
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014 451

Pre-Silicon Bug Forecast
Qi Guo, Tianshi Chen, Yunji Chen, Rui Wang, Huanhuan Chen, Weiwu Hu, and Guoliang Chen

Abstract—The ever-intensifying time-to-market pressure im-
poses great challenges on the pre-silicon design phase of hard-
ware. Before the tape-out, a pre-silicon design has to be thor-
oughly inspected by time-consuming functional verification and
code review to exclude bugs. For functional verification and code
review, a critical issue determining their efficiency is the alloca-
tion of resources (e.g., computational resources and manpower)
to different modules of a design, which is conventionally guided
by designers’ experiences. Such practices, though simple and
straightforward, may take high risks of wasting resources on bug-
free modules or missing bugs in buggy modules, and thus could
affect the success and timeline of the tape-out. In this paper,
we propose a novel framework called pre-silicon bug forecast
to predict the bug information of hardware designs. In this
framework, bug models are built via machine learning techniques
to characterize the relationship between design characteristics
and the bug information, which can be leveraged to predict
how bugs distribute in different modules of the current design.
Such predicted bug information is adequate to regulate the
resources among different modules to achieve efficient functional
verification and code review. To evaluate the effectiveness of
the proposed pre-silicon bug forecast framework, we conducted
detailed experiments on several open-source hardware projects.
Moreover, we also investigate the impacts of different learning
techniques and different sets of characteristic on the performance
of bug models. Experimental results show that with appropriate
learning techniques and characteristics, about 90% modules
could be correctly predicted as buggy or clean and the number
of bugs of each module could also be accurately predicted.

Index Terms—Bug forecast, code review, design characteristics,
functional verification, machine learning.

Manuscript received May 1, 2013; revised July 7, 2013 and August 24,
2013; accepted October 7, 2013. Date of current version February 14,
2014. This work was supported in part by the Strategic Priority Research
Program of the Chinese Academy of Sciences under Grant XDA06010401-
02, in part by the National Natural Science Foundation of China un-
der Grant 61100163, Grant 61003064, Grant 61222204, Grant 61050002,
Grant 61173006, Grant 61133004, and Grant 61173001, in part by the
National S&T Major Project of China under Grant 2009ZX01028-002-003,
Grant 2009ZX01029-001-03, and Grant 2010ZX01036-001-002, and in part
by the National 863 Program of China under Grant 2012AA012202. The work
of H. Chen was supported by the One Thousand Young Talents Program. This
paper was recommended by Associate Editor K. Chakrabarty (Corresponding
author: T. Chen).

Q. Guo, T. Chen, Y. Chen, and W. Hu are with the State Key Labora-
tory of Computer Architecture, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, 100190, China (e-mail: joyguoqi@gmail.com;
chentianshi@ict.ac.cn; cyj@ict.ac.cn; hww@ict.ac.cn).

R. Wang is with Anhui USTC iFLYTEK Company, Ltd., Heifei, 230088,
China (e-mail: wrui1108@mail.ustc.edu.cn).

H. Chen and G. Chen are with the University of Science and Tech-
nology of China, Heifei, 230027, China (e-mail: hchen@ustc.edu.cn;
glchen@ustc.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2288688

I. Introduction

A. Motivation

HARDWARE designs continue to grow in complexity,
and it has been a great challenge to guarantee the

successful tape-out of a hardware design under the ever-
intensifying time-to-market pressure. During pre-silicon de-
sign cycles, functional verification and code review (or code
inspection) are two critical stages to detect functional bugs.
When verifying STMicroelectronics’ processor families, func-
tional verification and code review exposed 74% and 23%
bugs, respectively [23]. When verifying Intel’s Pentium 4
processor, functional verification and code review exposed
80% and 20% bugs, respectively [4].

Functional verification and code review are so important
that designers are willing to invest considerable resources
(e.g., manpower or computational resources) on them. How-
ever, investing more resources does not necessarily lead to ex-
posures of more bugs, especially when they are not adequately
regulated among different modules of a large-scale hardware
design. Conventionally, resource allocation largely depends on
personal experiences of designers. For example, modules with
complex logics or written by inexperienced engineers should
be allocated more computational resources in functional
verification, and may also be carefully reinspected in code
review. Strongly relying on experiences of designers, such
ad-hoc rules may take a high risk of wasting resources on bug-
free modules, or missing bugs in buggy modules. Although
coverage-centric verification (e.g., coverage-directed [11], [38]
and coverage-oriented verification [13], [14]) may alleviate the
above burden, even 100% coverage does not indicate a module
to be bug-free, because coverage models (especially the widely
used functional coverage model) still rely heavily on designer’s
experiences, and typically only cover a subset of functional
components that are thought to be most vulnerable in
a module.

B. Our Idea and Contributions

The above challenges can be significantly alleviated by
exploring bug information of a pre-silicon design in a smart
way. To be specific, if we are able to know how bugs distribute
in different modules of the design, then we can adequately
regulate resources spent on different modules to achieve a
successful and efficient pre-silicon design phase. In line with
the above thinking, we propose a bug forecast framework for
pre-silicon design.

Before introducing the pre-silicon bug forecast framework,
we first take an example of how it benefits functional verifi-
cation and code review. Let us consider a pre-silicon design
consisting of three modules, m1, m2, and m3, as illustrated in

0278-0070 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



452 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Fig. 1. How predicted bug information assists verification.

Fig. 1. According to the predicted bug information, m1, m2,

and m3 are suspected to have five, three, and two bugs, respec-
tively. When arranging the initial verification plan, the module
suspected to have the largest number of bugs (m1 in Fig. 1)
shall be allocated the largest amount of verification resources.
As verification proceeds, once all suspected bugs in a module
have been exposed, the verification resources allocated to the
module shall be progressively transferred to modules with
unexposed bugs. Once there is no difference between exposed
and predicted numbers of bugs, we can conclude that the
verification is complete if the bug predictor is perfect. For code
review of a pre-silicon design, it is even more straightforward
to leverage results of bug forecast. In short, one will pay
special attention to modules that are predicted to be buggy.
In fact, a similar methodology has already been utilized in
code review of large-scale software systems of Microsoft [10]
and Google [1], which significantly improves the maintenance
efficiency and quality of their commercial softwares. The
successful applications in software development clearly show
potential benefits of bug forecast in hardware design.

