maximization algorithm and applies this algorithm to Ground
Penetrating Radar (GPR) spatial data interpretation. Previous
work tackling this problem using the Hough transform or
neural networks for identifying GPR hyperbolae are unsuitable
for on-site applications owing to their computational demands
and the difficulties of getting sufficient appropriate training
data for neural network based approaches. By incorporating a
robust hyperbola fitting algorithm based on orthogonal distance
into the probabilistic mixture model, the proposed algorithm
can identify the hyperbolae in GPR data in real time and also
calculate the depth and the size of the buried utility pipes. The
number of the hyperbolae can be determined by conducting
model selection using a Bayesian information criterion. The
experimental results on both the synthetic/simulated and real
GPR data show the effectiveness of this algorithm.

I. INTRODUCTION

With the development of image processing, pattern recog-
nition and computer vision, the fitting of primitive models
to image data is an important technique for many industrial
applications. Three methods, the moment method [7], the
Hough transform [17] and the least-squares method [13], are
often employed for this task. The moment method and Hough
transform are especially applicable for fitting relatively sim-
ple models. Their application to a complex model with a
number of parameters involves expensive computation. In
this paper, we will consider least squares hyperbola fitting
algorithms.

There are several conic fitting algorithms in the literature
[3], [13], [20], [19]. However, most of these algorithms can
only identify one conic in each image and most are sensitive
to outliers. These two shortcomings greatly inhibit practical
applications as most real-world image data is contaminated
by noise and the data often contain several conics in each
image.

To address these two problems and to ensure a fast
implementation, this paper proposes a probabilistic hyperbola
mixture model using a robust orthogonal distance fitting
algorithm and applies the proposed algorithm to an impor-
tant application area: Ground Penetrating Radar (GPR) data
interpretation.

Ground Penetrating Radar has been widely used as a
non-destructive tool for the investigation of the shallow
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subsurface, and is particularly useful in the detection and
mapping of subsurface utilities and other solid objects [10].
However, GPR displays are not easily interpreted and only
experts can extract significant information from GPR images
to make a reliable report after the inspection.

The pattern shapes in the B-scans [4] of GPR data are
determined by the propagation of short pulses into a medium
with certain electrical properties. Typically, two patterns,
hyperbolic curves and linear segments, are often observed in
the GPR image: the hyperbolic curves are due to objects with
cross-section size of the order of the radar pulse wavelength;
the linear segments stem from planar interfaces between
layers with different electrical impedances.

As GPR is becoming more and more popular as a shallow
subsurface mapping tool, the volume of raw data that needs
to be analyzed and interpreted is causing more of a challenge.
There is a growing demand for automated subsurface map-
ping techniques that are both robust and rapid. This paper
provides appropriate techniques for this.

The current tools that have been developed to aid in GPR
data interpretation are generally computationally expensive,
using Hough Transform [17] or neural network based algo-
rithms [2], [1], and inadequate for on-site applications.

In our previous work [8], we have extended a swift conic
fitting algorithm for GPR data interpretation. However, the
previous algorithm is based on algebraic distance fitting that
is sensitive to outliers. Although the proposed probabilistic
model [8] can alleviate the problem to some extent, the
algorithm is not applicable for GPR data with a relatively
large amount noise.

This paper will address this problem by extending a robust
conic fitting algorithm based on orthogonal distance fitting
in the probabilistic mixture model; the proposed algorithm
can be operated in real time. Other benefits of the proposed
algorithm include relative robustness to noise compared with
previous conic algorithms and automatic determination of the
number of hyperbolae by a Bayesian information criterion.

The remaining parts of this paper are organized as fol-
lows. Section II will present some relevant works while
the algorithm description is described in Section III. The
experimental results are reported in Section IV. Finally,
conclusions are drawn in Section V.

II. BACKGROUND

With the development of GPR, there are several published
works dealing with the automatic detection of patterns asso-
ciated with buried objects in GPR data. These algorithms can
be grouped into three main categories: 1) Hough transform
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based methods, 2) machine learning based methods and 3)
clustering based algorithms.

