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ABSTRACT
We present novel, efficient, model based kernels for time
series data rooted in the reservoir computation framework.
The kernels are implemented by fitting reservoir models shar-
ing the same fixed deterministically constructed state tran-
sition part to individual time series. The proposed kernels
can naturally handle time series of different length without
the need to specify a parametric model class for the time
series. Compared with most time series kernels, our kernels
are computationally efficient. We show how the model dis-
tances used in the kernel can be calculated analytically or
efficiently estimated. The experimental results on synthetic
and benchmark time series classification tasks confirm the
efficiency of the proposed kernel in terms of both generaliza-
tion accuracy and computational speed. This paper also in-
vestigates on-line reservoir kernel construction for extremely
long time series.

Categories and Subject Descriptors
G.3 [Probability And Statistics]: Time series analysis;
H.2.8 [Database Applications]: Data mining

Keywords
Time Series, Reservoir Computing, Kernel Methods

1. INTRODUCTION
Kernel methods have received considerable attention in

the machine learning community dealing with structured
data, such as image, graphs, texts or voice signals. How-
ever, as an important ubiquitous data type in science and
engineering, time series have received relatively less research
in the kernel literature [5].
There has been active research on quantification of the

‘similarity’ or the ‘distance’ between time series. However,
these measures are not always applicable for kernel approaches
as many of such similarity measures are not positive definite,
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which is a necessary basis for the reproducing kernel Hilbert
space to be valid.

A simple way to distinguish between two time series of
the same length is to treat the time series as vectors and
simply employ a linear kernel or Radial basis kernel. This
method can be simple and efficient provided the time series
are short and of equal length. However, in many real-world
applications, the time series of interest are of variable-length
and can be quite long. It is therefore desirable to construct
kernels capable of handling possibly long time series of vari-
able length. For example, in dynamic time warping [1] time
series similarity is quantified through finding an alignment
between variable-length multivariate time series.

Another possibility is to use a generative probabilistic
model of the time series data and then define the time series
kernel through model parameters corresponding to different
sequences, e.g. probability product kernel [13], Kullback-
Leibler (KL) divergence based kernels [19, 2] and Autore-
gressive kernel [5]. These approaches depend on the partic-
ular parametric model class. For example, Fisher kernel [11]
maps individual time series into score functions of the single
generative model that is assumed to be able to ‘explain’ most
of the data. Often a Hidden Markov Model (HMM) with a
fixed number of states is employed. In some situations the
assumption of the particular generative model underlying
the data can be too strong. In addition, Fisher kernels [11]
are computationally expensive because of the calculation of
metric tensor (inverse of Fisher information matrix) in the
tangent space of the generative model manifold. The ‘prac-
tical’ Fisher kernel used in most of the time replaces the
metric tensor with an identity matrix. This can result in a
loss of valuable information in the data [25].

The requirement of using a single generative model in ker-
nel calculations is relaxed e.g. in the Autoregressive kernel
[5]. Sequences are judged to be similar/dissimilar according
to the corresponding likelihood profile of a Vector Autore-
gressive Model (VAR) under a variety of parameter settings
(controlled by the prior). In this case it is less crucial that
the VAR model is a faithful model of the data since the base
VAR model class is used as a ‘feature extractor’.

Due to the requirements of many time series applications,
the kernel evaluation should happen in real-time. Therefore,
computational complexity of kernel construction and eval-
uation can play a critical role in applying kernel methods
to time series data. However, many of the existing time se-
ries kernels are computationally demanding. For example
Auto-correlation Operators (DACO) kernel [9] proposed re-
cently by Gaidon et al. for action recognition, compares the
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dynamic aspects of two time series by using the difference
between their auto-correlations. The kernelized DACO in-
evitably needs to invert a matrix of size related to the time
series length. Thus the kernel can be used for relatively
short time series only.
To address the problems mentioned above, we propose