Here, we briefly explain the pre-silicon bug forecast frame-
work proposed in this paper. In a nutshell, pre-silicon bug
forecast consists of two steps. At the first step, bug models
are constructed via machine learning techniques to charac-
terize the relationship between design characteristics and bug
information, where design characteristics are grouped to three
categories, including code characteristics about the code com-
plexity, history characteristics about the changing history of
the design, and organization characteristics about the organi-
zation of developers. The training process leverages historical
data collected from previous revisions of the design to obtain
bug models. After training, the bug models are ready to predict
the bug information with respect to each module of the current
design. To evaluate the effectiveness of proposed framework,
we conduct detailed experiments on several open-source hard-
ware projects. Experimental results show that with appropriate
learning techniques and characteristics, about 90% modules
could be correctly predicted as buggy or clean, and the number
of bugs of each module can also be accurately predicted.

The main contributions of this paper can be summarized as
follows. First, we propose a pre-silicon bug forecast method-
ology to accurately predict bug information of a design based
on its code/history/organization characteristics. Second, we
empirically reveal that choices of machine learning technique
and design characteristics may have impacts on the accuracy of
pre-silicon bug forecast, and suggest trying multiple learning
techniques for building bug models in practice, and then
use the model that performs the best on the validation set

Fig. 2. Bug information of the current revision is predicted by the bug
models built from the reference revision.

for further prediction. At last, we propose a bug-oriented
methodology that adopts pre-silicon bug forecast to facilitate
functional verification and code review.

The rest of this paper proceeds as follows. Section II
presents the pre-silicon bug forecast framework. Section III
provides experimental results on several open-source projects.
Section IV empirically studies how different sets of design
characteristics impact the accuracy of pre-silicon bug forecast.
Section V presents the results of cross-revision prediction.
Section VI introduces bug-oriented methodology for functional
verification and code review. Section VII discuss threats and
potential extension of our approach. Section VIII reviews
related work, and Section IX concludes the whole paper.

II. Pre-Silicon Bug Forecast

A. Overview

Pre-silicon bug forecast consists of two steps. At the first
step, machine learning techniques are utilized to train bug
forecast models with historical data collected from a previous
revision (e.g., a revision that is one year before the current
revision) of the pre-silicon design, and this revision is called
the reference revision. At the second step, the bug information
with respect to each module of the current revision can be
predicted by these trained bug forecast models.

Historical data utilized at the first step of bug forecast are
collected from the reference revision, which falls into two
parts. The first part of data contains design characteristics with
respect to the reference revision, which are extracted from
three main repositories. Fig. 2 depicts the three repositories.
The first repository is the source code snapshots, which are
usually stored in the version control systems (VCS), such
as SVN1 and Git.2 The second repository is the changing
log repository of VCS, and it always contains additional
information (e.g., comments on revised modules) for each
committed revision. The third repository is the bug repository
that should contain the detailed information of each detected
bug (e.g., bug ID, bug severity, bug description, etc.).

The second part of historical data contains bugs that are
detected from the reference revision, which are also extracted

1Available at http://subversion.tigris.org.
2Available at http://git-scm.com.



GUO et al.: PRE-SILICON BUG FORECAST 453

Fig. 3. Framework of pre-silicon bug forecast methodology.

from the bug repository. The extracted bug information,
together with the stated design characteristics, constitutes the
entire training set for constructing bug forecast models.

B. Framework
The overall framework of pre-silicon bug forecast is il-

lustrated in Fig. 3, which consists of five stages, i.e., la-
beling historical modules, collecting module characteristics,
characteristic refining, building bug models (learning), and
prediction.

1) Labeling Historical Modules: The label of a module is
the bug information (e.g., whether buggy or not, the number of
bugs) of the module, and labeling modules refers to the process
that collects bug information for modules of the reference
revision.

2) Collecting Module Characteristics: The bug occurrence
of a module relates to different factors, including design
complexity, revision interval, experiences of engineers, and so
on. In this paper, we specify several module characteristics to
quantify such factors, and collect them from hardware repos-
itories, i.e., source code snapshots, changing log repository,
and bug repository.

3) Characteristic Refining: Module characteristics manu-
ally specified at the last step are based on experiences, and
may be mixed up with redundant and/or noisy characteristics.
To remove such characteristics, we use a genetic algorithm to
select informative characteristics that are most closely related
to bug occurrence. After refining module characteristics, we
obtain the training set for building bug models.

4) Building Bug Models (Learning): We use various learn-
ing techniques, such as naive Bayesian [25] and support vector
machines (SVMs) [37], to build classification or regression
models based on the training set.

5) Prediction: With bug models, the bug information
(e.g., whether buggy or not, the number of bugs) with respect
to modules of the current revision can be predicted.

Details of each stage are presented in the rest of this section.

C. Labeling Historical Modules

The label of a historical module is the bug information of
that module, which is collected from hardware repositories.

Although there have been several automatic algorithms
(e.g., SZZ algorithm [33]) to collect labels of functions for
software designs, they are not applicable to hardware de-
signs, because the bug tracking systems required by these
algorithms are still not widely deployed in hardware de-
signs. In the absence of a detailed bug tracking system,
we follow the basic idea of the approach proposed in [35]
to label modules, which only requires inspecting the VCS
changing logs.

More specifically, the labeling process has the following
steps.

1) For all intermediate revisions between the reference
revision and the current revision, we scan their corre-
sponding SVN changing logs via regular expression as
bug|fix to determine the bug-fix revisions that contain
committed changes fixing at least one bug.

2) For each bug-fix revision identified at Step 1, we execute
the diff command to compare it with its preceding
revision on the changed modules to locate the modified
chunks. For each modified chunk, by executing blame
command supported by SVN, we identify the bug-
introducing revision that brings this buggy code chunk
to the module.

3) For each bug-introducing revision identified at Step 2, if
it is committed before the reference revision, we link the
introduced bug to the module in the reference revision
according to the SVN logs, and the number of bugs
of this module is increased by one. Fig. 4 shows that
modules in the reference revision are only linked with
the bugs that are introduced before the reference revision
and fixed after the reference revision.

4) Once all bug-introducing revisions have been processed,
the number of bugs with respect to each module in the
reference revision can be identified.

D. Collecting Module Characteristics

There are, in general, three categories of module character-
istics that may be decisive to bug occurrence: code character-
istics, history characteristics, and organization characteristics.



454 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

Fig. 4. How to link fixed bugs to modules in the reference revision. (a) If
a fixed bug is introduced after the reference revision, it should be ignored.
(b) If a bug is introduced before the reference revision and fixed after the
reference revision, the number of bugs in the related module of the reference
revision should be increased by one.