The Hough transform [17] is a feature extraction technique
used in image analysis to find imperfect instances of objects
within a certain class of shapes by a voting procedure in
the parameter space. The classical Hough transform was
concerned with the identification of lines in the image, but
later the Hough transform has been extended to identifying
positions of arbitrary shapes, most commonly circles or
ellipses. Hough transform based methods can identify the
four parameters related to the hyperbola, which facilitates
subsequent estimation of the pipe size and depth of the buried
assets [24], [5]. However, this method often needs to run
thousands of times with different combinations of hyperbola
parameters (a, b) to search the best fit hyperbola shape and
this usually cannot be deployed in real-time applications.
How to specify a suitable threshold for the number of votes to
determine the number of hyperbolae in the image is another
problem with this kind of algorithm.

There is some work that uses machine learning methods to
estimate the size and the depth of the buried pipes. However,
with different mediums, soil types, materials of the pipes,
the reflected patterns in GPR data are often different. In the
real-world setting, it is very difficult to acquire the training
data for different settings. For example, Pasolli et al. only
use simulated data to train the neural networks [18] and this
method greatly limits the practical applications.

Some work has been done to use a clustering approach to
identify the hyperbolae. In [9], the authors applied a wavelet-
based procedure to reduce noise and to enhance signatures
in GPR images and then used a fuzzy clustering approach
to identify hyperbolae. However, this kind of method will
not reveal the hyperbola parameters (a, b) and cannot esti-
mate these parameters related to the buried assets using the
geometric model.

In order to address the above problems, this paper employs
a robust conic fitting algorithm based on orthogonal distance
as the basic hyperbola fitting algorithm. A probabilistic
hyperbola mixture model is constructed to consider multi-
hyperbola in a single image and the noise, including the
feature noise around the hyperbolae and the background
noise. The model is based on a classification expectation
maximization (CEM) algorithm [6]. Since it is fast, the
algorithm can be deployed in real-time applications. This
algorithm can also be trivially extended to identification of
other conic mixtures, such as ellipses and parabolas, thus
extending the applicability of the proposed algorithm to other
real-world applications.

III. PROBABILISTIC CONIC MIXTURE MODEL

In this section, we will present some related knowledge
on GPR modelling, the robust conic fitting algorithm and
the probabilistic conic mixture model. In the following sub-
sections, we will present the GPR model description, conic
fitting algorithm, the probabilistic model, the classification
EM algorithm and model selection method using a Bayesian
information criterion.
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Fig. 1. The GPR Geometric Model

A. GPR Model Description

The hyperbolic signatures in GPR data are often formu-
lated as a geometric model [23], which is shown in Figure
1. The relation between the two-way travel time t, the
horizontal position x and the velocity of propagation v can
be expressed by(

t + 2R
v

t0 + 2R
v

)2

−
(

(x − x0)
v
2 t0 + R

)2

= 1, (1)

where (x0, t0) are the coordinates of the target, z = v
2 and

z0 = v0
2 . Equation (1) is the equation of a hyperbola centered

around (x0,
−2R

v ).
Relating Equation (1) with a general hyperbola,

(y − y0)2

a2
− (x − x0)2

b2
= 1, (2)

and with some simple derivations, the following relations can
be obtained:

a = t0 +
2R

v
, (3)

b =
v

2
(t0 +

2R

v
). (4)

If the parameters related to the hyperbola (a, b) can be
found, the depth and the radius can be obtained by the
following equations:

R =
b(a − t0)

a
, (5)

depth =
vt0
2

=
bt0
a

. (6)

This model assumes that a long cylinder is buried in a
homogenous medium and the movement of the GPR antenna
is perpendicular to the cylinder.



Since most of the pipes are long and linear, in practice, the
operator of GPR machine always operates in a perpendicular
direction to the assumed direction of the cylinder unless it
is suspected that there are T-junctions or the pipes change
the direction1. The other assumption for the homogenous
medium can be satisfied if these pipes are located in the
shallow subsurface.

B. Hyperbola Fitting based on Orthogonal Distance

In this section, we will introduce a robust hyperbola fitting
algorithm based on orthogonal distance fitting.

The orthogonal distance is invariant to transformations
in Euclidean space and it exhibits a more robust behavior
than the algebraic distance. This algorithm is based on a
minor revision of the work [14]. As we know, the parametric
form commonly used for a south opening hyperbola can be
presented as

x = c1 + a sinh ϕ (7)

y = c2 − b coshϕ (8)

Given a set of data points (xi, yi)m
i=1, the distance di of

a point Pi = (xi, yi), which is not on the hyperbola, can be
expressed by

d2
i = min

ϕi

[
(xi − x(ϕi))2 + (yi − y(ϕi))2

]
, (9)

where the point (x(ϕi), y(ϕi)) is the nearest corresponding
point of Pi on the hyperbola.

