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Abstract— Semisupervised classification (SSC) learns, from
cheap unlabeled data and labeled data, to predict the labels
of test instances. In order to make use of the information
from unlabeled data, there should be an assumed relationship
between the true class structure and the data distribution. One
assumption is that data points clustered together are likely to
have the same class label. In this paper, we propose a new
algorithm, namely, cluster-based regularization (ClusterReg) for
SSC, that takes the partition given by a clustering algorithm as
a regularization term in the loss function of an SSC classifier.
ClusterReg makes predictions according to the cluster structure
together with limited labeled data. The experiments confirmed
that ClusterReg has a good generalization ability for real-world
problems. Its performance is excellent when data follows this
cluster assumption. Even when these clusters have misleading
overlaps, it still outperforms other state-of-the-art algorithms.

Index Terms— Clustering, machine learning, regularization,
semisupervised learning.

I. INTRODUCTION

TRADITIONAL machine learning techniques use only
labeled instances (that is, pairs of features and labels) to

perform training processes. However, labeled data is usually
expensive and time consuming to obtain. For instance, one
learning task requires expensive sensors and human experts to
gather and label all the data. On the other hand, it might be
convenient to collect plenty of unlabeled data, which are typ-
ically cheap and abundant. Therefore, it is natural to employ
such unlabeled data to improve performance. Semisupervised
learning (SSL) aims to use large amounts of unlabeled data
along with labeled data to build better learning machines.
As SSL requires less human effort and delivers potentially
higher accuracy, it became popular in the machine learning
community, in both theory and practice [1]. In this paper, we
will focus on semisupervised classification (SSC).

SSL can be either transductive or inductive. A classifier
is transductive when it cannot generalize its predictions to
unseen data. In this situation, test data is regarded as unlabeled
data, while inductive learners can generalize their predictions
to unseen data.
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One assumption in SSL is that the true class distribution
is somehow related to the distribution of the data. In the
literature, there are three most-often used assumptions for
semisupervised methods [2]. Of them, the semisupervised
smoothness assumption assumes that if two instances are
close to each other in a high-density region, they are likely
to share the same label, also known as the “consistency
assumption.” The second assumption is the “cluster assump-
tion,” which states that classes are often separated by a
low-density region, that is, if two data points are in the
same cluster they are likely to share the same label (also
known as “low-density separation assumption” [2]). The third
assumption, i.e., the “manifold assumption,” assumes that the
true structure of the data lies in a low-dimensional manifold
embedded in the high-dimensional data space. Such manifold
would deliver better estimates and similarity measures about
the data. In this paper, we will focus on the cluster-based
SSC methods.

Among cluster-based approaches, most attempt to find a
low-density region to separate classes, avoiding placing the
decision boundary inside clusters (cutting through high-density
regions). Transductive support vector machine (TSVM) [3] is
a typical example.

Most of the existing cluster-based SSC approaches do not
work well when classes are overlapping, i.e., the decision
boundary should be in high-density regions, especially when
there is limited labeled data.

However, some clustering algorithms can often easily
achieve better performance with overlapping classes when
compared to the mentioned margin-based methods,1 as demon-
strated by simple synthetic examples in Figs. 1–4.

The first dataset (two half-moons), in Fig. 1(a), has two
labeled points (denoted as dark diamonds) and each moon-
shaped cluster corresponds to one class. Both TSVM (Fig. 1)
and ClusterReg [Fig. 1(c)] are able to deliver a good decision
boundary. The second dataset [Fig. 2(a)] is a different version
of the first with one inverted class, which makes such dataset
more challenging. As TSVM is sensitive to the position
of the single labeled points in each cluster [Fig. 2(b)], it
could not find a proper decision boundary. While ClusterReg,
taking advantage of self-tuning spectral clustering (STSC) [4],
was able to regularize the algorithm to fit the moon-shaped

1Intuitively, as seen in Fig. 4(a), in some cases where there is no clear
gap between clusters, discovering high-density regions is an easier task than
finding low-density gaps between these regions. And clustering algorithms are
specifically designed to search for high-density regions. Therefore, in some
cases, clustering algorithms can deliver more accurate estimates over the data
distribution than methods that seek the largest margin.

2162–237X/$31.00 © 2012 IEEE
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Fig. 1. Synthetic two half-moons dataset. Each half-moon corresponds to one class. (a) True classes. (d) Predictions of TSVM. (c) Predictions of ClusterReg.
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Fig. 2. Two inverted half-moons. (a) True classes. (b) Predictions of TSVM. (c) Predictions of ClusterReg.

1 2 3 4 5 6 7 8 9

True classes

(a)

1 2 3 4 5 6 7 8 9
2

3

4

5

6

7

8

2

3

4

5

6

7

8
Predictions

(b)

1 2 3 4 5 6 7 8 9
2

3

4

5

6

7

8
Predictions

(c)

Fig. 3. Dataset with one sparse and one dense class corresponding to clusters. The denser cluster is placed in the sparser cluster. The labeled instances are
arbitrarily chosen to mislead the classifiers. They would tend to classify the instances on the bottom of the sparse class as belonging to the tighter class.
TSVM is sensitive to the position of the instances in the clusters; therefore it might not find the correct decision boundary. ClusterReg, as STSC can deal
with clusters of arbitrary shapes, can take such a partition into account and properly generate a decision boundary. (a) True classes. (b) Predictions of TSVM.
(c) Predictions of ClusterReg.

clusters, delivering a smooth decision boundary between
classes [Fig. 2(c)]. The third dataset [Fig. 3(a)] has three
labeled instances and two classes. One class is sparsely
distributed while the second corresponds to a denser cluster
inside the other class. The labeled points are arbitrarily placed
to mislead classifiers. That is, the instances in the bottom
of the sparse class are prone to be classified as belonging
to the dense class. As expected, in Fig. 3(b), TSVM is not

able to correctly predict the labels of the instances in the
bottom of the sparse class, since there is no labeled instance
in that region. However, ClusterReg incorporates the partition
information from STSC to avoid cutting though the dense and
sparse cluster, which makes it more robust to the position of
labeled instances, as shown in Fig. 3(c).

In Fig. 4(a), a 2-D dataset with six Gaussians corresponds
to the true data distribution with six classes. The classes
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Fig. 4. Dataset with six overlapping classes drawn from unit-variance isotropic Gaussians (N (μ, I)) and translated. Because of the overlapping clusters,
TSVM cannot find the appropriate decision boundary. ClusterReg, by considering the partition of a clustering algorithm, is able to find a better decision
boundary. (a) True classes. (b) Predictions of TSVM. (c) Predictions of ClusterReg.

were designed to overlap, while still keeping the cluster
structure. The labeled instances, denoted by black diamonds,
were chosen to lie roughly on the borders of the classes.

Such data is challenging for existing algorithms, since these
clusters do not have a clear gap between them. The decision
boundaries of these algorithms are mainly determined by the
distribution of these limited labeled data, which is not robust
with few labeled data.

As an example, for a multiclass case, shown in Fig. 4(b),
TSVM could not find the appropriate gap, making the deci-
sion boundary cut through the clusters. However, clustering
algorithms (such as Gaussian mixture models (GMMs) or
K -means [5] as verified in this case) may identify those six
clusters.2 When we apply the cluster structure to our method,
it becomes more robust to the position of the few labels in
the clusters. Therefore, clustering algorithm can be properly
wrapped into SSC to improve its performance on this kind of
data.

In this paper, we propose to incorporate clustering algo-
rithms in ClusterReg to overcome the issues mentioned above.
In this algorithm, we also take into account the probability
of each instance belonging to each cluster to regularize the
loss function. As shown in Fig. 4(c), unlike other cluster-
based methods, our method can easily establish a decision
boundary between clusters without being misled by either the
overlapping classes or the few labels. ClusterReg achieves
such robustness by incorporating clustering algorithm into its
mechanism. This simple case confirmed the benefits of our
algorithm for overlapping clustering data.