novel general time series kernels that can naturally and effi-
ciently handle long time series data of variable length. The
core idea is to transform the time series into a higher dimen-
sional “dynamical feature space” via reservoir computation
models [18] and then represent varying aspects of the signal
through variation in the linear readout models trained in
such dynamical feature spaces. In this way each time series
will be represented by the corresponding readout model of
the same fixed reservoir. Hence, unlike in the Fisher ker-
nel, there will be a different dynamic model for each time
series, but all such models will share the same dynamical
reservoir. The sequence-specific dynamic models will differ
only in the corresponding linear readout models from the
reservoir. The intuition is that while the general fixed dy-
namic reservoir provides a unique and rich pool of dynamic
features for the whole data set, the individual readout mod-
els bring enough flexibility to represent specifics of different
time series, thus providing a platform for wide applicability
across time series of different characteristics and origins.
One can, of course, argue that our approach is yet another

variation on model-based kernel construction for time series
based on a particular class of dynamic (reservoir) models.
However, unlike parametric time series models of a partic-
ular from, reservoir models have been extensively shown to
be ‘generic’ in the sense that they are able to represent a
wide variety of dynamical features of the input signals, so
that given a task at hand only the linear readout on top of
the reservoir needs to be retrained [18]. As stated above,
in our formulation, the underlying dynamic reservoir will
be the same for all time series - the differences in the signal
characteristics in different time series will be captured solely
by the linear readout models and will be quantified in the
function space of such models.
There are several advantages of such reservoir based time

series kernels:

1. The proposed kernels can naturally handle time series
of different length;

2. General reservoir model is flexible enough so that it
can be used for a variety of data types without the
need to specify a particular parametric model class for
the time series;

3. Since only the linear readout on top of the reservoir
needs to be trained, compared with most time series
kernels, our kernels are computationally very efficient;

4. With recursive least squares algorithm to train read-
out mapping of reservoir models, our kernels can be
operating in an on-line fashion, with the ability to ef-
ficiently handle extremely long time series;

5. Under some assumptions, the model distances between
linear readouts can be formulated analytically.

The rest of this paper is organized as follows. Section 2
reviews the related work on kernels for time series. Section
3 introduces deterministic reservoir computing and proposes

time series kernels based on reservoir models. The experi-
mental results and analysis are reported in Section 4. Sec-
tion 5 studies on-line reservoir kernel construction for ex-
tremely long time series. Finally, Section 6 discusses and
concludes the paper.

2. BACKGROUND
In this section, we will review some of the related work on

time series kernels.
Dynamic time warping (DTW) tries to “warp” the time

axis of one (or both) sequences to achieve a better align-
ment [1]. DTW has been successfully used in many applica-
tions. However, DTW can generate un-intuitive alignments
by mapping a single point on one time series onto a large
subsection of another time series, leading to inferior results
[15]. A time series kernel based on global alignment, moti-
vated by DTW, has been proposed in [7], with an efficient
version presented in [6].

Autoregressive kernel [5] is another probabilistic kernel
for time series. In autoregressive kernel, VAR model class
of a given order is used to generate an infinite family of
features from the time series. For a given time series s, the
likelihood profile pθ(s) across all possible parameter setting
(under a matrix normal-inverse Wishart prior ω(θ)) forms
a representation of s. Given two time series si and sj , the
kernel is defined as the dot product of the corresponding
sequence representations:

KAR(si, sj) =

∫
θ

pθ(si)pθ(sj)ω(dθ).

Fisher kernel [11] was proposed to combine the power
of generative modelling with discriminant classifiers such as
Support Vector Machines. It has been successfully used in
numerous applications. Fisher kernel assumes that the gen-
erative model p(s|θ) can explain all the data. The Fisher
kernel maps each individual data into a vector in the gradi-
ent log-likelihood space specified by this generative model.
The feature vector (Fisher score) Us is the gradient of the
log-likelihood of the generative model (fit on the data set)
for the time series s:

Us = ∇θ logP (s|θ).

The Fisher kernel is then defined as follows:

K(si, sj) = UT
siI

−1Usj ,

where I is the Fisher information matrix. As mentioned
above, calculation of I−1 can be computationally expensive.
A routinely used practical ‘trick’ is to use the identity matrix
in place of I [23], which speeds up the computation at the
cost of losing some important information [23].

3. RESERVOIR BASED KERNELS
In this paper we will introduce new time series kernels

based on a general “temporal filter” implemented by Echo
State Network (ESN) with a simple deterministically con-
structed reservoir architecture. Reservoir models [18] have
been extensively shown to be able to successfully process
and model time series of a surprisingly wide variety of types
(from deeper memory deterministic chaotic systems, to shorter
memory stochastic sequences) [22, 24].