TABLE I

Code Characteristics of Module

1) Code Characteristics: It is natural that a more complex
module is more vulnerable to bugs. A straightforward way
of measuring the design complexity of a hardware module is
to use code characteristics. In our study, code characteristics
are chosen independent of specific hardware description lan-
guages, which is listed in Table I.

2) History Characteristics: History information, such as
past changes, fixes, bugs, and so on, may also have significant
impacts on bug occurrence. In the domain of software engi-
neering, history information has already been demonstrated to
be helpful in predicting software defects [20]–[22], [26], [31],
[42]. Hence, the proposed pre-silicon bug forecast framework
also utilizes history information. Table II lists 11 history
characteristics of hardware modules considered in our study.
The first characteristic is the number of changes on all previous
revisions, which is calculated with the diff command that
compares the changed code blocks between two consecutive
revisions. The second characteristic is the number of bug-fix

TABLE II

History Characteristics in Module Level

changes, which are introduced for fixing specific bugs in
the bug-fix revisions. Such bug-fix revisions are identified
from the initial revision to the reference revision. The third
characteristic is the number of fixed bugs, and it is collected
by manually inspecting the source code and the SVN changing
logs, which is very similar to the labeling process introduced
in Section II-C. The main difference is that the fixed bugs are
identified from the initial revision to the reference revision,
while the labeled bugs are identified from the reference revi-
sion to the current revision. The next four characteristics are
about the time interval between two revisions, and these char-
acteristics are extracted from the changing log repository. The
last four characteristics are about the added and deleted lines of
code between two consecutive revisions, which are extracted
from both source code snapshots and changing log repository.

3) Organization Characteristics: Organization characteris-
tics depict the organization profile of developers of a hardware
project, which may also be crucial to bug occurrence. Actually,
Hata et al. [20] proposed several relatively easy-to-collect
organization characteristics for software projects. Following
their methodology, we specify four organization characteristics
as listed in Table III. The first characteristic is the number
of developers that contribute to a module, and the other
three characteristics are closely related to the ownership [5],
[30]. The ownership of a developer for a specific module is
defined as the ratio of the number of changes committed by
the developer to the total number of committed changes for
that module. If the ownership of a developer is less than a
predefined threshold (e.g., 20%), the developer is considered
a minor developer, otherwise, a major developer.

E. Characteristics Refining

The collected characteristics, in general, influence the bug
occurrence of a module from different aspects, but may still
be mixed up with redundant and/or noisy characteristics.
To remove impacts of such characteristics on bug mod-
els, we consider using feature selection techniques to select
the most informative characteristics. Compared with feature



GUO et al.: PRE-SILICON BUG FORECAST 455

TABLE III

Organization Characteristics in Module Level

construction techniques, such as principal component analysis
(PCA), which reduce the dimension of feature vector by
mixing the original features, the feature selection techniques
directly select subsets of features that are useful for building
a good predictor.

One of the most critical steps in feature selection techniques
is to define how to explore feature subset space. In this
paper, we decide to employ genetic algorithms (GA) [15]
to efficiently explore the space, since GA is a widely used
search strategy that has prominent capability in solving global
optimization problems.

GA simulates the process of natural evolution to solve
various optimization problems. More specifically, GA starts
from an initial population that typically contains randomly
generated solutions (a solution is represented as a binary
string). For each string in the population, the corresponding
fitness is evaluated via fitness function. Based on the fitness
value, some strings are selected to produce the next population.
The new population is typically produced by two kinds of
operators, that is, crossover that crosses over two strings with
a specific probability to form a new string, and mutation that
mutates each position in the string with a specific probability.
Given the newly generated population, the stop criterion (e.g.,
overall fitness cannot be improved) will be tested to decide
whether or not terminate the evolution process.

In our problem, all 28 characteristics are encoded as a binary
string, where 1-bit represents that the corresponding charac-
teristic is selected and 0-bit represents that the corresponding
characteristic is not selected. During evolution, the correlation
between individual characteristics and bug occurrence, along
with the intercorrelation among characteristics, is taken into
account by the fitness function [18]. Under the fitness function,
high fitness scores will be assigned to solutions with some
characteristics that are highly correlated with the class label,
yet uncorrelated with each other. More specifically, the fitness
function is formally defined as

fitness(s) =
krcf√

k + k(k − 1)rff

(1)

where s represents a feature subset consisting of k features, rcf

is the average feature-class correlation, and rff is the average
feature-feature correlation. Once the fitness of all individuals
in one generation is the same (i.e., the evolution process
converges), or the total number of generations reaches the pre-
defined threshold, the GA stops and the selected characteristics
are output. Besides, once the final solutions (feature subsets)
have the same fitness, we simply take one from such solutions.

In practice, the importance of different characteristics may
vary in different projects. Thereby, the characteristic refining
process should be independently conducted for each project.

F. Learning and Prediction

Labels and characteristics of historical modules extracted
from hardware repositories can be treated as the training data
to build classification and regression bug models. Here, we
introduce such bug models in the context of pre-silicon bug
forecast.

1) Classification-Based Bug Model: It is an important task
to identify whether a module contains bugs in pre-silicon bug
forecast, and we formulate it as a traditional classification
problem from the machine learning perspective. Specifically,
we first obtain a set of training data D with l samples as
D = {(zi, yi)|zi ∈ Rm, yi ∈ {+1, −1}, i = 1, . . . , l}, where
zi is a vector of m selected module characteristics zi =
{fi1, . . . , fim}, and yi is the label indicating whether the ith
module contains bugs. Based on the value of the label yi, the
ith module could be classified into two categories: +1 indicates
that the module contains at least one bug (e.g., buggy), and
-1 indicates that the module does not contain any bugs (i.e.,
clean). Once the classification model is built from training data
in the above form, it can be used to predict the label of a new
module.

2) Regression-Based Bug Model: In addition to predicting
whether a module is buggy, we also want to predict the number
of potential bugs in a module, which can be formulated as
a regression problem. In this regression problem, the form
of training data with l samples can be formulated as D =
{(zi, yi)|zi ∈ Rm, yi ∈ R, i = 1, . . . , l}, where zi has the same
meaning as in classification model, and yi indicates the number
of bugs of the ith module. Then, in prediction, yi corresponds
to the predicted number of bugs for the ith module in the
current revision by the trained regression model.

III. Empirical Evaluation

In this section, we evaluate the effectiveness of the pre-
silicon bug forecast framework over several open-source hard-
ware designs.