ClusterReg regards the structure arising from the clustering
algorithm as a soft partition. That is, each instance is assigned
a probability of belonging to a given cluster, unlike hard parti-
tion where clusters are strictly disjoint. By using soft partitions
(also known as “soft clustering”), we can address uncertain
instances (likely in low-density region, that is, in the border
of clusters) differently from the more confident ones (likely

2The example shown in Fig. 4 is suitable for K -means and GMMs, because
the clusters are spherical. There are other situations where ClusterReg can
take advantage of other clustering methods, such as spectral-based clustering
algorithms, to estimate the cluster structure with arbitrary shape [4], which is
the case of the datasets in Figs. 1(a), 2(a), and 3(a).

in the densest region of clusters). Soft clustering helps the
algorithm regard uncertain instances (with low probabilities
for all clusters) as instances lying in gaps, thereby helping
the classifier to generate the decision boundary in such low-
density (according to the clustering algorithm) region.

The contribution of this paper is to propose an algorithm
that employs any clustering algorithm3 into SSC to regularize
the prediction. The proposed algorithm: 1) is robust under
the presence of fewer labeled points; 2) is robust to the
position of labeled data in clusters by considering the strength
of clustering algorithms in a natural way; and 3) is able
to improve the performance of a given classifier when the
classes or clusters overlap, compared to other cluster-based
algorithms.

ClusterReg can handle any clustering algorithm with a
proper processing of its output. It can employ any classifier
that is able to use the proposed loss function. Therefore,
ClusterReg can be seen as a framework for SSC methods.

The remainder of this paper is organized as follows. The
next section presents a review of existing methods. Section III
introduces the proposed algorithm in details. Then, we present
the experimental results and we discuss our algorithm in
Section IV. Finally, Section V discusses our contributions and
Section VI presents the conclusions.

II. RELATED WORK

In this section, we review most relevant SSC methods,
pointing out their advantages and drawbacks.

A. Co-Training

In the co-training algorithm [7], the features in the training
set will be divided into two different sets (views). Such
splitting can be achieved naturally if the data have intrinsically
two possible features sets, or by applying some artificial
method, such as randomly selecting features. The algorithm
also assumes that both feature subsets are good enough to
train a classifier and they are conditionally independent given
the class. The algorithm consists of two classifiers, each one

3In this paper, we use tering algorithm, K -means [5], STSC, GMM, and
fuzzy GK clustering [6], to evaluate ClusterReg.
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assigned to one different view. Initially, each one is trained
with the labeled data from the view it is associated to. Then,
each classifier labels the unlabeled data of its own view
(pseudo-labeling) and puts the most confident ones with their
predicted labels on the training set of the other classifier.
Afterwards, they are then retrained with the newly obtained
instances. In fact, both classifiers teach each other, and tend
to agree in the labeled and also in the unlabeled instances.
Co-training makes strong assumptions on the splitting of
features. In order to relax such assumptions, in [8] the authors
propose the tri-training algorithm, which uses three learners.
For training one classifier, it uses the agreement between the
other two classifiers to label one given unlabeled instance.
Tri-training and co-training may end up overfitting the most
confident instances, leading to no gain in the classification
accuracy. This fact arises when the splitting of the dataset is
not straightforward. The method depends on the quality of
such splitting of features.

B. Methods Based on Manifold Assumption

Most manifold-based methods assume that there is a low-
dimensional manifold structure embedded in the data space.
Typically, these algorithms build graphs to represent all
instances [1]. The nodes represent the instances (labeled and
unlabeled) and the edges denote the similarity between the
instances. In order to predict labels in the graph, these methods
usually assume label smoothness among these instances.

Spectral graph transducer (SGT) [9] can be seen as a
semisupervised version of the K nearest neighbor classifier.
This method uses unlabeled instances to build a graph. The
nature of its manifold assumption is in the fact that predictions
are based on the neighborhood of an instance within the
graph. This method is proposed for binary classification, which
could be a shortcoming since it depends on the decomposition
of multiclass datasets into a set of different binary tasks,
leading to problems of imbalanced classification and different
output scales of binary classifiers [10]. Moreover, graph-based
approaches, such as SGT, often leave the graph construction,
an important part of its learning, out of the training algorithm.

Most of the graph-based approaches only focus on the
optimization functions, leaving the graph construction, which
is an important part of the learning procedure, out of the
framework. In consequence, the issue of graph construction
has not been studied extensively yet [1].

Besides the graph, these procedures usually cannot deal with
unseen (test) data, that is, they are inherently transductive.
This can prevent the application of graph-based methods in
problems requiring fully inductive classifiers.

C. Methods Based on Cluster Assumption

Among the methods based on cluster assumption, we can
highlight the TSVM algorithm [3]. It is an extension of the
SVM method (also known as semisupervised SVM, S3VM).
TSVM uses unlabeled data to find the decision boundary
with the largest margin between classes. Unlike SVM, TSVM
tries to maximize the margin with a linear boundary by
considering both labeled and unlabeled instances, which might

deliver lower generalization error [11]. The unlabeled data
drive the decision boundary away from dense regions [1].
However, if the dense regions are overlapping, TSVM might
not find the correct decision boundary between such regions
(clusters). And, in this case, this algorithm might be sensitive
to the few labeled points in the dense regions. Moreover, for
multiclass classification problems, this method has the same
drawback, mentioned before, as other binary SSC algorithms:
it depends on the decomposition of the dataset into a number
of independent binary classification problems.

In [12], the authors introduced the Bayesian semisupervised
SVM (SemiBSVM) model for binary classification. TSVM
and SemiBSVM aim to find the largest margin in both labeled
and unlabeled data space. The loss function was specially
designed with a penalty term with the likelihood part con-
structed from the unlabeled data. SemiBSVM was successfully
compared with some supervised classification methods when
the unlabeled data was very informative, especially in the cases
where the amount of unlabeled data was much larger than
the labeled data. However, similar to TSVM, SemiBSVM is
a binary classifier that is sensitive to overlapping high-density
regions with few labeled data.

Recently, in [13], the authors introduced the SSC based
on class membership (SSCCM) algorithm. It employs a loss
function that uses the concept of “label membership” to weight
the pertinence of a given instance to each class. And, in
order to have more reliable labels, such function also regards
each instance as a weighted average of its neighbors. As
TSVM, this algorithm seeks the largest margin separator.
Experiments showed that it outperformed other methods with
hard labels. However, unlike ClusterReg, the method equally
considers instances in low- and high-density regions; that is, an
unreliable (uncertain with respect to its membership) instance
lying in the border of a cluster (or class, if cluster assumption
holds) has the same impact in the training process as any other
instance, whereas the intuition behind the cluster assumption
suggests that the sharing of labels should be more reliable in
high density regions.

As mentioned before, these cluster-based methods try to
find the largest margin between high-density regions (clusters).
When overlapping clusters are present, with sparse labeled
instances on their borders, these classifiers may not produce
good predictions, although these inherent clusters might be
easily identified.

Our proposed algorithm, ClusterReg, is a cluster-based
method. Unlike other cluster-based algorithms, it does not
depend on gaps between potential clusters, but captures the
partition information from a clustering algorithm in order to
improve the decision boundary.

D. Ensemble Methods in SSC

Some semisupervised approaches try to make use of an
ensemble of base classifiers to perform the SSC task. Some
of these methods use an ensemble of supervised algorithms,
while others use an ensemble of semisupervised methods.

The SemiBoost algorithm [14] is a meta SSL algorithm.
The method combines the similarity information among the
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instances with the classifier predictions to obtain more reliable
pseudo-labels. It is a graph-based ensemble approach. Its
objective function has the smoothness, manifold, and cluster
assumptions. Such algorithm can be used to improve the
classification accuracy of any supervised learning algorithm
using unlabeled instances.