Now we want to determine c1, c2, a and b for this
hyperbola by minimizing

min
m∑

i=1

d2
i . (10)

In practice, we can simultaneously minimize
ϕ1, · · · , ϕm, a, b, c1, c2 to find the minimum of the
quadratic function

Q(ϕ1, · · · , ϕm, a, b, c1, c2)

=
m∑

i=1

[
(xi − x(ϕi))2 + (yi − y(ϕi))2

]
. (11)

This is equivalent to solving the nonlinear least squares
problem(

xi

yi

)
−
(

c1

c2

)
−
(

a sinh ϕi

b coshϕi

)
≈ 0, for i = 1, · · · , m.

Minimizing the sum of squares of the distances of the
given points to the best hyperbola is equivalent to solving the
nonlinear least squares problem. Then we have 2m nonlinear
equations for m + 4 unknowns: ϕ1, · · · , ϕm, a, b, c1, c2.

Then the Gauss-Newton iteration will be employed to
solve this minimization problem. If a good initialization
is given to the Gauss-Newton method, the algorithm will
converge in a few iterations (usually less than 10). In

1Utility map records, which although notoriously inaccurate, at least in
the UK, generally give the rough direction of the line of the buried apparatus
(which is typically along the line of the road).

practice, the hyperbola solution obtained from the algebraic
distance fitting is used as the initialization. The experiments
confirm that this initialization is appropriate and is robust
against large noise (We will illustrate the comparisons in the
experimental section).

Based on the formulation in this section, this robust fitting
algorithm can fit other conic functions and the combinations
of different conic functions, such as elliptic and hyperbolic
mixture model. In this case, the proposed probabilistic conic
mixture model can be used for other conics.

C. Probabilistic Model

In practical applications, GPR images are often contami-
nated with noise. Although various kinds of pre-processing
techniques have been proposed to reduce the noise level, it
is impossible to guarantee that the processed GPR data is
free from noise. In order to take noisy spatial points into
consideration, we model two kinds of spatial noise in the
proposed probabilistic algorithm. These two kinds of noise
include background noise, in the form of observed points
which are not part of the hyperbolae and feature noise, which
is the deviation of the observed hyperbolic points.

Suppose that X is a set of observation points, and M is a
partition consisting of hyperbolae, M0, M1, · · · , MK , where
partition Mk contains Nk points. The background noise is
denoted by M0.

In the proposed model, we assume that the background
noise is uniformly distributed over the region of the image,
which is equivalent to Poisson background noise, and the
hyperbolic points are distributed uniformly along the true
underlying hyperbola; that is, their orthogonal distances
follow a normal distribution, with mean zero and variance
σ2

j .
The resulting model becomes a hyperbolic mixture model

with the mixing probability πk (0 < πk < 1, k =
0, 1, · · · , K , and

∑K
k=0 πk = 1). Then the likelihood can

be presented by

L(X |π, σ) =
N∏

i=1

L(xi|π, σ), (12)

where L(xi|π, σ) =
∑K

k=0 πkL(xi|πk, σk, xi ∈ Mk) and

L(xi|πk, σk, xi ∈ Mk) =
1√

2πσk

exp

(
−‖fk(xi)‖2

2σ2
k

)
,

where fk(xi) is the orthogonal distance from the point
(xi, yi) to the kth hyperbola.

For background noise, the likelihood can be expressed by

L(xi|π0, σ0, xi ∈ M0) =
1

Area
,

where Area is the area of the image.



D. Classification Expectation Maximization Algorithm

The classification expectation maximization (CEM) al-
gorithm is a classification version of the well-known EM
algorithm [11]: it incorporates a classification step between
the E-step and the M-step of the EM algorithm using a
maximum a posteriori (MAP) principle. We now present the
CEM algorithm as applied to the classification problem for
points as described above.

Firstly, we give the number of hyperbolae in the GPR
data and start with an initial partition using the k-means
algorithm.

1) Begin with an initial partition.
2) (M-step) With the configuration of the current parti-

tions, fit a hyperbola to each partition and then compute
the maximum likelihood estimates (πm

k , σ2
k) for k =

1, · · · , K .