The ESN reservoir model with N reservoir (state) units
represents a parameterized input driven state space model
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Figure 1: Illustration of the time series kernel in the
deterministic reservoir model space. The first stage
is to train the readout mapping of reservoir models
using time series, i.e. generate individual points in
the model space to represent time series. The sec-
ond stage is to construct the kernel by investigating
the model distance.

formulated as:

x(t) = g(R x(t− 1) + V s(t)), (1)

y(t) = Wx(t) + a = f(x(t)), (2)

where x(t) = [x1(t), · · · , xN (t)]T ∈ ℜN is the state vector
of reservoir activations, s(t) is the input time series element
at time t, R is the reservoir weight matrix (N × N), V is
the input weight matrix (N × O) to the reservoir, O is the
dimensionality of the time series, g(·) is element-wise appli-
cation of the tanh transfer function and y(t) is the output of
the linear readout from the reservoir. The state transition
and output parts of the state space model are described by
eqs. (1) and (2), respectively.
The main idea is that, provided the reservoir is able to

represent a rich set of features of the input time series, the
model-based representation of a particular time series s will
be given by the linear readout mapping f(x) (eq. (2)) op-
erating on reservoir activations x, specifically fitted to s on
the next-item prediction task y(t) ∼ s(t + 1) by minimiz-
ing the normalized mean square error (NMSE) between the
model predictions y(t) and targets s(t+ 1). We will denote
the readout f(x) fitted to sequence s by h(x; s).
The kernel between a pair of time series si and sj will then

be calculated using a model distance d(h(x; si), h(x; sj)) be-
tween the corresponding readouts h(x; si) and h(x; sj) from
the same ‘fixed’ general reservoir (eq. (1)).

3.1 Deterministically Constructed Reservoir
This paper will focus on specific forms of ESN since they

constitute one of the simplest, yet effective forms of RC.
ESN has a “non-trainable” recurrent part (“the reservoir”)
(eq (1)) and a simple linear readout (eq (2)). Typically, the

reservoir weights R and the input weights V to the reservoir
are randomly generated so that the “Echo State Property”
is satisfied. Loosely speaking, this means that the reservoir
output would be independent of the initial conditions [12].
Training of ESN can be efficiently performed through linear
regression. For more details we refer the interested reader
to e.g. [18].

The downside of reservoir models is that their construc-
tion is largely driven by a series of randomized model build-
ing stages. Recently, Rodan et al. [22] proposed to use a
simple deterministic constructed Cycle Reservoirs with regu-
lar Jumps (CRJ). This reservoir architecture has been shown
to be comparable (or better) than the traditional ESN on
a wide variety of time series modeling and prediction tasks
[22]. In CRJ the reservoir nodes are connected in a uni-
directional cycle with bi-directional shortcuts (jumps) (Fig-
ure 1). All cyclic reservoir weights rc have the same value;
all jumps rj share the same weight and the input connec-
tions ri have the same absolute value with an aperiodic sign
pattern. This results in a sparse and deterministically con-
structed and simple coupling reservoir weight matrix R.

The reservoir forms a fixed non-linear high-dimensional
non-autonomous dynamical system with fading memory that
acts as a general temporal filter on top of which it is usually
sufficient to train a linear readout mapping. As mentioned
above, it is natural to represent individual time series by
the linear readouts from the fixed dynamic filter that fits
the series well.

3.1.1 Distance in the Reservoir Model Space: Uni-
form State Distribution

Using Euclidean metric on the readout parameters to cal-
culate the distance between two readout mappings is not
satisfying since one should be interested in the model dis-
tance in the function space of the readout models, rather
than the distance between the model parameterizations.

We will use the L2 distance in the model space [4], al-
though our framework is general and can be applied to any
appropriate function distance between the readouts. To sim-
plify the notation, we will denote the readout h(x; si) fitted
to sequence si by fi(x). Consider two mappings f1(x) and
f2(x), f1, f2 : ℜN → ℜO, where N is the number of reservoir
units, O is the output dimensionality. Their L2 distance is
defined as:

L2(f1, f2) =

(∫
C

∥f1(x)− f2(x)∥2 dµ(x)
)1/2

, (3)

where µ(x) is the probability density function on the input
(reservoir) domain C. Recall that in (1) we use tanh transfer
function and so C = [−1,+1]N .