SemiBoost is a binary class algorithm. Later, a simi-
lar boosting approach, multiclass semisupervised boosting
(MCSSB), was proposed by [10] in order to solve multiclass
tasks. In [15], the authors extended the information regular-
ization framework to semisupervised boosting. The authors
proposed sequential gradient descent optimization algorithms
to optimize the loss function. Such loss function incorporates
all three SSC assumptions.

In [16], the authors proposed a tree-structured ensemble
approach where a complex multiclass problem is decom-
posed into a set of binary subproblems. Each subproblem (a
binary classification) is represented as an internal node in a
tree. The leaf nodes represent the classes. In each internal
node, the algorithm performs a co-training procedure using
RBF networks as base classifiers. The authors also compared
another approach in which the co-training classifiers are the
ensemble trees. The authors demonstrated that the combina-
tion of tree-structured ensemble and co-training is especially
useful for classification tasks that involve a large number of
classes and a small amount of labeled data. However, the
tree-structured ensemble, similar to co-training, may classify
unlabeled instances incorrectly and when such instances are
used to train other classifiers, errors may be reinforced.

RegBoost [17] employs three semisupervised assumptions
in its boosting learning style algorithm. It uses a kernel density
estimation approach which penalizes the classifier if it does
not assign the same label to a pair of neighbor instances
in a high-density region, to implement cluster assumption.
However, as mentioned before, if overlapping high-density
regions are present, RegBoost might not establish a good
separation between these regions. Moreover, this algorithm is
designed only for binary classification.

As mentioned before, a decomposition technique, such
as one-against-the-rest [10], can be employed to extend the
algorithm to multiclass problems. However, as expected, our
experiments showed that RegBoost delivers inferior results
when applied to multiclass real-world datasets.

In ensemble-based SSC approaches, ensemble pruning tech-
niques [18], [19] can be employed for a compact yet powerful
ensemble classifier.

III. CLUSTERREG ALGORITHM

In this section, we present the proposed multiclass semisu-
pervised algorithm, ClusterReg. First, we introduce the new
loss function with a regularization term based on clustering
algorithm. And we show an example using multilayer percep-
tron (MLP) in this algorithm.

The general architecture of ClusterReg is presented in
Fig. 5. The first step of the method is executing a given clus-
tering algorithm on the dataset and extracting the probabilities
of each instance belonging to each cluster. The initialization

Fig. 5. ClusterReg’s architecture.

procedure assigns the initial pseudo-labels to the unlabeled
instances according to the labeled instances in the clusters
they belong to. Afterwards, ClusterReg computes the pairwise
penalty according to the output of the clustering algorithm.
The penalty values are the metric employed to find the nearest
neighbors of each instance. The neighborhood of a given
instance is defined as those instances with the highest penalty
values relative to that instance. Then, with the initial pseudo-
labels, penalty values, and nearest neighbors at hand, the
classifier is trained by a method that minimizes the proposed
loss function. We will show the details of these steps in the
following sections.

A. Semisupervised Loss Function

Formally, in SSC, the training set S = L∪U is composed of
l labeled instances L = {(xi , yi )}li=1 and u unlabeled instances
U = {(xi )}ui=l+1 and N = l + u, often u � l. Basically, the
aim of SSC is to improve the classifier f in comparison to
using the labeled data L alone.

In this paper, we propose a new algorithm in order to include
the clustering information in the SSC algorithm. The main
idea is to use the output of clustering algorithms to regularize
the loss function of the SSC algorithm. Its first term is fully
supervised, using only the labeled instances to measure the
difference between the classifier output and the true labels.
The second term represents the semisupervised regularization
procedure. The proposed loss function is in (1).

The output of a clustering algorithm is a partition Q =
[qi j ]N×K with K clusters and N instances, where the row
vector qn contains the probabilities of instance n belonging to
each one of the K clusters. For example, qn = (0.3, 0.1, 0.6)
denotes that n has a 30% of chance of belonging to the first
cluster, and so on. Consequently, the vector sums to 1. And n
belongs to the third cluster as it holds the highest probability

E = 1

N

N∑

n=1

G∑

j=1

{
InL C[ynj , f j (n)] + InU

λ max(qn)

|φ(n)|

×
∑

k∈φ(n)

P(qn , qk)C[ŷkj , f j (n)]
}

(1)

where IwA = 1 if w ∈ A and 0 otherwise. f j (n) denotes the
output of the classifier for class j and instance n. C[y j , f j (n)]
can be any monotonically decreasing loss function, for exam-
ple, mean squared error or cross entropy. P(qn, qk) is the
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penalty assigned to instance n and k. The parameter λ denotes
the tradeoff between the supervised loss and semisupervised
regularization. G is the number of classes. max(qn) returns the
maximum value in the vector qn to indicate the most probable
cluster that instance n belongs to. |φ(n)| is the cardinality
of the set of neighbors of instance n, i.e., the number of
neighboring points for instance n. ŷkj is an estimate of the
desired output for instance n regarding its neighbor k. ŷkj can
be either the true label ykj if k is a labeled instance, or the
output f j (k) if k is unlabeled. When k is unlabeled, ŷkj is
also known as pseudo-label of k.

The penalty function, presented in (2), measures the similar-
ity between vectors qn and qk . By doing so, we consider the
similarity as a direct outcome from the clustering algorithm.
Such penalty function uses similarity measures, r [in (3)] and
s [in (4)], and map them into a penalty factor in the regular-
ization term. The product r(qn, qk) ∗ s(qn, qk) is normalized
in [0, 1]

P(qn , qk) = sin
(π

2
(r(qn, qk) ∗ s(qn, qk))

κ
)
. (2)

The parameter κ controls the steepness of the mapping from
similarity to penalization. This value regulates the degree of
decision boundary, cutting through clusters. If we increase
κ , we relax the cluster assumption by letting the classifier
split a high-density region. On the other hand, decreasing the
parameter forces the classifier to avoid placing the decision
boundary inside clusters. This form of penalty is flexible
to allow different levels of penalization for highly similar
instances, while assigning low penalty to instances with low
similarity, according to a proper value of κ [17].4

There are many ways to measure the similarity between vec-
tors. In this paper, we focus on the correlation coefficient and
the Euclidean distance (transformed into similarity) between
the probability vectors qn and qk . Using Euclidean distance
alone may not capture all the information between two vectors.
Suppose we have the probability vectors u = (0.8, 0, 0.2),
v = (0.5, 0.2, 0.3), and w = (0.8, 0.2, 0); we can notice that
the instances they represent belong to the same cluster, which
is the one with the highest probability. The Euclidean distance
between u and v is ||u − v|| = 0.37 and ||u − w|| = 0.28.
However, v has higher chance of belonging to the third cluster
than the second, which is also the case for u, whereas for w,
the second highest probability is for the second cluster. In
this sense, v should be the point more similar to u, instead
of w. Therefore, although all the corresponding instances
belong to the same cluster, the correlation between their cluster
probability distribution should be taken into account. Then, we
use Pearson’s correlation coefficient along with the Euclidean
distance to calculate the penalization for a pair of points.

Formally, (3) shows the similarity concerning the correlation
between two probability vectors

r(qn, qk) =
∑K

i=1(qni − q̄n)(qki − q̄k)√∑K
i=1(qni − q̄n)2

√∑K
i=1(qki − q̄k)2

(3)

4κ is chosen as a positive value in [1, 12]. Lower values lead to no difference
of penalty for dissimilar instances, and higher values do not penalize even the
most similar instances.

where q̄n is the mean of the vector qn . For the second
similarity measure, we compute all the pairwise Euclidean
distances between the probability vectors and normalize them
in [0, 1]. Then, we transform the Euclidean distance into
similarity as shown in (4). Therefore, similar instances should
be close to each other and highly correlated

s(qk, qn) = 1− d(qk, qn)− dmin

dmax − dmin
(4)

where d(qk, qn) = ||qk − qn ||. And dmax and dmin are the
maximum and minimum Euclidean distances, respectively.