πm
k =

#πm−1
k

N
,

and

σ2
k =

1
#πm−1

k

∑
xi∈πm−1

k

(fk(xi) − f̄k(xi))2,

where fk(xi) is the orthogonal distance from the point
(xi, yi) to the kth hyperbola, and πm

k is the mixing
probability of kth hyperbola in iteration m. πm

0 can be

estimated by #πm−1
0
N .

3) (E-step) Based on the current hyperbolae and param-
eter estimates, calculate the likelihood of each point
being in each partition.

tmk (xi) =
πm

k Lk(xi)∑K
k=0 πm

k Lk(xi)
,

where Lk(xi) = 1√
2πσk

exp
(
− ‖fk(xi)‖2

2σ2
k

)
, k =

1, · · · , K and L0(xi) = 1
Area .

4) (Classification step) Assign each point xi to the parti-
tion which provides the maximum posterior probability
tmk (xi), 0 ≤ k ≤ K , (if the maximum posterior
probability is not unique, we choose the partition with
the smallest index).

5) Check for convergence: end or return to Step 2.
After calculating the probability of each point being in

each partition, we assign each point into the partition for
which it has the highest likelihood. Note that at the end of
each iteration, the likelihood of the model will be calculated.
Since the classification expectation maximization iterations
sometimes decrease the likelihood, the process is executed
for a predetermined number of iterations, and we choose the
model with the highest overall likelihood as the final result.

E. Bayesian Information Criterion for Model Selection

Similarly to other mixture models, the hyperbolic mixture
model needs to specify the number of hyperbolae at the
beginning. The usual strategy is to search a range for the
number of hyperbolae k and select the best one based on
proper model selection methods.

In this paper, we propose to use a Bayesian information
criterion (BIC) [22] for model selection among a class of
parametric models with different numbers of parameters.

The model selection based on BIC can be seen as a form
of regularization since it is possible to increase the likelihood
by adding additional parameters in the maximum likelihood
estimation, which may lead to overfitting. The BIC resolves
this problem by introducing a penalty term for the number
of parameters in the model.

Model selection based on BIC provides (asymptotically)
consistent estimators of the probability distribution given
a data set [21]. This approach works well in practice for
mixture models and other model-based clustering problems
[15], [21]. The BIC for a model with K hyperbolae and
background noise is defined by:

BIC = 2 log(L) − M log(N),

where M = K(DF + 2) + K + 1 is the number of
parameters, DF is the degrees of freedom used in fitting
a hyperbola; there are four degrees of freedom in each
hyperbola, i.e. DF = 4. The number of hyperbolae is K;
for each hyperbola, we need to estimate σj , and we fit
a hyperbola using four degrees of freedom. There are K
parameters associated with the mixing proportions2 and one
more parameter is used for image area estimation. The larger
the BIC, the more the model is favoured by the data.

In this paper, we utilize our previous algorithm based
on algebraic distance fitting as the initialization. In the
experimental sections, we emphasize that the number of data
points in the primary hyperbola is significantly more than the
number of noise points.

IV. EXPERIMENTAL STUDY

In order to examine the proposed algorithm, this section
conducts several experiments on simulated and real GPR
images. The precision and the computational cost are also
analyzed in this section.

A. Synthetic Data

In this subsection, two synthetic data sets with two and
eight hyperbolae respectively are generated with Gaussian
white noise, respectively. These hyperbolae are positioned in
different locations and have similar shape to reflect the case
with real GPR data. Since in GPR B-scan images, the shape
of the hyperbola is only determined by the medium where
objects are buried [12] and if we assume that the medium
does not change dramatically over a small neighbourhood,
then the reflected hyperbolae should have similar shapes.

Figures 2 and 3 illustrate the results. From these figures,
it can be seen that the proposed algorithm successfully
identifies these hyperbolae and ignores the noise points.

To select the most appropriate number of hyperbolae for
this data set, we run the algorithm with different k, which
is the number of hyperbolae in the data set, and record the

2Although there are M + 1 mixing coefficients, the constraint∑K
k=0 πk = 1 reduces one degree of freedom.
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Fig. 3. Hyperbola Identification for Synthetic Data

BIC value. The result confirms that two and eight hyperbolae
are the appropriate number of hyperbolae for these two data
sets, respectively.

The BIC value may not be monotone increasing before it
reaches the maximum as some simplified models with few
parameters could be better than some relatively complicated
models due to the data distribution. This explains the situ-
ation that the BIC value with 4 hyperbolae is smaller than
that with 3 hyperbolae in Figure 3(b).