We will first assume that x is uniformly distributed. Later
we will relax this assumption by considering non-uniform
µ(x) to reflect the fact that state space activations x in the
reservoir can follow a more complex distribution.

The readout model takes the form of an affine mapping:

f(x) = Wx+ a, (4)

where x = [x1, · · · , xN ]T is the state vector, W is the pa-
rameter matrix (O × N) and a = [a1, · · · , ao]

T is the bias
vector.
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Consider two readouts from the same reservoir

f1(x) = W1x+ a1,

f2(x) = W2x+ a2.

Then,

L2(f1, f2) =

(∫
C

∥Wx∥2 + 2aTWx+ ∥a∥2 dx
)1/2

where W = W1 −W2, and a = a1 − a2.
Note that since C = [−1, 1]N , for any fixed a and W∫

C

aTWx dx = 0.

Therefore, it can be shown that

L2(f1, f2) =

(
2N

3

N∑
j=1

O∑
i=1

w2
i,j + 2N ∥a∥2

)1/2

(5)

where wT
i is the i-th row of W , wi,j is the (i, j)-th element

of W .
Scaling of the squared model distance (L2

2(f1, f2)) by 2−N

we obtain

1

3

N∑
j=1

O∑
i=1

w2
i,j + ∥a∥2 ,

which differs from the squared Euclidean distance on the
readout parameters

N∑
j=1

O∑
i=1

w2
i,j + ∥a∥2 ,

by the factor 1/3 applied to the differences in the linear part
W of the affine readouts. Hence, more importance is given
to the ‘offset’ than ‘orientation’ of the readout mapping.

3.2 Non-uniform State Distribution
In the above, we assumed that the distribution of reser-

voir states x is uniform in C. As mentioned before, it is
likely that the state distribution µ(x) will be non-uniform.
We will introduce two approaches for allowing general µ(x)
- modelling of µ by a mixture of Gaussians and numerical
approximation of the integral (3) by sampling using boot-
strapped input series.
For non-uniform state distribution µ(x), a K-component

Gaussian mixture model can be employed to approximate
the distribution:

µ(x) =

K∑
k=1

αk µk(x|ηk,Σk),

µk(x|ηk,Σk) =
exp

(
− 1

2
(x− ηk)

TΣ−1
k (x− ηk)

)
(2π)N/2 |Σk|1/2

,

where αk are mixture coefficients with
∑K

k=1 αk = 1.
Then, the distance L2(f1, f2) can be obtained as follows:

L2(f1, f2) =

(∫
C

xTWTWx+ 2aTWx+ aTa dµ(x)

)1/2

According to [20] (page 42), for a Gaussian variable x ∼
N(η,Σ),

E(xTWTWx) = trace(WTWΣ) + ηTWTWη.

Therefore, the distance can be obtained as follows:

L2
2(f1, f2) =

K∑
k=1

αk

{
trace(WTWΣk) + aTa

+ ηT
k W

TWηk + 2aTWηk

}
. (6)

We employed the mixture model construction proposed by
Figueiredo et. al [8] that automatically selects the appropri-
ate number of mixture components in a top-down manner.

Alternatively, the integral can be numerically approxi-
mated by using reservoir activations collected while process-
ing the input time series. Assume that for a given time series
s, after the initial wash-out [12], m state activations are col-
lected x(1), · · · ,x(m). Then,

L2
2(f1, f2) ≈

1

m

m∑
t=1

∥f1(x(t))− f2(x(t))∥2 . (7)

However, in some applications the length of the time series
is not sufficient to yield a good approximation. We therefore
adopted the circular block bootstrap for time series [17] to
construct sufficiently long input series. The block length in
bootstrapping was automatically determined following [21].