As we intend to use the structure arising from the clustering
algorithm to calculate the similarity in the regularization term,
we also employ this information to find the nearest neighbors
φ(n). Then, the nearest neighbors of n are the V instances5

with the highest P(qk , qn).
Following the smoothness assumption, the regularization

term in (1) penalizes the classifier if it assigns different
labels to similar instances. This is achieved by the product
P(qk , qn)C[ŷkj , f j (n)]. That is, if the classifier gives different
outputs for two similar instances, the loss and penalty will be
high, causing a large regularization to the training. On the
other hand, if the penalty is low (the instances are not similar
according to the clustering algorithm), it does not matter if the
classifier assigns distinct labels to the couple of instances.

Regarding the cluster assumption, we use the density infor-
mation in Q to regularize the classifier, following the cluster
structure given by some clustering algorithm. In order to
complete the cluster assumption, we also add the maximum
value in the probability vector max(qn) as a factor in the
second term of the loss function. It weights the importance
of instance n as an estimate of the density in its region. The
higher this value, the higher is the density. So, we penalize
the training if the classifier assign two different labels to the
instance to be learned n and its neighbor k; and the penalty
will be even higher if n is in a high-density region, according
to the clustering algorithm. Therefore, the classifier will avoid
delivering a decision boundary that crosses through clusters.

B. Initialization Procedure

In the beginning, ClusterReg does not have the estimated
labels (pseudo-labels) of the neighbors of a given instance n
to perform the regularization for that point. We applied the ini-
tialization procedure described in [17] to assign pseudo-labels
to the unlabeled instances. The output of cluster algorithm
is employed to set the pseudo-labels ŷ. Therefore, for each
position j of each unlabeled instance n in cluster � , we have

ŷn j = softmax

(
∑

k∈�
IkL ∗ P(qn, qk) ∗ ykj

)
(5)

the softmax function is defined in (6).
The pretraining, with the pseudo-label values assigned to

unlabeled instances, is performed for a certain number of
iterations. Throughout this paper, we use 10 iterations of
pretraining, as different numbers did not improve performance
in preliminary experiments.

5V is the number of neighbors.
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Algorithm 1 ClusterReg Algorithm With MLP and Cross
Entropy Loss Function

Input: Training set S = L ∪U
Output: Trained MLP.

Q ← cluster(S) {cluster is a given clustering algorithm.}
for n = 1 to N do

for k = 1 to N do
P(qn , qk )← sin

( π
2

(
r(qn , qk ) ∗ s(qn , qk )

)κ )
. {Computing the pairwise penalty.}

end for
end for
for all clusters � do

ŷn j = softmax
(∑

k∈� IkL ∗ P(qn , qk ) ∗ ykj
)

{Initialization.}
end for
for all instances n do

φ(n)← the V instances with highest P(qn , qk ) {Finding the nearest neighbors.}
end for
for all instances n, nodes j and weights w j i with inputs xi do

Perform a desired number of updates on w j i according to the delta rule:

�w j i =
⎧
⎨

⎩InL
ynj

f j (n)
+ InU

λ max(qn )

|φ(n)|
∑

k∈φ(n)

P(qk , qn)
ŷk j

f j (n)

⎫
⎬

⎭ ∗ g′(h j ) ∗ xi

end for

The initialization procedure of neural network has a great
impact in the outcome of the training. This procedure ensures
that, at the first iterations, the classifier has more reliable esti-
mates over the labels of unlabeled instances. These estimates
are weighted pairwise penalty values within each cluster. With-
out such technique, the error might degrade, compromising the
final generalization ability of the method.

C. ClusterReg by MLP

In this paper, we apply the proposed loss function to
feedforward MLP networks with one hidden layer. We chose
to use the cross entropy as the loss function and softmax as
the output activation function [20] since they form a natural
pairing that leads to more accurate results [21]. Additionally,
cross entropy may be robust in maintaining its performance
advantage for problems with limited amounts of data [22].
Algorithm 1 describes the ClusterReg method.

The softmax activation function employed in the output
nodes of a MLP is as follows:

f j (n) = softmax(znj ) = exp(znj )∑G
i=1 exp(zni )

(6)

where znj is the linear combination of weights and inputs of
the node j for instance n.

The cross entropy function is presented in

XEnt j (n) = −ynj ∗ ln

(
f j (n)

ynj

)
. (7)

Then, instantiating the loss function with the cross entropy,
the loss function becomes

E = − 1

N

N∑

n=1

G∑

j=1

{
InL ynj ln

(
f j (n)

ynj

)
+ InU

λ max(qn)

|φ(n)|

×
∑

k∈φ(n)

P(qk , qn)ŷkj ln

(
f j (n)

ŷkj

)}
. (8)

We used the scaled conjugate gradient (SCG) algorithm to
train our neural networks since it does not depend on user

parameters [23]. In order to apply our loss function to the
SCG algorithm, we present the derivative of (8) with respect
to the weight w j i of node j in

∂enj

∂w j i
= ∂enj

∂ f j
∗ ∂ f j

∂h j
∗ ∂h j

∂w j i

= −
{

InL
ynj

f j (n)
+ InU

λ max(qn)

|φ(n)|
×

∑

k∈φ(n)

P(qk , qn)
ŷkj

f j (n)

}
∗ g′(h j ) ∗ xi (9)

where g′(h j ) is the derivative of the activation function g(h j )
of neuron j with respect to its total input h j =∑

i w j i ∗ xi .
In this method, we can apply any clustering algorithm.

Four algorithms from various clustering approaches, namely
K -means, STSC, GMM, and fuzzy GK clustering, are
employed in this paper.6 Since the first two clustering algo-
rithms do not output probabilities, we employed a simple
procedure to transform the original output gni for instance
n and cluster i into the probability qni . For K -means, where
gni is the distance from instance n to the cluster centroid i ,
we have

qni =
1−

(
gni∑K

k=1 gnk

)

K − 1
. (10)

STSC outputs a matrix of K eigenvectors with N dimensions,
gni is the nth position of the i th eigenvector, and we have

qni = |gni |∑K
k=1 |gnk|

. (11)

IV. EXPERIMENTS

A. Transductive Settings

In the transductive learning settings, the test instances
are used as unlabeled data during the training phase of
a classifier—the generalization error is the training error
on unlabeled data. Several benchmarks have been designed
and used for this setting in [2]. We selected three artificial
datasets—g241c, g241d, and Digit1—and three real world
datasets—USPS, COIL, and BCI—to evaluate the proposed
algorithm and other state-of-the-art methods.

Among the artificial datasets, g241c was specifically gener-
ated such that the classes correspond to clusters, so the cluster
assumption holds. g241d was specially built so that the cluster
assumption is misleading and the manifold assumption does
not hold. And Digit1 was designed to have a low-dimensional
manifold embedded into a high-dimensional space and does
not show cluster structure.

All six datasets have 2 classes [equally balanced, as shown
in Fig. 6(a) and (c)], 1500 instances, and 241 dimensions;
except for BCI, which has 400 instances and 114 dimensions,
and COIL with 6 classes.

Each dataset has 12 subsets of 10 and 100 labeled instances,
and the algorithms are run 12 times with 10 and 100 labels

6 K -means and GMM are sensitive to the initialization of centroids and
components, respectively. We run these algorithms five times and choose the
result with the least intracluster variance.
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Fig. 6. 2-D projections of true classes and predictions from ClusterReg for g241c and g241d with 10 labeled instances, denoted by dark diamonds. (a) True
classes of g241c. (b) Predictions of ClusterReg with K -means, K = 2, κ = 5, V = 20, for g241c. (c) True classes of g241d. (d) Predictions of ClusterReg
with K -means, K = 4, κ = 5, V = 20, for g241d.