A. Datasets

We employ five open-source hardware designs in our exper-
iments, where four designs (ethmac, openMSP430, or1200,
vga lcd) are from OpenCores,3 and one (non router) is
an open-source project of Stanford University.4 They cover
different application fields, such as processors (or1200), com-
munication controller (ethmac), video controller (vga lcd)
and so on. Table IV summarizes some information about
the five designs, including the total number of revisions as
well as the reference revision considered in our study. Taking
ethmac as an example, the reference revision is 301, which
means that the code/history/organization information before

3Available at http://www.opencores.org.
4Available at https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Project/

RepositoryAccess.



456 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

TABLE IV

Summary of the Studied Projects

revision 301 is extracted from the repositories and organized
as design characteristics to construct bug models, and the bug
information after revision 301 is treated as labels for checking
the effectiveness of the bug models.

B. Selected Characteristics

Before using machine learning techniques to build bug
models for each projects, GA is applied to select the most
informative module characteristics. Parameter settings of GA
are as follows. The population size is set to 100, the crossover
probability is set to 0.7, and the mutation probability is set to
0.02.

The selected module characteristics for each project are
listed in Table V, from which we observe that module char-
acteristics selected for different projects are quite different.
However, there are still common characteristics shared by dif-
ferent projects. For example, characteristic PortNum appears
in the characteristic sets of ethmac, noc router, and vga lcd,
and Chgs appears in the characteristic sets of ethmac and
noc router, which suggests that such characteristics are critical
indicators of bug occurrence. Moreover, all organization char-
acteristics have been eliminated by the GA, which suggests
that they are not closely related to the bug occurrence in the
evaluated projects.

C. Evaluations of Bug Models

We built both classification-based and regression-based bug
models for the five designs, and evaluate the prediction accu-
racies of the models.

1) Evaluation Techniques: Before introducing the exper-
imental results, we present the accuracy metrics utilized in
our study. When querying a classification-based bug model
whether a module is buggy, there are four possible outcomes,
which are shown in Table VI [32]: 1) the module is buggy and
been correctly predicted to be buggy (true positive, TP); 2) the
module is clean but been incorrectly predicted to be buggy
(false positive, FP); 3) the module is clean and been correctly
predicted to be clean (true negative, TN); and 4) the module
is buggy but been incorrectly predicted to be clean (false
negative, FN). The overall accuracy of a classification-based
bug model can be formulated by

Accuracy =
#TP + #TN

#TP + #FP + #TN + #FN
(2)

which can simply be interpreted as the percentage of correctly
classified modules. Sometimes, the number of clean modules

can be much larger than the number of buggy modules, and
the overall accuracy of a bug model can easily be very high.
In this case, it would be more desirable to know how well the
bug model predicts buggy modules. Thereby, we also employ
metrics called precision and recall in our evaluations

Precision(Buggy) =
#TP

#TP + #FP

Recall(Buggy) =
#TP

#TP + #FN

where the precision on buggy modules is the percentage of
correctly predicted buggy modules in all predicted buggy
modules, and the recall on buggy modules is the percentage
of correctly predicted buggy modules in all actual buggy
modules. Based on precision and recall, the F-measure can
be defined as

F − measure(Buggy) =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

which could be interpreted as the weighted average of preci-
sion and recall. In a similar manner, the precision, recall, and
F-measure on clean modules can also be evaluated.

For regression-based bug models, we utilize root mean
squared error (RMSE) to quantify the prediction error

RMSE =

√∑n
t=1(yt − ŷt)2

n
(4)

where yt and ŷt are the actual and predicted #bug for module t,
respectively.

In our experiments, we use ten-fold cross validation [39] to
reduce stochastic effects brought by training and testing data.
To be specific, the entire training set is randomly divided into
ten subsets. Then, one subset is selected as the test set and the
other nine subsets are taken as the training set for building
a bug model. This procedure is repeated ten times on each
subset. Finally, performance of all bug models is averaged as
the evaluated results.

2) Classification Results: In our study, the learning tech-
niques used for constructing classification models are artificial
neural networks (ANN) [25], naive Bayesian (NB) [25], deci-
sion tree (J48) [25], random forest (RF) [6], and SVMs [37].
For ANN, we set two hidden layers, the first layer contains
16 neurons and the second contains four neurons. Besides,
the momentum is 0.5, the learning rate is 0.001, and the
learning epoch is 30 000. For SVM, we adopt grid search as
suggested by Chang et al. [7] to find promising parameters for



GUO et al.: PRE-SILICON BUG FORECAST 457

TABLE V

Selected Characteristics for Evaluated Projects via GA

TABLE VI

Classification Outcomes

each evaluated project. Table VII compares different learning
techniques over different projects, where the best result on
each classification metric (e.g., accuracy, precision, and recall)
is marked in bold. Regarding the overall accuracy, SVM
performs the best among evaluated learning techniques for
all evaluated projects. In addition to the overall accuracy,
we also present the classification results on buggy and clean
modules. For some projects, such as noc router and or1200,
the bug models perform better on clean modules than on
buggy modules. The reason is that the clean modules are much
more than the buggy modules in these projects. It is possible
to employ advanced learning techniques [36] to handle such
imbalanced data set, which should be left as our future work.

3) Regression Results: We employ ANN, M5P [29],
REPTree [25], and SVM to build regression-based bug mod-
els. For each learning technique, we evaluate the prediction
performance via ten repeated experiments for each learning
technique. After that, we estimate the mean and standard devi-
ation of the ten predicted results. Fig. 5 compares the learning
techniques over all evaluated projects, where the mean and
standard deviations of RMSE of bugs models are presented.
We can see that SVM performs the best among all evaluated
learning techniques, e.g., the RMSE of ANN, M5P, REPTree,
and SVM on the project openMSP430 are 0.542, 0.732, 0.914,
and 0.488, respectively. Besides, the low standard deviation
of the predicted results of SVM also demonstrates the built
bug models are stable to forecast bug information. Neverthe-
less, experiences gained on the evaluated projects (i.e., SVM
outperforms other learning techniques on evaluated projects)
may not be directly generalized to other projects due to no-
free-lunch theorem (a famous theory of machine learning and
optimization, which states that no algorithm can universally
outperform another on all problems) [40]. Thus, we highly
recommend trying multiple learning techniques for building
bug models, and choose the model that performs the best on
the validation set for further prediction in practice.

Fig. 5. Regression results (RMSE, the smaller the better) of bug models
constructed by various learning algorithms.