In the above, the function distance between readout map-
pings of reservoir models is formulated. Therefore, the three
kernels can be defined as follows:

K(si, sj) = exp
{
−γ · L2

2(fi, fj)
}
,

where L2
2(fi, fj) can be Equations (5), (6) and (7) as reser-

voir kernel (RV ), Gaussian mixture model based reservoir
kernel (GMMRV ), and sampling based reservoir kernel (Sam-
plingRV ). The main algorithm is summarized below:

Algorithm 1 Model based Kernel Algorithm (RV,
GMMRV, SamplingRV)

1: Input: Set of sequences s1, · · · , sM ; parameters (num-
ber of reservoir units N ; CRJ weights (rc, rj , ri); ridge
regression parameter λ; kernel scale parameter γ;

2: Output: Kernel (Gram) matrix K.
3: for each time series si, i = 1, · · · ,M do
4: Drive the reservoir state evolution with the input se-

quence si (eq. (1)).
5: Fit the linear readout fi using ridge regression for the

next item prediction task on si (eq. (2)).
6: end for
7: Calculate the pairwise model distance matrix L2(fi, fj)

i, j = 1, · · · ,M , via eqs. (5) (RV), (6) (GMMRV), or (7)
(SamplingRV) - Sections 3.1 and 3.2.

8: Calculate the kernel matrix as K(si, sj) = exp{−γ ·
L2

2(fi, fj)}.

3.3 Fisher Kernel Based on Reservoir Model
Besides the model distance based kernels introduced above,

we also considered the Fisher kernel obtained with the reser-
voir model (FisherRV ).

Endowing the readout with a noise model yields a gener-
ative time series model of the form:

x(t) = g(R x(t− 1) + V s(t)),

s(t+ 1) = Wx(t) + a+ ε(t),

Assume the i.i.d. noise model ε(t) follows a Gaussian distri-
bution,

ε(t) = N (0, σ2I).
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Table 1: Parameters for all kernels. γ is the parameter in RBF function, ξ in AR kernel is the weight of the
negative definite kernel [5], p is the order of the vector autoregressive model, state is the number of states for
HMM in Fisher kernel, λ is the ridge regression parameter.

Kernel Parameters Parameter range

DTW γ γ ∈ {10−6, 10−5, · · · , 101},
AR γ, ξ, p γ ∈ {10−6, 10−5, · · · , 101}, ξ ∈ {0.1, 0.2, · · · , 0.9},

p ∈ {1, 2, · · · , 10}
Fisher state state ∈ {1, 2, · · · , 10}

RV, FisherRV, GMMRV, SamplingRV γ, λ γ ∈ {10−6, 10−5, · · · , 101}, λ ∈ {10−5, 10−4, · · · , 101}

Then,

P ((s(t+ 1) | s(1..t)) = P ((s(t+ 1) | x(t))

= (2πσ2)−O/2 exp

{
−∥s(t+ 1)−Wx(t)− a∥2

2σ2

}
,

where s(1..t) denotes the time series s(1), s(2), · · · , s(t).
Slightly abusing mathematical notation, the model like-

lihood p(s(1..ℓ)) given the time series s of length ℓ can be
written as follows:

p(s(1..ℓ)) =

ℓ∏
t=1

P (s(t) | s(1 · · · t− 1))

=

ℓ∏
t=1

(2πσ2)−O/2 exp

{
−∥s(t)−Wx(t− 1)− a∥2

2σ2

}
.

Therefore, the partial derivative of log likelihood log p(s(1..ℓ))
can be obtained as

U =
∂ log p(s(1..ℓ))

∂W

=

ℓ∑
t=1

(s(t)− a) x(t− 1)T −Wx(t− 1)x(t− 1)T

σ2
.

Note that the partial derivative U is an (O ×N) matrix.
The “practical” Fisher kernel for two time series si and sj

with scores Ui and Uj , respectively, can be formulated as

K(si, sj) =
O∑

o=1

N∑
n=1

(Ui ◦ Uj)o,n,

where ◦ is Hadamard (element-wise) product. In practice,
the noise variance σ2 can be estimated from the original time
series and the output of the fitted readout model.