TABLE I

AVERAGE OF ERRORS (%) OF THE RUNS WITH 12 SUBSETS OF LABELED DATA. FOR ALL THE ALGORITHMS, THE TEST SETS ARE FIXED. THE TABLE

REPORTS ONLY THE MEAN OF THE RESULTS, AS IN [2], OF MANIFOLD-BASED ALGORITHMS. BOLD FACE DENOTES THE BEST RESULT

10 labels 100 labels

Algorithm g241c g241d Digit1 USPS COIL BCI g241c g241d Digit1 USPS COIL BCI

1NN 44.05 43.22 23.47 19.82 65.91 48.74 40.28 37.49 6.12 7.64 23.27 44.83
SVM 47.32 46.66 30.6 20.03 68.36 49.85 23.11 24.64 5.53 9.75 22.93 34.31
MVU + 1NN 48.68 47.28 11.92 14.88 65.72 50.24 44.05 43.21 3.99 6.09 32.27 47.42
LEM + 1NN 47.47 45.34 12.04 19.14 67.96 49.94 42.14 39.43 2.52 6.09 36.49 48.64
QC + CMN 39.96 46.55 9.8 13.61 59.63 50.36 22.05 28.2 3.15 6.36 10.03 46.22
Discrete Reg. 49.59 49.05 12.64 16.07 63.38 49.51 43.65 41.65 2.77 4.68 9.61 47.67
SGT 22.76 18.64 8.92 25.36 n/a 49.59 17.41 9.11 2.61 6.8 n/a 45.03
Laplacian RLS 43.95 45.68 5.44 18.99 54.54 48.97 24.36 26.46 2.92 4.68 11.92 31.36
CHM (normed) 39.03 43.01 14.86 20.53 n/a 46.9 24.82 25.67 3.79 7.65 n/a 36.03

ClusterReg 16.90 40.82 12.06 19.42 65.51 45.36 13.38 4.36 3.45 5.25 24.73 33.92

TABLE II

AVERAGE OF ERRORS (%) OF THE RUNS WITH 12 SUBSETS OF LABELED DATA. FOR ALL THE ALGORITHMS, THE TEST SETS ARE FIXED. THE TABLE

REPORTS ONLY THE MEAN OF THE RESULTS, AS IN [2], OF CLUSTER-BASED ALGORITHMS. BOLD FACE DENOTES THE BEST RESULT

10 labels 100 labels

Algorithm g241c g241d Digit1 USPS COIL BCI g241c g241d Digit1 USPS COIL BCI

1NN 44.05 43.22 23.47 19.82 65.91 48.74 40.28 37.49 6.12 7.64 23.27 44.83
SVM 47.32 46.66 30.6 20.03 68.36 49.85 23.11 24.64 5.53 9.75 22.93 34.31
TSVM 24.71 50.08 17.77 25.2 67.5 49.15 18.46 22.42 6.15 9.77 25.8 33.25
Cluster-Kernel 48.28 42.05 18.73 19.41 67.32 48.31 13.49 4.95 3.79 9.68 21.99 35.17
Data-Rep. Reg. 41.25 45.89 12.49 17.96 63.65 50.21 20.31 32.82 2.44 5.1 11.46 47.47
LDS 28.85 50.63 15.63 15.57 61.9 49.27 18.04 28.74 3.46 4.96 13.72 43.97

ClusterReg 16.90 40.82 12.06 19.42 65.51 45.36 13.38 4.36 3.45 5.25 24.73 33.92

and the mean error is reported. As the test sets are fixed, we
directly compare the generalization error, as done in [2]. The
details of the generation procedure of these datasets and the
experimental setup for all the other algorithms mentioned here
can be found in [2, Ch. 21].

For ClusterReg, we performed a grid search for the best
combination of the parameters K , V , κ , and the clustering
algorithm as described later in Section IV-C. The other para-
meters are fixed for all datasets: λ = 0.2, 10 hidden neurons,
and 50 epochs. The predictions of ClusterReg for the first
subset of 100 labeled points of each dataset are presented in
Fig. 6(b) and (d).

The results are grouped in cluster-based and manifold-
based methods, so that we can analyze ClusterReg among

algorithms working under the same assumption. Table I
presents the results of manifold-based classifiers and Clus-
terReg, and Table II gives the methods based on the cluster
assumption. Both tables report the results when there are very
few (10) and more (100) labeled points.

B. Inductive Settings

We selected 14 datasets from the UCI machine learning
repository [24]. Table III summarizes each dataset employed.
Here we present an inductive setup of the experiments, which
means, in contrast to transductive learning, that the classifiers
are able to predict the labels of unseen instances.

As the amount of labeled instances plays an important role
in the performance of the classifiers, in the experimental setup
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TABLE III

SUMMARY OF DATASETS

Datasets No. of instances No. of attributes No. of classes

BUPA 345 6 2

German credit 1000 24 2

Harberman 306 3 2

Horse colic 368 27 2

House Votes 435 16 2

Ionosphere 351 34 2

Pima Indians 768 8 2

WDBC 569 30 2

Contraceptive 1473 9 3

Heart-cleveland 303 13 5

SPECT 267 22 2

Statlog 846 18 4

Transfusion 748 4 2

Yeast 1479 8 9

we analyze three different scenarios: when the proportion
(l/N) is 5%, 10%, and 20%. We transformed these problems
into semisupervised tasks by randomly selecting the proper
amount of labeled instances for each dataset. The labeled
instances of each dataset are different for each ratio, so that
each dataset presents itself as a different problem for each
ratio (l/N).

We performed 10-fold cross-validation for all datasets. As
we are dealing with real-world datasets, we do not know the
true class structure and the corresponding assumption in SSC.
Intuitively, if the dataset has a manifold-like structure, it is
expected algorithms that use the correct assumptions to deliver
a better performance when compared to other SSC algorithms
[2]. We also expect that ensemble-based algorithms that run
with more than two assumptions may yield higher average
performance throughout the datasets [17].

We compare our method to algorithms with different
assumptions (all methods employ the smoothness assumption):
one classifier based on the manifold assumption, i.e., SGT; one
based on the cluster assumption, i.e., TSVM; and two ensem-
ble classifiers that work under the three SSC assumptions, i.e.,
MCSSB and RegBoost.

C. Parameter Tuning

For SGT algorithm, we used all the parameter combinations
from the following setup, making a broader search than in [9]:
the number of neighbors k ∈ (10, 50, 100); the number of first
eigenvectors is d ∈ (10, 40, 80, 100); and the error parameter
c ∈ (100, 102, 103, 104). Although, in [9], the parameter c was
set between 3200 and 12 800, our preliminary experiments
presented better results within our setup. Then, we chose
the combinations of parameters with the best result for each
dataset.

TSVM follows the same assumption as our method. There-
fore, if the dataset presents a real cluster structure, we expect
ClusterReg to deliver more accurate results. In the case where
there is no such characteristic, both algorithms may have sim-
ilar performance. For TSVMs settings, following the setup in

TABLE IV

SUMMARY OF PARAMETER SETTING

Clustering algorithm Grid search with K -means, GMM, STSC, or
Fuzzy GK

λ 0.2

V Grid search in (5, 10, 30)

K Grid search in 1, 2, and 3 times the number
of classes

κ Grid search in (2, 5, 9, 12)

[2], we used a radial basis function (RBF) kernel. The kernel’s
width parameter was chosen as the median of the pairwise
distances of the instances [2]. Unlike in [2], we decided
to make a broader search with C ∈ (100, 101, 102, 103).
In preliminary experiments, lower values of C made the
algorithm too slow and less accurate, and higher values did
not deliver any better results. We performed a grid search with
all combinations of parameters and picked the ones with the
best result for each dataset.

The third method is MCSSB ensemble. It uses all three
SSC assumptions, so we expect our algorithm to outper-
form MCSSB only on some datasets where there is, in
fact, a meaningful cluster structure. As base classifier, we
chose the decision tree, as indicated in [10]. We fixed the
parameter7 C = 10 000. The percentage of the range of
distances used for kernel construction was searched in σ ∈
(0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.8, 1). We also adjusted
the sample size as s ∈ (0.1, 0.5, 0.8, 1). The number of weak
learners was 20 and 50. All the parameter combinations were
tested, and the best result for each dataset is reported.