In addition to reporting the average RMSE of each com-
pared method, we further categorize the modules into different
classes based on their number of bugs and list the correspond-
ing prediction errors in Table VIII. As we can see, there is
only one module containing four bugs, and the corresponding
predicted result is 3.18. For those 16 clean modules, the mean
prediction error is only 0.38.

IV. Choices of Module Characteristics

The choice of module characteristics may influence the
accuracy of a bug model. In this section, we compare im-
pacts of different characteristic groups on the accuracies of
classification-based bug models, and empirically validate that
the GA would be an appropriate way of refining characteris-
tics.

Fig. 6 shows the overall accuracy of classification-based
bug models built with code characteristics, history characteris-
tics, organization characteristics, all characteristics (including
all code/history/organization characteristics), principal com-
ponents analysis (PCA)-constructed characteristics and GA-
selected characteristics, respectively. The first observation is
that no single type of characteristics5 can achieve the best per-
formance over all projects. For example, code characteristics
could lead to best prediction accuracy on project noc router,
openMSP430, and vga lcd, while they lead to the worst
prediction accuracy on project ethmac. The second observation

5We consider three types of module characteristics in this paper, which are
code characteristics, history characteristics, and organization characteristics.



458 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

TABLE VII

Classification Results of Evaluated Projects

TABLE VIII

Summary of Regression Results of SVM for Project ethmac

is that the bug models built with all characteristics often do
not perform the best (the only exception here is the case of
project or1200), which implies that all specified characteristics
also may not be suitable for constructing bug models. The
third observation is that for the evaluated projects, organization
characteristics are not effective indicators of bug occurrence,
as evidenced by the low prediction accuracy of corresponding
bug models. A potential explanation is that extracted orga-
nization characteristics of different modules are very similar
to each other because the entire project is contributed by
only a few developers (e.g., one or two). In the future, we
should evaluate the effectiveness of proposed organization
characteristics on large-scale projects that are developed by
many interactive developers. The fourth observation is that
the bug models built with PCA-constructed characteristics
could not always be better than those models constructed
with all characteristics, which implies that PCA may not
be a promising feature reduction technique for the evaluated
projects. The fifth observation is that bug models constructed
with GA-selected characteristics perform the best on four of
five evaluated projects. Moreover, bug models constructed with
GA-selected characteristics are better than those constructed

Fig. 6. Classification performances of bug models built from different
characteristic types via SVM (with grid search to find the optimal parameters).

with all characteristics. As a result, we could conclude that
compared with the PCA, GA could select more appropriate
characteristics for constructing accurate models.

V. Cross-Revision Evaluation

A. Evaluation Results

In this section, we further conduct experiments to demon-
strate that the bug models constructed at the reference revision
could also be effective for predicting the bug information
of the current revision, i.e., cross-revision bug prediction.
Fig. 7 shows the workflow of the practical cross-revision
bug prediction. In more detail, the module characteristics are
extracted from the reference revision and the bugs, which are
introduced before the reference revision but fixed within the
time interval between the reference and the current revisions,
are used to label each module at the reference revision. Then,
bug predictive models could be built for predicting the bug



GUO et al.: PRE-SILICON BUG FORECAST 459

Fig. 7. Workflow of the practical cross-revision bug prediction.

TABLE IX

Current Revisions for Cross-Revision Validation

information of the current revision. The current revisions used
for validation in each project are listed in Table IX, where the
time intervals between the reference revision and the current
revisions are also given.

Fig. 8 compares the regression results of cross-revision
bug prediction against the results obtained with intrarevi-
sion prediction, as shown in Fig. 5. The observation is that
the proposed approach is, in general, effective for cross-
revision prediction on the evaluated projects. Although on
some projects, such as openMSP430 and vga lcd, the cross-
revision prediction is slightly less accurate than the intrarevi-
sion prediction, the cross-revision prediction can still achieve
better performance on the project ethmac and or1200. Thus,
the proposed approach could still be effective for cross-
revision prediction for the evaluated projects.

As a project continues to evolve, the built bug models
should be dynamically updated to reflect the status of the latest
revision. Otherwise, the previously constructed models would
perform badly since more bugs would be detected in recent
revisions. In this case, such bug information should be used
to relabel the modules in the reference revision to update the
training data. Then, the data can be leveraged to build new
bug models to accurately predict the bug information of the
latest revision.

B. Illustrative Example

To elaborate the detailed process when applying the ap-
proach in practice, we give an example on building the
classification model for the project ethmac.

At the reference revision, the original characteristics are
extracted from the historical repositories (i.e., source code
snapshots, changing logs, and bug repository) before this re-
vision. Meanwhile, the bug information between the reference
revision and the current revision is utilized to label whether
each module is buggy and the number of bugs of each module
in the reference revision. In this example, there are seven bugs

Fig. 8. Comparison of the regression results (RMSE, the smaller the better)
of intrarevision and cross-revision bug prediction.

distributed in the module eth spram 256x32, eth rxethmac,
eth registers, eth top, and eth wishbone. In other words,
there are five buggy modules and the rests are clean. Once
the original training data are ready, we employ correlation-
based GA to select the most informative characteristics from
the original characteristics, and the selected characteristics
are LOC, MaxLoCAdd, AvgLoCDel, and DevTot. Note that
the characteristics selected with bug information from the
reference revision to the current revision are different from
the characteristics shown in Table V. Based on such char-
acteristics, we then use grid search to find the appropriate
parameters for training SVM. In this example, the near-optimal
parameters are c=64.0, g=1.0. Then, we can train an SVM-
based classification model based on these parameters.

At the current revision, the original characteristics are
extracted from the historical repositories before this revision.
Then, we only retain the characteristics that have already been
determined by the GA-based feature selection techniques con-
ducted at the reference revision, that is, LOC, MaxLoCAdd,
AvgLoCDel, and DevTot. Such characteristics are directly
leveraged by the previously constructed bug models to estimate
the bug information of the current revision.

VI. Bug-Oriented Methodology for Functional

Verification and Code Review

In this section, we propose to leverage bug information pre-
dicted by the pre-silicon bug forecast framework to facilitate
functional verification and code review. The basic idea is to use
predicted bug information to efficiently allocate computational
resources and manpower for different modules.

A. Bug-Oriented Verification

The pre-silicon bug forecast framework predicts bug in-
formation about each module of a design, which enables
verifying hardware design from a bug-oriented perspective. To
be specific, bug-oriented verification leverages predicted bug
information to guide the resource allocation before the verifi-
cation, monitor the verification process and define termination
criterion near the end of verification.