4. EXPERIMENTAL STUDIES
This section presents experimental results of the proposed

kernels, RV, GMMRV, SamplingRV, FisherRV, and other
existing time series kernels, including autoregressive (AR)
kernel, Fisher kernel with hidden Markov models (Fisher),
and dynamic time warping based kernel (DTW ).
All hyperparameters, such as the kernel width γ and or-

der p in the AR kernel, number of hidden states in the
HMM based Fisher kernel etc. have been set by 5-fold
cross-validation on the training set. The search ranges for
parameters of each algorithm are detailed in Table 1.
In the reservoir based kernels, we used a fixed topology

reservoir (cycle with jumps) [22] for all data sets: N = 100,
15 jumps. The cycle weight rc, jump weight rj , input weight
ri and readout were obtained on the training set. The read-
out mapping was trained via ridge regression (hyperparam-
eter λ tuned via cross-validation). To evaluate the readout

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

order 10 order 20 order 30

Figure 2: Illustration of three NARMA sequences
with different orders (10, 20 and 30).

model distance in the SamplingRV kernel, except for long
time series in the PEMS data set (Section 5), the boot-
strapped time series were 5 times longer than the original
ones1.

The implementation ofAR kernel was obtained fromMarco
Cuturi’s website2. Fisher kernel was obtained Maaten’s
website3.

We employ a well-known, widely accepted and used imple-
mentation of SVM – LIBSVM [3]. In LIBSVM, we use cross
validation to tune the regularization parameter C. After
model selection using cross-validation on the training set,
the selected model class representatives were retrained on
the whole training set and were evaluated on the test set.
Multi class classification is performed via the one-against-
one strategy (default in LIBSVM).

4.1 Synthetic Data
We employed three NARMA time series models of orders

10, 20 and 30, given by:

s(t+1) = 0.3s(t)+0.05s(t)

9∑
i=0

s(t−i)+1.5u(t−9)u(t)+0.1,

s(t+ 1) = tanh(0.3s(t) + 0.05s(t)

19∑
i=0

s(t− i) +

+1.5u(t− 19)u(t) + 0.01) + 0.2,

1m = 5 |s|, where |s| indicates the length of the time series.
2http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/
AR.html
3http://homepage.tudelft.nl/19j49/Software.html
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Figure 4: Illustration of the performance of com-
pared kernels with different noise levels.

s(t+1) = 0.2s(t)+0.004s(t)

29∑
i=0

s(t−i)+1.5u(t−29)u(t)+0.201,

where s(t) is the output at time t, u(t) is the input at time t.
The inputs u(t) form an i.i.d stream generated uniformly in
the interval [0, 0.5). We use the same input stream for gener-
ating the three long NARMA time series (60,000 items), one
for each order. The three sequences are illustrated in Figure
2. The time series are challenging due to non-linearity and
long memory.
For each order, the series of 60,000 numbers is partitioned

into 200 non-overlapping time series of length 300. The first
100 time series for each order are used as training set, and
the other 100 time series form the test set.
As apparent from Figure 2, distinguishing the three NARMA

models using the original time series may be challenging.
However, when viewing the time series through the model
space of fitted reservoir models, the three time series classes
become separated, as illustrated in Figure 3 showing 2-dimensional
multi-dimensional scaling4 representation of the pair-wise
readout model distances.

4Multidimensional scaling (MDS) aims to preserve the pair-
wise distance between points, which is suitable to preserve
the model distance for visualization.

In order to study robustness of the kernels we corrupt the
time series with additive Gaussian noise (zero mean, stan-
dard derivation varies in [0.1,0.5]). Figure 4 shows the test
set classification accuracy against the noise level. As a base-
line we also include results by SVM operating on the time
series directly (300-dimensional inputs) - NoKernel. The
RV reservoir based kernel outperforms the baseline and the
other time series kernels.

4.2 Benchmark Data

Table 2: Description of the data sets
Dataset Length Classes Train Test
Symbols 398 6 25 995
OSULeaf 427 6 200 242
Oliveoil 570 4 30 30
Lighting2 637 2 60 61

Beef 470 6 30 30
Car 576 4 60 60
Fish 463 8 175 175
Coffee 286 2 28 28
Adiac 176 37 390 391
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Figure 5: Comparison of generalization accuracy
(top) and CPU time (bottom) in seconds of RV, AR,
DTW and Fisher kernels on InlineSkate data set.

We used 9 data sets from UCR Time Series Repository
[14]. Each data set has already been split into training and
test sets (see Table 2).
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Table 3: Comparison of DTW, AR, Fisher (with hidden Markov models), RV, FisherRV, GMMRV, and
SamplingRV kernels on nine benchmark data sets by accuracy. The best performance for each data set has
been boldfaced.