B. Real GPR Data

In this subsection, we utilize a real GPR data set to validate
the proposed algorithm. The B-scan image is illustrated in
Figure 4. In this figure it can be seen that the data set is
challenging since it contains significant noise and has two
secondary hyperbolae. The secondary hyperbolae are often
generated by the reflection of the bottom part of the buried
assets. The intensity of secondary hyperbolae are usually
determined by the size, material and the depth of buried
assets and other factors of the medium. In order to process
this data, we preprocess the GPR data to reduce the noise
using wavelet, remove the background to delete the linear

reflection of ground (upper part in Figure 4), and reduce the
clutters.

After the preprocessing step, the proposed algorithm is
applied to this data. Figure 5 illustrates the results. From this
figure, it can be seen that the proposed algorithm successfully
identifies these hyperbolae. Based on the BIC figure, we
also notice that the proposed algorithm with over-estimated
k often generates a higher BIC value than the mode with
under-estimated k. This is due to the existence of substantial
noise. We will select the model with relatively small k from
some candidate models whose BIC values are similar in the
subsequent processing3.

C. Simulated GPR Data

In practice, at least in the UK, utility records rarely contain
depth information (not withstanding its potential usefulness),
so evaluating the depth estimate from our algorithm without

3In practice, in the utility sector since buried apparatus is typically
linear and relatively long in length. Further evidence for the number of
hyperbolae/buried objects will come from repeated GPR measurements at
regular intervals (typically at least three scans are taken 1m apart along the
length of the suspected apparatus.) By integrating the evidence over these
multiple scans, the estimate on k can be further improved.
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Fig. 5. Hyperbola Identification for GPR Data
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physical excavation is difficult. Size information is usually
present in the statutory records, but can not be completely
relied upon for accuracy. To resolve this problem, in this
section we employ simulated GPR data to estimate the
accuracy for estimation of the depth and size of buried assets.

The simulated GPR data is generated by means of the elec-
tromagnetic simulator GprMax [16]. GprMax was developed
on the basis of the finite-difference time-domain (FDTD)
numerical method. It discretizes Maxwell’s equations in both
space and time and obtains an approximate solution directly
in the time domain through an iterative process. GprMax
allows the user to specify different mediums, such as clay,
soft sand, concrete, and different sizes of buried objects with
varied diameters.

In Figure 6, we show one example to specify the buried
assets and the obtained simulated GPR Data. Note that all the
buried assets are assumed to be cylinders. In order to validate
our algorithm, we have generated ten simulated GPR datasets

like Figure 6 with varied pipe sizes in varied mediums. In
each GPR data set, there are ten buried pipes. The radii of
these pipes range from 4cm to 20cm and the depths range
from 40cm to 120cm. Note that in order to obtain good
results, we need to generate a relatively higher resolution
GPR data to guarantee the number of data points in the
primary hyperbola is significantly more than the number of
noise points.

In this experiment, the previous algorithm Hyperbolic-
algebraic, which uses the algebraic distance to fit hyperbola,
one variant of the proposed algorithm, hyperbolic-k-means,
and the classical algorithm, Hough transform, are included
for comparison.

The hyperbolic-kmeans algorithm obtains these hyperbo-
lae according to the principle of k-means and assigns the
points to the hyperbola with the shortest algebraic distance.
Since we could not define a likelihood function for the non-
probabilistic model, hyperbolic-k-means, BIC will not be
used in the hyperbolic-k-means algorithm and k will be
chosen as the same value as the one in Hyperbolic-mixture,
which is optimized by BIC. Since hyperbolic-k-means does
not take the probabilistic model into consideration, it is very
sensitive to noise.

The Hough transform is a classical feature extraction
technique used in image analysis to find imperfect instances
of objects within a certain class of shapes by a voting
procedure in the parameter space. In this application, we
need to run thousands of Hough transforms with different
combinations of hyperbola parameters (a, b) to search the
best fit hyperbola shape. In the parameter space of the Hough
transform, how to choose a suitable threshold for the number
of votes to extract the number of hyperbolae in the image is
usually a problem. In this experiment, we just use the same
value k as the hyperbolic mixture model selected by BIC
as the guide line to select the corresponding threshold for
Hough transform.

Table I reports the statistical results of the experiment.