460 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

1) During the creation of the verification plan, more
verification resources should be invested to those
prone-to-bug modules, i.e., those modules that are iden-
tified as buggy according to the classification models.
Moreover, for those buggy modules, the regression
model determines the verification priorities according to
their potential bugs. For example, in the project ethmac,
module eth registers contains more bugs than module
eth crc based on predicted results (i.e., predicted bugs
are 3.19 and 0.036 for eth registers and eth crc, re-
spectively), and thus more resources should be invested
consequently to eth registers, e.g., we can constrain the
random generator so that the difference of probabilities
of hitting the coverage space of these two modules is
proportional to the numbers of predicted bugs in these
modules.

2) Bug information can also facilitate assessment of the
completeness of the verification, and even helps select
modules for formal verification. Taking or1200 alu
component as an example, the coverage models of such
functional units are hard to specify because of their large
testing space. By employing the proposed approach, the
total number of probable bugs in or1200 alu is 4.32
(rev. 600 on 2011-07-28), while the detected number
of bugs was only 1 without report of new bugs in
the later five months (rev. 672 on 2011-12-13). Ap-
parently, we could not conclude that it approached the
end of verification. However, in the next six months,
the number of detected bugs was still far less than
predicted value. In this case, formal method could be
considered to expose potential counterexamples in the
design to ensure its quality. Although the prediction
is not completely accurate, our method can yet guide
verification in a higher level compared with coverage
model. Actually, a preliminary practice of our technique
has already been employed in the verification of a
commercial processor [17].

3) As verification proceeds, we use the bug detection rate,
the proportion of exposed bugs against the total potential
ones of a design, to evaluate whether all bugs of a mod-
ule have been detected. After that, together with other
constraints (e.g., functional coverage, structure coverage,
and bug drop rate, etc.), we can determine whether
verification on this module approximates the end phase.
If so, we can concentrate on those complicated modules
that still contain many unexposed hard-to-verify bugs.

B. Suspicious List for Code Review

The bug information predicted by the proposed pre-silicon
bug forecast framework can also be used to improve the
efficiency of code review, which is critical to guarantee the
quality of a hardware design. A potential usage is to first
conduct pre-silicon bug forecast on all modules, and then
rank them based on the predicted numbers of bugs. Project
managers can then decide to invest resources to the modules
according to their ranks in the ranking list. For example,
when the time-to-market budget is very limited, some modules
ranked in the bottom of the list, i.e., the number of predicted

bugs is less than 1, could be considered to escape from
intensive verification. A problem of such ranking list is that
it may vary significantly when time proceeds; thus, the bugs
model should be rebuilt accordingly to offer accurate guidance
for code review. Once the time budget and resources are
abundant, we can simply use classification-based bug models
to identify buggy modules and then conduct code review on
all of them.

VII. Discussion and Extension

A. Threats to Validity

In practice, the industrial projects always contain much
more bugs (e.g., more than 1000 bugs) than the evaluated
projects. For example, according to the bug analysis of Intel
Pentium 4 processor, which is one of the most representa-
tive industrial products, the number of detected bugs before
releases is about 5809 [4]. Moreover, by analyzing its errata
sheet, even after product release, there is still an average of
1.2 design bugs discovered per month [9]. However, codes of
such industrial products are not available for us to conduct
detailed evaluation. Although the evaluated projects are not as
complex as such industrial processor designs, i.e., the numbers
of bugs in evaluated projects are less than 100, we still believe
that our approach may also be effective on large-scale projects,
since the learning techniques considered in our study have
been well developed, and would be more effective with large
data sets [2], [12], [24].

B. Severity-Aware Bug Prediction

In our previous experiments, we did not consider the sever-
ity of each bug. In practice, major bugs always matter most
for register transfer level (RTL) designers and verification
engineers. Thus, it is very helpful to distinguish the bugs
according to the severity of impacts. We may learn from the
community of software engineering, where the severity of bugs
has already been taken into account to build software defect
models [8], [41]. The basic idea of these approaches is to
use logistic regression or other machine learning techniques
to characterize the relationship between the characteristics and
ratings. Similarly, our approach can be naturally extended to
achieve such severity-aware bug prediction. We elaborate the
detailed process of severity-aware bug prediction as follows.

Following the specification of the most widely used bug
tracking system as BugZilla, we can first roughly classify
the bugs into six levels of severity, that is, blocker, critical,
major, normal, minor, and trivial,6 based on their severity. As
a result, during the submission of a bug into the bug tracking
system, the submitter labels the severity of this bug based on
its impacts.

Then, during the model construction process, we should
build multiple models for different severity of bugs. Taking
classification model for blocker bugs as an example, the
model can determine whether a module contains a blocker
bug. To build such a model, each training module should be

6The detailed definition of each type could be found at
http://bugzilla.mozilla.org/page.cgi?id=fields.html.



GUO et al.: PRE-SILICON BUG FORECAST 461

labeled to have a blocker bug or not. Thus, we can obtain
six classification models for bugs at different severity levels.
When predicting the bug severity levels for a new module, the
characteristics of this module could be sent into all these bug
models to identify at which severity level the bugs it contains.
Similarly, it is also helpful to build a regression model for
predicting bugs at each severity level. Once we can determine
the number of bugs at different severity levels, the information
could enable more flexible and effective resource allocation for
functional verification and code review.

Nevertheless, for the evaluated designs, the information
extracted from the SVN logs is very simple and relatively
vague, which makes it hard to manually determine the severity
level of each bug. In the future, we will investigate large-
scale designs with well-maintained bug repositories, where the
severity level of bugs is explicitly recorded.

C. Confidence on Predicted Number of Bugs

This paper mainly focuses on pre-silicon bug prediction of
hardware designs. In practice, it is possible that the predicted
number of bugs may not completely match the actual number
of bugs, it would be very useful to offer confidence interval
of each predicted result. Technically, confidence interval can
be estimated from predicted results provided by multiple bug
models. More specifically, multiple bug models (e.g., 10) can
be built from different reference revisions. Then, the predicted
results provided by these models can be used to estimate the
confidence interval of the predicted number of bugs for each
module in the current revision.

Once we can estimate the confidence interval of each
predicted result, we could further improve the effectiveness of
proposed bug-oriented verification methodology. For example,
as verification proceeds, we can compare the number of
detected bugs with the confidence interval of predicted number
of bugs to assess the progress of verification. Only when the
number of detected bugs exceeds the predicted number of bugs
with a high confidence (e.g., 0.95), we could determine that
the verification is comprehensive for this module.