For the parameters in RegBoost, we followed the guidelines
in [17] to perform grid search for the best combination of
parameters. The number of iterations was 20 and 50. The
number of neighbors was in (3, 4, 5, 6). The resampling rate in
the first iteration was fixed to 0.1. And the resampling rate in
the rest of iterations was in (0.1, 0.25, 0.5). According to our
preliminary experiments, we chose SVM as the base classifier.

For ClusterReg, the parameter λ controls the amount of
regularization in the algorithm. As in [17], we set this trade-
off parameter to one-fifth, i.e., λ = 0.2, of the importance
of supervised error, as we do not know whether the data hold
the cluster assumption. It is advisable to set this value between
0 and 1.

Our preliminary experiments showed that the number of
neighbors V can be set to 30 for most datasets used in this
paper. For datasets not larger than 1500 instances, this number
might represent a comprehensive search for labels in the
neighborhood of an instance. For a small number of neighbors,
ClusterReg may not capture the correct label structure of the
neighborhood. For datasets larger than 1500 instances, V could
be set to around 2% of the number of instances.

We employed four clustering methods from different clus-
tering approaches: K -means, STSC, GMM, and fuzzy GK. We
selected this clustering algorithm by cross-validation, since the

7As demonstrated in [10] and confirmed by our preliminary experiments,
this value should be set to 10 000. Lower and higher values did not improve
the performance.
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Fig. 7. Generalization error from 10-fold cross-validation with different values of λ, V , K , and κ for BUPA dataset. (a) λ. (b) Number of nearest neighbours V .
(c) Number of Clusters K . (d) κ .

TABLE V

MEAN AND STANDARD DEVIATION (%) OF 10-FOLD CROSS-VALIDATION ERROR AT 5% OF LABELED DATA. •/◦ INDICATES WHETHER CLUSTERREG IS

STATISTICALLY SUPERIOR/INFERIOR TO THE COMPARED METHOD, ACCORDING TO PAIRWISE T -TEST AT 95% SIGNIFICANCE LEVEL. WIN/TIE/LOSS

DENOTES THE NUMBER OF DATASETS WHERE CLUSTERREG IS SIGNIFICANTLY SUPERIOR/EQUAL/INFERIOR TO THE COMPARED ALGORITHM

Datasets SGT TSVM MCSSB RegBoost ClusterReg

BUPA 44.95 ± 7.89• 44.60 ± 6.21• 42.04 ± 8.70 49.36 ± 9.99• 37.70 ± 6.76
German credit 31.50 ± 2.68 31.30 ± 3.92 33.70 ± 7.24 29.90 ± 3.11 30.00 ± 4.27
Haberman 34.34 ± 7.67 40.20 ± 7.37• 26.17 ± 7.75◦ 31.37 ± 7.29 33.32 ± 10.11
Horse colic 37.21 ± 6.62 42.93 ± 7.37• 33.14 ± 6.76 33.43 ± 4.47 33.97 ± 7.47
House votes 8.04 ± 5.80 9.41 ± 4.71 19.52 ± 8.14• 10.81 ± 4.47 8.74 ± 5.37
Ionosphere 35.34 ± 9.77• 25.06 ± 9.76• 33.32 ± 8.11• 33.58 ± 15.26• 11.71 ± 6.10
Pima Indians 32.28 ± 5.13 36.33 ± 5.12 34.89 ± 5.98 32.53 ± 7.06 35.40 ± 5.67
WDBC 8.44 ± 2.96• 11.07 ± 5.22• 32.13 ± 9.81• 6.15 ± 4.47 4.57 ± 3.90
Contraceptive 57.65 ± 4.93• 52.15 ± 5.67 62.25 ± 6.02• 57.31 ± 3.84• 52.15 ± 5.02
Heart-Cleveland 44.89 ± 9.96 45.23 ± 8.50 45.20 ± 9.09 45.86 ± 7.74 42.58 ± 9.07
SPECT 28.86 ± 5.07• 20.17 ± 6.96 79.49 ± 6.86• 39.70 ± 8.59• 15.31 ± 7.28
Statlog 42.32 ± 2.81• 40.30 ± 5.45• 74.59 ± 4.34• 74.00 ± 3.93• 36.64 ± 4.79
Transfusion 29.81 ± 19.24 29.16 ± 6.48• 23.81 ± 6.10 24.61 ± 6.46 22.87 ± 4.70
Yeast 49.63 ± 3.31• 44.96 ± 4.85 69.10 ± 3.35• 69.04 ± 3.21• 45.98 ± 5.64

Win/Tie/Loss 7/7/0 7/7/0 7/6/1 6/8/0 /

performance of these algorithms varies depending on the real
underlying structure of the dataset and the type of partition
that these methods attempt to find.8 However, our experiments
demonstrated that the STSC algorithm usually obtains good
results for most datasets. This might indicate that most of
these datasets have clusters with arbitrary shapes that the other
algorithms cannot find. Therefore, we suggest the use of STSC
as the clustering algorithm for ClusterReg.

For the number of clusters K , we recommend to set it, at
least, to the number of classes. We intend to generate clusters
that are as compact as possible. If the class structure is not
captured by the clustering algorithm, we can increase the
number of clusters, so that one class is composed of multiple
clusters. The algorithm will avoid splitting these clusters
and, therefore, may be able to place the decision boundary
outside the class. According to our preliminary experiments,
we recommend, in general, to set K to two times the number
of classes.

The parameter κ controls the importance of each neighbor
according to their similarity (conforming to the clustering
algorithm) to an instance. With a larger κ , we relax the cluster
assumption by allowing the decision boundary to cut through

8 K -means tends to generate hyperspherical clusters [5]. GMM and fuzzy
GK are able to obtain elliptical clusters, whereas STSC is capable of finding
clusters with arbitrary shapes.

relatively distant neighbors. It regulates the size of the portion
of a cluster that we allow the decision boundary to cut through.
According to our preliminary experiments, it should be set
between 1 and 12—values in the middle of this range often
deliver good performance. ClusterReg’s performance degrades,
for all datasets, with values outside this range. According to
our preliminary experiments, one could use κ = 5. In Table IV,
we summarize the tuning of each parameter in ClusterReg.

In Fig. 7, we show the behavior of the generalization error
for different values of λ, V , K , and κ . We selected only a
subset of these values that roughly yielded good performance
to be set in our experiments. Then, we tuned four parameters
for the proposed method: 1) the clustering algorithm was
chosen from K-means, GMM, STSC, and fuzzy GK; 2) the
number of cluster was set as 1, 2, or 3 times the number
of classes; 3) the number of neighbors was picked from
(5, 10, 30); and 4) and κ = (2, 5, 9, 12). The parameter λ
was fixed at 0.2, and the number of hidden nodes and epochs
were 15 and 50, respectively.

D. Inductive Results

Tables V–VII show the mean and standard deviation of
generalization error of all algorithms for all datasets with 5%,
10%, and 20% of labeled data, respectively. We employ a
pairwise t-test with 95% of significance level to compare the
algorithms to ClusterReg, as shown in these tables.