TABLE I

THE COMPARISON BETWEEN FOUR ALGORITHMS ON HYPERBOLA IDENTIFICATION AND HYPOTHESES EXTRACTION FROM SIMULATED GPR DATA.

THE ACTUAL NUMBER OF HYPERBOLAE IN THE DATA SET IS 100.

Algorithm Hyperbola Identified (#) k selected by BIC Running Time Depth Error (%) R Error (%)
Hyperbolic-Orthogonal 94 103 1.7s 2.8 2.3
Hyperbolic-algebraic 93 117 0.8s 5.7 4.7
Hyperbolic-k-means 51 103(fixed) 0.3s 16.3 14.9

Hough Transform 89 103(fixed) 226.1s 4.9 4.2

100 200 300 400 500 600 700 800 900 1000

20

40

60

80

(a) Specification of the Buried Assets

20 40 60 80 100

200

400

600

800

1000

1200

1400

1600

1800

2000

(b) Simulated GPR Data

20 40 60 80 100

200

400

600

800

1000

1200

1400

1600

1800

2000

(c) Simulated GPR Data

Fig. 6. The Buried Assets, the simulated GPR Data and the hyperbolae
identified by our algorithm

The proposed algorithm manages to identify 94 out of 100
hyperbolae and for the identified hyperbolae, the obtained
hypotheses on the depth and size are quite accurate. The
number of hyperbolae k, selected by BIC, is a little greater
(103) than 100. This is because the secondary hyperbolae of
some pipes with large diameters, buried in shallow subsur-
face, have large intensity even after a series of pre-processing
steps, such as the background removal, noise reduction by
wavelet and clutter reduction.

The algebraic distance fitting algorithm with probabilistic
model identifies a similar number (93 out of 100) of hyper-
bolae as Hyperbolic-Orthogonal algorithm. However, the k
selected by BIC is not as accurate as Hyperbolic-Orthogonal
algorithm. This might be caused by the inaccurate estimation
of the likelihood value because of the inaccurate estimation
of hyperbola parameters. We also notice that the depth and
the R error of Hyperbolic-algebraic is larger than the error
of Hyperbolic-Orthogonal algorithm.

Compared with our algorithm, hyperbolic-kmeans, which
does not incorporate the probabilistic model, only identifies
51 hyperbolae out of 100 and the calculated hypotheses
are significantly worse than our algorithm in terms of the
accuracy. It is also worth mentioning that both algorithms
operate almost in real-time. Based on this experiment, the
probabilistic conic mixture model achieves satisfactory per-
formance in terms of the accuracy and time.

The performance of the Hough transform is fair in terms of
the Hyperbola Identify and the depth/R error. However, the
running time is significantly longer than other algorithms.
This is because we need to conduct the grid search for a
good combination of hyperbola parameters (a, b). As a robust
algorithm, the Hough transform also suffers from another
problem, which is how to specify the size of the suppression
neighborhood. This is the neighborhood around each vote
peak in the parameter space that is set to zero after the peak
is identified. In the experiment, we used an empirical value
of 25.

Although the probabilistic model incorporating the orthog-
onal distance fitting runs a little more slowly compared to the
algebraic distance, the other performance indicators compare
favourably.

This algorithm can achieve such a good performance since
the robustness has been enhanced in two ways: (a) the robust
orthogonal distance fitting can deal with the feature noise (the
noise points around the hyperbola) and (b) the probabilistic



model handles the background noise and the partitions nicely.

V. CONCLUSIONS

Previous algorithms for mining GPR data are unsuitable
for on-site applications due to their computational complexity
or the difficulty of obtaining sufficient appropriate training
data for neural network based methods. We have addressed
both of these problems in this paper.

In order to develop a novel GPR data mining algorithm, we
extend an existing robust single hyperbola fitting algorithm
by incorporating a probabilistic hyperbola mixture model
and employing the classification expectation maximization
algorithm for the final solution.

The proposed algorithm significantly contributes to both
theoretical research and practical application areas. From a
theoretical point of view, this research extends the existing
single hyperbola fitting algorithm to a multiple hyperbola
fitting algorithm and provides a robust solution compared
to the previous hyperbola fitting algorithms. In this paper,
we mainly focus on mixtures of hyperbolae although the
proposed search can be trivially extended for other conics,
such as ellipses and parabola.