VIII. Related Work

A. Complexity Characteristics and Bug Analysis

There are some studies focusing on the design complexity of
high-level hardware designs, yet few of them systematically in-
vestigate how complicated characteristics of a hardware design
influence the bug occurrence. Stollon et al. [34] proposed the
measures of syntactic complexity, which was inspired by the
structural and process similarities between VHDL description
and software language. Protheroe et al. [28] provided some
characteristics on RTL of a design to evaluate the design
quality. Bazeghi et al. [3] studied characteristics of hardware
description languages (HDL) code and results provided by
design compiler to estimate design effort of microprocessors.
There are also investigations on the bug analysis of hardware
designs. Bentley [4] introduced the sources for bugs from the
verification practices of Intel processor. Guo et al. [16], [17]
studied the relationship between the complexity characteris-
tics and bug occurrence. In these studies, many important

characteristics (e.g., history characteristics) relating to bug
occurrence have been overlooked, and it is still not clear how
predicted bug information can facilitate not only functional
verification but also code review.

B. Defect Prediction in Software Engineering

In the field of software engineering, many studies have been
dedicated to characterize the relationship between the software
characteristics and fault-proneness to assess the design qual-
ity [5], [19]–[22], [26], [27], [30], [31], [42], which mainly
focused on selecting characteristics that have most impacts on
the fault-proneness of software.

There are several key differences between the software
studies and our work. First, our work is dedicated to hardware
designs, which considers code characteristics that are only
appropriate for HDL. Second, we propose to use correlation-
based genetic algorithms [18] to select the most informative
characteristics for model construction, which improves accu-
racies of bug models. Third, we propose the bug-oriented
verification methodology that adopts pre-silicon bug forecast
to facilitate functional verification, a critical step unique to
designing hardware.

IX. Conclusion and Future Work

In this paper, we propose a pre-silicon bug forecast frame-
work, which uses machine learning techniques to build bug
models to characterize the relationship between the design
characteristics (i.e., code, history, and organization charac-
teristics) and bug-proneness of hardware designs, and we
conduct detailed experiments on several open-source projects
to demonstrate that such bug models could accurately predict
the bug information of modules. Based on the predicted bug
information, we further propose a bug-oriented methodology
to facilitate the functional verification and code review process.

In our future work, there are still open problems to explore.
For example, although we specify several characteristics that
may correlate with bug occurrence, those characteristics still
cannot cover all factors that are potentially related to bug
occurrence. It is interesting to study whether adding other
characteristics, e.g., code change complexity [19], can lead
to more accurate pre-silicon bug forecast.

References

[1] C. Lewis and R. Ou, (2013, Apr. 1) [Online]. Available: http://google-
engtools.blogspot.com/2011/12/bug-prediction-at-google.html

[2] M. Banko and E. Brill, “Scaling to very very large corpora for natural
language disambiguation,” in Proc. 39th ACL’01, pp. 26–33.

[3] C. Bazeghi, F. J. Mesa-Martinez, and J. Renau, “Ucomplexity: Esti-
mating processor design effort,” in Proc. 38th MICRO-38, 2005, pp.
209–218.

[4] B. Bentley, “Validating the intel pentium 4 microprocessor,” in Proc.
38th DAC’01, pp. 244–248.

[5] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch
my code! Examining the effects of ownership on software quality,” in
Proc. 8th Joint Meeting Eur. Software Eng. Conf. ACM SIGSOFT Symp.
Found. Software Eng., 2011, pp. 4–14.

[6] L. Breiman, “Random forests,” Mach. Learning, vol. 45, no. 1, pp. 5–32,
2001.



462 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 3, MARCH 2014

[7] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vec-
tor machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3,
pp. 27:1–27:27, 2011.

[8] R. S. Chhillar and Nisha, “Empirical analysis of object-oriented design
metrics for predicting high, medium and low severity faults using
mallows Cp,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 6, pp. 1–9, Nov.
2011.

[9] K. Constantinides, O. Mutlu, and T. Austin, “Online design bug de-
tection: RTL analysis, flexible mechanisms, and evaluation,” in Proc.
MICRO’41, 2008, pp. 282–293.

[10] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and A. Teterev, “Crane:
Failure prediction, change analysis and test prioritization in practice:
Experiences from windows,” in Proc. ICST’11, pp. 357–366.

[11] S. Fine and A. Ziv, “Coverage directed test generation for functional ver-
ification using Bayesian networks,” in Proc. 40th DAC’03, pp. 286–291.

[12] A. Fuxman, A. Kannan, A. B. Goldberg, R. Agrawal, P. Tsaparas, and
J. C. Shafer, “Improving classification accuracy using automatically
extracted training data,” in Proc. KDD’09, pp. 1145–1154.

[13] A. Gluska, “Coverage-oriented verification of banias,” in Proc. DAC’03,
pp. 280–285.

[14] A. Gluska, “Practical methods in coverage-oriented verification of the
merom microprocessor,” in Proc. DAC’06, pp. 332–337.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. 1st ed. Reading, MA, USA: Addison-Wesley
Longman, 1989.

[16] Q. Guo, T. Chen, H. Shen, and Y. Chen, “Estimating design quality
of digital systems via machine learning,” in Proc. 17th ICECS’10, pp.
623–626.

[17] Q. Guo, T. Chen, H. Shen, Y. Chen, Y. Wu, and W. Hu, “Empirical
design bugs prediction for verification,” in Proc. DATE’11, pp. 161–166.

[18] M. A. Hall, “Correlation-based feature selection for discrete and
numeric class machine learning,” in Proc. 17th ICML’00, pp. 359–366.

[19] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proc. 31st ICSE’09, pp. 78–88.

[20] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on
fine-grained module histories,” in Proc. 34th ICSE’12, pp. 200–210.

[21] S. Kim, T. Zimmermann, E. J. Whitehead, Jr., and A. Zeller, “Predicting
faults from cached history,” in Proc. 29th ICSE’07, pp. 489–498.

[22] M. Kläs, F. Elberzhager, J. Münch, K. Hartjes, and O. von Graevemeyer,
“Transparent combination of expert and measurement data for defect
prediction: An industrial case study,” in Proc. 32nd ICSE’10, pp.
119–128.

[23] D. Malandain, P. Palmen, M. Taylor, M. Aharoni, and Y. Arbetman, “An
effective and flexible approach to functional verification of processor
families,” in Proc. 7th HLDVT’02, p. 93.

[24] C. D. Manning and H. Schütze, Foundations of Statistical Natural
Language Processing. Cambridge, MA, USA: MIT Press, 1999.