SOARES et al.: SEMISUPERVISED CLASSIFICATION WITH CLUSTER REGULARIZATION 1789

TABLE VI

MEAN AND STANDARD DEVIATION (%) OF 10-FOLD CROSS-VALIDATION ERROR AT 10% OF LABELED DATA. •/◦ INDICATES WHETHER CLUSTERREG

IS STATISTICALLY SUPERIOR/INFERIOR TO THE COMPARED METHOD, ACCORDING TO PAIRWISE T-TEST AT 95% SIGNIFICANCE LEVEL. WIN/TIE/LOSS

DENOTES THE NUMBER OF DATASETS WHERE CLUSTERREG IS SIGNIFICANTLY SUPERIOR/EQUAL/INFERIOR TO THE COMPARED ALGORITHM

Datasets SGT TSVM MCSSB RegBoost ClusterReg

BUPA 34.43 ± 8.73 40.83 ± 6.96• 42.32 ± 9.65• 40.62 ± 8.91• 33.30 ± 5.24
German credit 28.10 ± 6.05 34.70 ± 6.31 30.70 ± 4.35 29.50 ± 4.25 31.90 ± 6.19
Haberman 32.39 ± 11.42 37.62 ± 9.99• 26.48 ± 7.02 26.47 ± 7.63 29.44 ± 7.96
Horse colic 32.36 ± 6.59 35.02 ± 6.10• 33.69 ± 5.05 35.04 ± 5.65• 29.61 ± 7.54
House votes 6.19 ± 3.04 9.40 ± 4.69 15.84 ± 5.55• 7.56 ± 3.86 8.26 ± 3.40
Ionosphere 24.75 ± 8.14• 19.10 ± 7.29• 35.92 ± 10.60• 29.04 ± 16.92• 8.27 ± 5.63
Pima indians 31.38 ± 5.23• 25.65 ± 4.41 34.90 ± 7.54• 27.73 ± 6.83 24.35 ± 3.38
WDBC 8.97 ± 3.19• 6.33 ± 3.83 25.32 ± 9.80• 5.98 ± 3.33 4.39 ± 3.72
Contraceptive 55.06 ± 2.73• 52.21 ± 3.41 72.37 ± 4.51• 57.29 ± 4.05• 50.58 ± 3.47
Heart-Cleveland 38.92 ± 3.77◦ 50.44 ± 6.44 62.72 ± 13.36• 45.84 ± 7.08 47.24 ± 6.38
SPECT 21.35 ± 8.95 19.10 ± 7.91 79.39 ± 5.72• 50.51 ± 7.33• 15.34 ± 7.40
Statlog 40.08 ± 5.18• 32.86 ± 4.66 72.32 ± 8.88• 74.94 ± 4.76• 31.21 ± 5.99
Transfusion 20.98 ± 4.58 29.55 ± 5.45• 23.78 ± 4.37 23.78 ± 4.37 21.78 ± 5.03
Yeast 40.57 ± 3.46 43.48 ± 5.12 67.95 ± 3.83• 68.69 ± 4.21• 42.94 ± 4.09

Win/Tie/Loss 5/8/1 5/9/0 10/4/0 7/7/0 /

TABLE VII

MEAN AND STANDARD DEVIATION (%) OF 10-FOLD CROSS-VALIDATION ERROR AT 20% OF LABELED DATA. •/◦ INDICATES WHETHER CLUSTERREG

IS STATISTICALLY SUPERIOR/INFERIOR TO THE COMPARED METHOD, ACCORDING TO PAIRWISE T-TEST AT 95% SIGNIFICANCE LEVEL. WIN/TIE/LOSS

DENOTES THE NUMBER OF DATASETS WHERE CLUSTERREG IS SIGNIFICANTLY SUPERIOR/EQUAL/INFERIOR TO THE COMPARED ALGORITHM

Datasets SGT TSVM MCSSB RegBoost ClusterReg

BUPA 33.03 ± 9.26 35.66 ± 7.53 44.37 ± 7.87• 42.60 ± 7.58• 31.03 ± 6.69
German credit 26.00 ± 5.42 30.20 ± 4.64 29.80 ± 4.42 26.80 ± 5.55 28.40 ± 3.47
Haberman 24.91 ± 11.19 30.10 ± 8.24 48.88 ± 24.45• 27.49 ± 7.56 26.22 ± 11.79
Horse colic 27.99 ± 5.12 33.94 ± 8.40 34.01 ± 10.76 33.46 ± 10.40 29.33 ± 6.68
House votes 6.21 ± 4.18 5.98 ± 3.11 33.56 ± 13.18• 4.82 ± 3.32 5.29 ± 3.77
Ionosphere 16.54 ± 6.02• 13.95 ± 5.43 34.75 ± 7.92• 11.10 ± 5.92 10.53 ± 4.64
Pima Indians 29.18 ± 7.15• 25.13 ± 5.75 34.90 ± 3.39• 26.18 ± 7.76 22.91 ± 4.63
WDBC 9.31 ± 4.21• 5.45 ± 3.03• 29.69 ± 11.62• 5.28 ± 2.49• 2.82 ± 1.90
Contraceptive 50.38 ± 2.95• 51.39 ± 3.87• 62.66 ± 4.84• 57.30 ± 4.04• 47.05 ± 3.69
Heart-Cleveland 37.31 ± 6.91 46.87 ± 11.75 45.53 ± 7.84 45.86 ± 9.12 43.55 ± 9.65
SPECT 16.89 ± 7.23 18.75 ± 5.98 79.42 ± 3.06• 32.98 ± 3.58• 18.75 ± 6.78
Statlog 31.91 ± 4.50• 23.88 ± 4.62 70.92 ± 6.16• 74.95 ± 3.00• 22.33 ± 3.08
Transfusion 20.32 ± 4.41 25.94 ± 4.05• 23.80 ± 5.43 35.43 ± 5.52• 21.13 ± 4.56
Yeast 38.95 ± 4.00 42.12 ± 2.16 70.65 ± 5.85• 68.70 ± 4.16• 40.84 ± 3.80

Win/Tie/Loss 5/9/0 3/11/0 10/4/0 7/7/0 /

In order to provide more statistical evidences, we also
use the Bonferroni–Dunn statistical test [25]. Such a test
compares, with a high confidence level, multiple algorithms
to a control classifier, i.e., ClusterReg, on multiple datasets.
The performance of a classifier is significantly different from
the control classifier if their average ranks9 over all datasets
differ by at least the critical difference (CD). According to
[26], a threshold of 0.10 is sufficient to perform the statistical
comparison. With 5 classifiers, 14 datasets, and a threshold
of 0.10, the critical difference is 1.34. Table VIII presents the
average ranks of each algorithm over all datasets and Table IX
shows the differences of average ranks of each classifier to
ClusterReg.

9The rank of each algorithm is based on its generalization error in each
dataset. Average ranks are assigned in case of ties. The average ranks for
each algorithm are given in Table VIII.

TABLE VIII

AVERAGE RANKS OF THESE ALGORITHMS WITH DIFFERENT AMOUNTS

OF LABELED DATA

% of
labeled data

SGT TSVM MCSSB RegBoost ClusterReg

5 3.29 3.14 3.57 3.21 1.79
10 2.36 3.36 4.21 3.21 1.79
20 2.14 3.32 4.57 3.29 1.68

E. Computation Time

We also measure the computation time of ClusterReg. In
Fig. 8, we plot the CPU time of each method for 5%, 10%, and
20% of labeled data, so that we can compare the behavior of
each method under different amounts of labels for each dataset.
Each computation time reported is the average time and its
standard deviation of the 10-fold cross-validation executions
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Fig. 8. Plots of mean and standard deviation of the computation time of 10-fold cross-validation executions for 5%, 10%, and 20% of labeled data, on
the datasets where ClusterReg obtained the best results. (a) Contraceptive. (b) Statlog. (c) Ionosphere. (d) WDBC. (e) BUPA. (f) Transfusion. (g) SPECT.
(h) Yeast.

TABLE IX

BONFERRONI–DUNN STATISTICAL TESTS TO COMPARE MULTIPLE

CLASSIFIERS TO CLUSTERREG ON MULTIPLE DATASETS. WE SHOW THE

DIFFERENCE IN AVERAGE RANK OF EACH ALGORITHM TO CLUSTERREG.