For practical applications, the proposed techniques provide
an effective and accurate GPR data interpretation tool, which
is adequate for on-site applications. This is extremely useful
for the advanced multi-channel GPR system that often gen-
erates volumes of data in each task. Therefore, this research
will potentially play an important role in the GPR and
related industries, such as utility detection, infrastructure and
transportation industries.

In this paper, a robust hyperbola fitting algorithm based
on orthogonal distance fitting is employed for robust and
real-time detection of buried infrastructure. This algorithm is
more robust than our previous algorithm that incorporates the
algebraic distance. As remarked earlier, one way to further
improve the results will be to incorporate evidence from
multiple scans along the length of a suspected linear object.
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penetrating radar and imaging metal detector for antipersonnel mine
detection. Journal of Applied Geophysics, 40(1-3):59–71, 1998.

[5] L. Capineri, P. Grande, and JAG Temple. Advanced image-processing
technique for real-time interpretation of ground-penetrating radar
images. International Journal of Imaging Systems and Technology,
9(1):51–59, 1998.

[6] G. Celeux and G. Govaert. A Classification EM algorithm for
clustering and two stochastic versions. Computational Statistics &
Data Analysis, 14(3):315–332, 1992.

[7] B. B. Chaudhuri and G. P. Samanta. Elliptic fit of objects in two
and three dimensions by moment of inertia optimization. Pattern
Recognition Letters, 12(1):1–7, 1991.

[8] H. Chen and A. G. Cohn. Probabilistic conic mixture model and
its applications to mining spatial ground penetrating radar data. In
Workshops of SIAM Conference on Data Mining (WSDM10), 2010.

[9] S. Delbo, P. Gamba, and D. Roccato. A fuzzy shell clustering approach
to recognize hyperbolic signatures in subsurface radar images. IEEE
Transactions on Geoscience and Remote Sensing, 38(3):1447–1451,
2000.

[10] A. Dell’Acqua, A. Sarti, S. Tubaro, and L. Zanzi. Detection of linear
objects in GPR data. Signal Processing, 84(4):785–799, 2004.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal Of The Royal
Statistical Society, Series B, 39(1):1–38, 1977.

[12] A. Dolgiy, A. Dolgiy, and V. Zolotarev. Optimal radius estimation for
subsurface pipes detected by ground penetrating radar. In Proceedings
11th International Conference on Ground Penetrating Radar, Colum-
bus, Ohio, USA, volume 4, 2006.

[13] A. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least square fitting
of ellipses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(5):476–480, 1999.

[14] W. Gander, G. H. Golub, and R. Strebel. Least-squares fitting of circles
and ellipses. BIT Numerical Mathematics, 34(4):558–578, 1994.

[15] A. Gasgupta and A.E. Raftery. Detecting features in spatial point
processes with clutter via model-based clustering. Journal of the
American Statistical Association, 93(441), 1998.

[16] A. Giannopoulos. Modelling ground penetrating radar by GprMax.
Construction and Building Materials, 19(10):755–762, 2005.

[17] J. Illingworth and J. Kittler. A survey of the hough transform.
Computer vision, graphics, and image processing, 44(1):87–116, 1988.

[18] E. Pasolli, F. Melgani, and M. Donelli. Automatic analysis of
GPR Images: a pattern-recognition approach. IEEE Transactions on
Geoscience and Remote Sensing, 47(7):2206–2217, 2009.

[19] M. Pilu, A. Fitzgibbon, and R. Fisher. Ellipse-specific direct least-
square fitting. In Proceedings of International Conference on Image
Processing (ICIP’06), volume 3, 1996.

[20] J. Porrill. Fitting ellipses and predicting confidence envelopes using a
bias corrected Kalman filter. Image and Vision Computing, 8(1):37–41,
1990.

[21] K. Roeder and L. Wasserman. Practical bayesian density estimation
using mixtures of normals. Journal of the American Statistical
Association, 92:894–902, 1995.

[22] G. Schwarz. Estimating the dimension of a model. The Annals of
Statistics, 6:461–464, 1978.

[23] S. Shihab and W. Al-Nuaimy. Radius estimation for cylindrical objects
detected by ground penetrating radar. Sensing and Imaging: An
International Journal, 6(2):151–166, 2005.

[24] C. G. Windsor, L. Capineri, and P. Falorni. The estimation of
buried pipe diameters by generalized hough transform of radar data.
In Proceedings Progress In Electromagnetics Research Symposium
(PIERS), pages 22–26, 2005.