Dataset DTW AR Fisher RV FisherRV GMMRV SamplingRV
Symbols 94.77 91.15 94.42 98.08 95.96 97.31 95.77
OSULeaf 74.79 56.61 54.96 69.83 64.59 56.55 63.33
Oliveoil 83.33 73.33 56.67 86.67 83.33 84.00 90.00
Lighting2 64.10 77.05 64.10 77.05 75.41 78.69 80.33

Beef 66.67 78.69 58.00 80.00 68.00 79.67 86.67
Car 58.85 60.00 65.00 76.67 72.33 78.33 86.67
Fish 69.86 60.61 57.14 79.00 74.29 78.00 85.71
Coffee 85.71 100.00 81.43 100.00 92.86 96.43 100.00
Adiac 65.47 64.45 68.03 72.63 71.61 74.94 76.73

Table 4: CPU Time (in seconds) of DTW, AR, Fisher (with hidden Markov models), RV, FisherRV, GMMRV,
and SamplingRV kernels on nine benchmark data sets.

Dataset DTW AR Fisher RV FisherRV GMMRV SamplingRV
Symbols 1,318 2,868 2,331 202 236 374 808
OSULeaf 6,030 1,375 3,264 98 111 186 447
Oliveoil 295 113 832 11 19 27 43
Lighting2 918 151 1,143 33 46 61 95

Beef 107 54 87 10 17 23 40
Car 679 442 902 27 42 50 84
Fish 3,353 495 1,998 81 96 159 286
Coffee 21 25 145 3 3 7 19
Adiac 550 8131 1,122 201 213 394 699

Table 3 reports performance of the time series kernels on
the benchmark data in terms of test set classification accu-
racy. SamplingRV kernel outperforms the other kernels on
7 data sets; RV is superior on 2 data sets and DTW outper-
forms the other kernels on 1 data set. In terms of compu-
tation time5, the reservoir kernels are clearly the most effi-
cient. Table 4 shows the average CPU time taken to evaluate
the kernels in seconds6. SamplingRV kernel is obviously the
most expensive among the reservoir kernels. Still, it is faster
than its state-of-art competitors.
To further compare the computational effectiveness of the

kernels, a relatively large data set, InlineSkate from UCR
time series repository, has been employed. The data set con-
tains 650 time series (100 training, 550 test) of length 1882,
belonging to 7 classes. The influence of time series length
on the classification performance and computational com-
plexity was studied by considering from each training time
series only the first ℓ elements, with ℓ growing from 300 to
1800 in increments of 300. The resulting accuracy and CPU
times are shown in Figure 5. Relatively to the other kernels,
the reservoir RV kernel has the lowest computational cost,
while achieving competitive performance.

4.3 Multivariate Time Series
Data sets used so far involved univariate time series. In

this section, we perform classification on three multivari-
ate time series - Brazilian sign language (Libras), handwrit-
ten characters and Australian language of signs (AUSLAN ).
Unlike the other data sets, the handwritten characters and

5The computational environment is Windows XP with Intel
Core 2 Duo 1.66G CPU and 4G RAM.
6We do not record the cross validation time for SVM.

Table 5: Summary of multivariate (variable length)
time series classification problems.

Dataset dim length classes train test
Libras 2 45 15 360 585

handwritten 3 60-182 20 600 2258
AUSLAN 22 45-136 95 600 1865

AUSLAN data sets contain time series of variable length.
Following [5] (previous AR kernel study) we split the data
sets into training and test sets as detailed in Table 5.

The results are shown in Figure 6. SamplingRV is supe-
rior on all three data sets. RV kernel is outperformed by
DTW and AR kernels on Libras and AUSLAN data sets,
respectively. In terms of CPU time, RV kernel usually uses
the least and AR consumes the most computation time.