IF SUCH DIFFERENCE IS HIGHER THAN THE CRITICAL DIFFERENCE,

CLUSTERREG IS SIGNIFICANTLY SUPERIOR TO THE ALGORITHM. THE

CRITICAL DIFFERENCE FOR THRESHOLD OF 0.10 WITH 5 ALGORITHMS

(INCLUDING CLUSTERREG) AND 14 DATASETS IS 1.34

Percent of labeled data SGT TSVM MCSSB RegBoost

5 1.5 1.36 1.79 1.43
10 0.57 1.57 2.43 1.43
20 0.46 1.64 2.89 1.61

that delivered the error rates already shown in Tables V–VII.
Specifically, we picked eight datasets where ClusterReg
obtained the best performance to show the computation time,
namely, Contraceptive, Statlog, Ionosphere, WDBC, BUPA,
Transfusion, SPECT, and Yeast (Fig. 8(a)–(h), respectively).
In order to make a fair comparison, we use only the single
classifiers used in the inductive setup: SGT, TSVM, and
ClusterReg.

We measured the CPU time of all algorithms in an Intel
Core 2 Quad CPU Q8200 with 2 GB of memory. ClusterReg
was implemented using MATLAB. The implementation can be
further optimized.

V. DISCUSSION

In the transductive experiments, we analyze two types
of algorithms: manifold and cluster-based classifiers. Both
datasets present a difficult task for manifold-based algorithms
since they do not satisfy manifold assumption. In contrast,
g241c is designed as a suitable problem to cluster-based

classifiers, while g241d and Digit1 are challenging problems
to the existing cluster-based algorithms in the literature.

Therefore, ClusterReg outperformed the manifold-based
algorithms on g241c and g241d, and, as expected, delivered
better generalization performance than all other cluster-based
classifiers on both datasets. The exception was SGT in g241d
with 10 labels. This might indicate, for this case, that the graph
neighborhood built by SGT properly represents the underlying
data structure. ClusterReg also yielded competitive perfor-
mance among cluster-based and manifold-based algorithms on
the real-world datasets with 10 and 100 labeled instances. In
particular, ClusterReg had good performance on BCI when
compared to both manifold and cluster-based algorithms. This
might indicate that, in this case, ClusterReg was able to
properly use the information of few labeled instances.

We have a dataset with a clear cluster structure (g241c),
where the cluster-based methods should perform sufficiently
well, and datasets tailored to misguide such algorithms (g241d
and Digit1). So, when compared to these algorithms, Clus-
terReg manages to make better use of the cluster structure
and the few labeled instances available to find a suitable
decision boundary. It is important to highlight that the results
presented in Table II were achieved using the K -means
algorithm with five replicates with random initialization. This
may indicate that the other methods fail to find the correct
gap between classes while a simple clustering algorithm can
find the clusters. This fact demonstrates how useful clustering
techniques can be for semisupervised classifier under the
cluster assumption.

It is important to point out that ClusterReg is more robust
than TSVM when classes do not correspond to clusters, which
is the case for g241d and Digit1, shown in Table II. This fact
may indicate that the proposed classifier is able to exploit the
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information from the few labeled data in a more effective way
than TSVM, since the unlabeled data do not bring very useful
knowledge to cluster-based classifiers.

For the inductive setting, Tables V–VII show the gener-
alization error and statistical test results for the employed
algorithms with the presence of 5%, 10%, and 20% of labeled
data, respectively. And Table IX presents the results for the
Bonferroni–Dunn statistical test.

When compared to the ensemble methods MCSSB and Reg-
Boost, ClusterReg delivered significantly better results under
all amounts of labeled data, as confirmed by pairwise t-test and
Bonferroni–Dunn test, in Tables V–VII and IX, respectively.
Besides being ensemble approaches, these classifiers differ
from ClusterReg mainly in the use of SSC assumptions. They
use both manifold and cluster assumptions. When only one of
them is present and/or the other assumptions are misleading,
a more specialized algorithm, such as ClusterReg, might be
more effective. Moreover, RegBoost seemed to be affected by
the number of classes: for binary problems, it delivered better
accuracy than in multiclass problems. ClusterReg is inherently
multiclass and did not show such shortcoming.

ClusterReg showed similar results to SGT with 10% and
20% of labeled data. And, for 5% of labeled points, it
performed significantly better, as confirmed by the t-test
and Bonferroni–Dunn test. This indicates that ClusterReg is
more robust to few labeled instances. We expected to have
contrasting results to SGT across the datasets, as the actual
structures of real-world datasets are unknown. However, these
results may suggest that ClusterReg makes better use of
the labeled instances when data distribution does not help
enough.

Similar to ClusterReg, TSVM also possesses the cluster
assumption. However, in the case where the cluster assumption
holds, we expect ClusterReg to perform better when very few
instances are available. As mentioned before, ClusterReg is
more robust than TSVM to the position of the few labeled
instances in the cluster, as it uses the clustering partition to
find the decision boundary, whereas TSVM seeks the largest
margin between classes, which can lead to the wrong decision
boundary in the presence of overlapping classes.

In fact, the pairwise t-test results support our expectations.
For 20% of labeled data, ClusterReg performed statistically
better on three problems. With 10%, it delivered significantly
superior results in five cases. For 5% of labeled data, Clus-
terReg performed statistically better on seven datasets. Fur-
thermore, according to the Bonferroni–Dunn test (Table IX),
ClusterReg is statistically superior to TSVM for all amounts of
labeled data. This means that, when compared to the cluster-
based algorithm TSVM, our proposed method can make better
use of labeled instances and it is more robust for overlapping
classes and misleading cluster structures with few labeled
instances.

Even when the datasets do not follow cluster assumption,
the experiments suggest that ClusterReg could still outperform
TSVM. This is due to the balance of two terms in the loss
function. When the cluster assumption does not hold, the
second term in (8) might not be reliable; however, the first
term may be able to compensate such a misleading value

more effectively than TSVM does. That is, the experiments
indicate that the supervised learning in ClusterReg may be
more effective than in TSVM.

Regarding the computation time, SGT is the least time
consuming method. However, since SGT has the manifold
assumption, it may not be suitable for datasets where there is a
cluster structure [2]. Focusing on the context of cluster-based
methods, ClusterReg presented a competitive performance
when compared to the cluster-based classifier TSVM on most
of the eight datasets with different amounts of labeled data, as
shown in Fig. 8. Furthermore, we can notice that the difference
of execution time across 5%, 10%, and 20% of labeled data for
ClusterReg is not as high as in TSVM, which might indicate
that the computation time of ClusterReg is more stable under
different amounts of labels.

All the experiments of ClusterReg were performed with a
fixed number of hidden nodes and epochs. The results may
be improved with a fine-tuning of these parameters. However,
the computation time is likely to increase as these parameters
change for greater numbers. In order to make the algorithm
less time consuming, we could employ faster classifiers, such
as RBF networks.

VI. CONCLUSION

We proposed a new SSC algorithm that takes advantage
of partitions resulting from a clustering algorithm and uses
such information to regularize the training of a classifier.
The transductive experimental setting, with synthetic and real-
world datasets, assessed the generalization ability of the new
method in different scenarios where the cluster assumption
holds and when it is misleading. In the inductive case, we
used real-world datasets with different ratios of labeled data
to evaluate ClusterReg, along with other methods with various
approaches to the SSC assumptions.

Both sets of experiments confirmed that the proposed
method is able to improve generalization performance under
various scenarios when the cluster assumption holds. Among
the reasons for these improvements, we can point out Cluster-
Reg’s ability to deal with the potential presence of overlapping
classes and its robustness to the particular situation of each
labeled instance in the clusters.

When the cluster assumption is not satisfied, the perfor-
mance of cluster-based approaches will degrade to some
extent. In future work, we intend to design a cluster-based
technique that is able to relax the cluster assumption so that
its accuracy does not decrease significantly with the number
of labeled instances, as noticed in other SSC algorithms.
Furthermore, SSC methods often have to handle very large
amounts of data, and hence efficiency is important. Therefore,
we also aim to decrease the computation time of ClusterReg
by employing faster classifiers and clustering algorithms.
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