[25] T. M. Mitchell, Machine Learning, 1st ed. New York City, NY, USA:
McGraw-Hill, 1997.

[26] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proc. 30th ICSE’08, pp. 181–190.

[27] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proc. 27th ICSE’05, pp. 284–292.

[28] D. Protheroe and F. Pessolano, “An objective measure of digital system
design quality,” in Proc. 1st ISQED’00, pp. 227–233.

[29] J. R. Quinlan, “Learning with continuous classes,” in Proc. Australian
Joint Conf. Artif. Intell., 1992, pp. 343–348.

[30] F. Rahman and P. Devanbu, “Ownership, experience and defects: A
fine-grained study of authorship,” in Proc. 33rd ICSE’11, pp. 491–500.

[31] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rother-
mel, “Predicting accurate and actionable static analysis warnings: An
experimental approach,” in Proc. 30th ICSE’08, pp. 341–350.

[32] F. Sebastiani, “Machine learning in automated text categorization,”
ACM Comput. Survey, vol. 34, no. 1, pp. 1–47, 2002.

[33] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proc. MSR’05, pp. 1–5.

[34] N. S. Stollon and J. D. Provence, “Measures of syntactic complexity
for modeling behavioral VHDL,” in Proc. 32nd DAC’95, pp. 684–689.

[35] S. Sudakrishnan, J. Madhavan, E. J. Whitehead, Jr., and J. Renau,
“Understanding bug fix patterns in verilog,” in Proc. MSR’08,
pp. 39–42.

[36] J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, “Experimental
perspectives on learning from imbalanced data,” in Proc. 24th ICML’07,
pp. 935–942.

[37] V. N. Vapnik, The Nature of Statistical Learning Theory. New York,
NY, USA: Springer-Verlag, 1995.

[38] I. Wagner, V. Bertacco, and T. Austin, “Microprocessor verification
via feedback-adjusted Markov models,” IEEE Trans. Computer-Aided
Design Integr. Circuits Syst., vol. 26, no. 6, pp. 1126–1138, Jun. 2007.

[39] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. San Mateo, CA, USA: Morgan Kaufmann, 2005.

[40] D. H. Wolpert, “The lack of a priori distinctions between learning
algorithms,” Neural Comput., vol. 8, no. 7, pp. 1341–1390, Oct. 1996.

[41] Y. Zhou and H. Leung, “Empirical analysis of object-oriented design
metrics for predicting high and low severity faults,” IEEE Trans. Softw.
Eng., vol. 32, no. 10, pp. 771–789, Oct. 2006.

[42] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: A large scale experiment on data
versus domain versus process,” in Proc. ESEC/FSE’09, pp. 91–100.

Qi Guo received the B.S. degree in computer sci-
ence from the Department of Computer Science and
Technology, Tongji University, Shanghai, China, in
2007, and the Ph.D. degree in computer science from
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China, in 2012.

His current research interests include computer
architectures, very large scale integration design, and
verification.

Tianshi Chen received the B.S. degree in mathemat-
ics from the Special Class for the Gifted Young, Uni-
versity of Science and Technology of China (USTC),
Hefei, China, in 2005, and the Ph.D. degree in
computer science from the Department of Computer
Science and Technology, USTC, in 2010.

He is currently an Associate Professor with the In-
stitute of Computing Technology, Chinese Academy
of Sciences, Beijing, China. His current research in-
terests include computer architectures, parallel com-
puting, and computational intelligence.

Dr. Chen was the recipient of the China Computer Federation Distinguished
Doctoral Dissertation Award in 2011 and the Chinese Academy of Sciences
Distinguished Doctoral Dissertation Award in 2011 for his Ph.D. work on
computational complexity analysis of evolutionary algorithms.

Yunji Chen graduated from the Special Class for the
Gifted Young, University of Science and Technology
of China, Hefei, China, in 2002. He received the
Ph.D. degree in computer science from the Institute
of Computing Technology (ICT), Chinese Academy
of Sciences, Beijing, China, in 2007.

He is currently a Professor with ICT. His current
research interests include parallel computing, mi-
croarchitectures, hardware verification, and compu-
tational intelligence. He has authored or co-authored
one book and over 40 papers in these areas.

Rui Wang received the B.S. degree in computer
science and technology from the Hefei University
of Technology, Hefei, China, in 2008, and the Ph.D.
degree in computer science from the Department
of Computer Science and Technology, University of
Science and Technology of China, Hefei, in 2013.

He is currently a Research Fellow with Anhui
USTC iFLYTEK Company, Ltd., Heifei. His current
research interests include machine learning and its
applications in real-world problems.



GUO et al.: PRE-SILICON BUG FORECAST 463

Huanhuan Chen received the B.Sc. degree from
the University of Science and Technology of China,
Hefei, China, in 2004, and Ph.D. degree, sponsored
by the Dorothy Hodgkin Postgraduate Award in
computer science from the University of Birming-
ham, Birmingham, U.K., in 2008.

His current research interests include statistical
machine learning, data mining, data fusion, and
evolutionary computation.

Dr. Chen’s Ph.D. thesis “Diversity and Regular-
ization in Neural Network Ensembles” received the

2011 IEEE Computational Intelligence Society Outstanding Ph.D. Dissertation
Award (the only winner) and the 2009 CPHC/British Computer Society
Distinguished Dissertations Award (the runner up). His work “Probabilistic
Classification Vector Machines” on Bayesian machine learning received the
the IEEE Transactions on Neural Networks Outstanding Paper Award
(bestowed in 2012, and only one paper in 2009 received this award).

Weiwu Hu received the Ph.D. degree in computer
science from the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China.

He is currently a Professor of computer science
with the Institute of Computing Technology, Chinese
Academy of Sciences. His current research interests
include high-performance computer architectures,
parallel processing, and very large scale integration
design.

Guoliang Chen received the B.S. degree from Xi’an
Jiaotong University, Xi’an, China, in 1961.

Since 1973, he has been with the University of
Science and Technology of China, Hefei, China,
where he is currently a Professor with the School
of Computer Science and Technology. From 1981
to 1983, he was a Visiting Scholar with Purdue
University, West Lafayette, IN, USA. He is currently
also the Director of the National High Performance
Computing Center, Hefei, China. He has published
nine books and more than 200 research papers. His

current research interests include parallel algorithms, computer architectures,
computer networks, and computational intelligence.

Prof. Chen is an Academician of the Chinese Academy of Sciences. He was
the recipient of the National Excellent Teaching Award of China in 2003.