5. ON-LINE RESERVOIR KERNEL
Reservoir readouts can be trained in an on-line fashion

using Recursive Least Squares (RLS). In RLS, the readout
weights W are recursively updated at every time step t:

z(t) =
Λ(t− 1) x(t)

xT (t) Λ(t− 1) x(t) + ς

Λ(t) = ς−1(Λ(t− 1)− z(t) xT (t) Λ(t− 1))

W (t) = W (t− 1) + [s(t+ 1)− y(t)] zT (t),

where z(t) stands for the innovation vector; s(t+1) and y(t)
correspond to the desired (next-item prediction) and calcu-
lated (readout) output; Λ(t) is the error covariance matrix.
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Figure 6: Comparison of generalization accuracy
(top) and CPU time (bottom) in seconds of AR,
Fisher, DTW, RV and SamplingRV kernels on 3
multivariate time series.

‘Forgetting parameter’ 0 < ς < 1 is usually set to a value
close to 1.0. In this work ς is set by cross validation.
This enables us to construct and refine reservoir kernels

on-line, as more and more data become available. This
can be particularly convenient in situations where individual
items to be classified (time series) are not fixed, but appear
in an on-line manner.
We illustrate this approach on a set of long series PEMS-

SF (UCI machine learning repository) with 440 time series
of length 138,672. The data reports the occupancy rate
of different car lanes of San Francisco freeways within 15
months. The generalization performance of on-line RV ker-
nel is reported in Figure 7. As expected, the generalization
improves monotonically with increasing amount of data. On
full data RV kernel achieves 86.13% accuracy. This com-
pares favorably with the best reported performance levels
(82% ∼ 83%) [5] among a variety of time series kernels, such
as AR, global alignment kernel [7], splines smoothing kernel
[16] and Bag of vectors kernel [10].

6. DISCUSSION AND CONCLUSION
In this paper efficient kernels have been proposed to tackle

the challenges in time series classification through kernel ma-
chines. Instead of constructing the kernel directly in the
original data space, this paper introduces a“kernel in the de-
terministically constructed reservoir model space” that rep-
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Figure 7: Generalization accuracy of on-line RV ker-
nel on PEMS time series.

resents each time series as a reservoir model with the com-
mon dynamic part.

We demonstrated the application of the distance defini-
tion in the (function) model space of linear readout models.
The model distance is different from the Euclidean distance
of the readout parameters, indicating that more importance
is given to the ‘offset’ than ‘orientation’ of the readout map-
ping. We also estimated the model distance by using either
sampling methods or a Gaussian mixture model when the
reservoir state distribution is non-uniform.

The proposed kernels were compared with other competi-
tors on synthetic and benchmark data sets. The results con-
firm the effectiveness of reservoir based kernels. The on-line
reservoir kernels proposed in Section 5 can process extremely
long time series efficiently.

In general, the closed form simple reservoir (RV ) kernel is
the most efficient7. However, it is obtained under the (rather
unrealistic) assumption of uniform state distribution and the
tolerable increase in computational cost by the SamplingRV
kernel is well offset by the increase in the classification accu-
racy. The GMMRV kernel can also be analytically obtained
via approximating the state distribution by a Gaussian mix-
ture. Of course, the quality of this kernel depends on how
well the state distribution is captured by the Gaussian mix-
ture model used.

It is interesting that the Fisher kernel based on the reser-
voir model achieves better performance than the Fisher ker-
nel based on the HMM model with continuous (Gaussian
distributed) emissions. The principal difference between the
reservoir model and HMM is that in the reservoir model
the state space is infinite (uncountable) with deterministic
input-driven dynamics. In HMM the state space is finite
and latent, with probabilistic state transitions.

In conclusion, reservoir based time series kernels can achieve
superior performance in terms of both generalization accu-
racy and computational time, without the need for explicit
specification of the parameterized model class for the time
series data. This is potentially of great benefit in cases of
very large data sets of long time series where the underly-
ing parametric model is unknown. Reservoir kernels stand
and fall on the ability of the particular dynamic reservoir to

7It is worth noting that there also exist fast implementations
of non-kernelized variations of DACO and global alignment
kernels.
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generate a rich pool of dynamical features sufficiently repre-
senting the variety of time series occurring in a given task. If
the echo state property - a cornerstone of reservoir modelling
- is not an appropriate modelling assumption, the reservoir
kernels cannot be expected to perform well. However, as
has been demonstrated numerous times, for most real-world
data the fading memory assumption (encapsulated in the
echo state property) is appropriate.
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