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Ensemble 

…… 

model 1 

model 2 

model k 

Ensemble model 

Ensemble is a group of learners that work 

together as a committee  to solve a problem. 

Combine multiple 

models into one! 

Data 



One Example 
• Certain problems are just too difficult for a given classifier to solve  

• Separate two classes “X” and “O” 

• The weak classifier can only generate circular decisions  

A complex decision that cannot be 

realized by circular boundaries 
A combination of several circular 

boundaries can realize this complex 

boundary. 

Images from wikipedia 



Why Ensemble Works? 

    A complex problem can be decomposed into multiple 

sub-problems that are easier to understand and solve 

(divide-and-conquer approach) 

Ensemble model improves 

accuracy and robustness 

over single model methods 



Stories of Success 

• Million-dollar prize 

– Improve the baseline movie 

recommendation approach of 

Netflix by 10.06% in accuracy 

– The top submissions (e.g. 

Pragmatic Chaos & The Ensemble) 

all combine several teams and 

algorithms as an ensemble 

• Data mining competitions 

– Classification problems 

– Winning teams employ an 

ensemble of classifiers 



Overview of Ensemble Methods 

• Mixture of Experts [Jordan94] 

Divide and conquer 

• Bagging [Breiman96]  

  Bootstrapping on data 

• Boosting [Schapire98] 

  Recursively reweighting data. 

• Random Forest [Breiman01] 

  Randomly pick features and data to generate different classifiers 

(decision trees). 

• Negative Correlation Learning [Liu99] 

  Minimize the empirical training error and the correlation within the 

ensemble to generate ensembles. 
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Diversity Generation Methods 

• Diversity Encouragement by Data Manipulation 

 

• Diversity Encouragement by Architectures 

Manipulation  

 

• Diversity Encouragement by Hypothesis Space 

Traversal  

 



Diversity Hierarchy 

 

 



Diversity Encouragement by Data Manipulation 

• Data Distribution Manipulation 

– Bagging and Boosting   

• Feature set Manipulation 

– Feature Subspace 

• Feature & Distribution Manipulation 

– Random Forest 

 

• Weak Learner is required!!! 

 



Bootstrap & Bagging (1) 

• Bootstrap 

– Sampling with replacement 

– Contains around 63.2% original records in each 

sample 

• Bootstrap Aggregation 

– Train a classifier on each bootstrap sample 

– Use majority voting to determine the class label 

of ensemble classifier 

[Breiman96] 



Bootstrap & Bagging (1) 

Bootstrap samples and classifiers: 

Combine predictions by majority voting 

from P. Tan et al. Introduction to Data Mining. 



Bootstrap & Bagging (3) 

• Error Reduction 

– Under mean squared error, bagging reduces variance 

and leaves bias unchanged 

– Consider idealized bagging estimator:  

– The error is 

 

 

 

 

– Bagging usually decreases MSE 

))(ˆ()( xfExf z

222

22

)]([)](ˆ)([)]([

)](ˆ)()([)](ˆ[

xfYExfxfExfYE

xfxfxfYExfYE

z

zz





from Elder, John.  From Trees to Forests and Rule Sets - A Unified 
Overview of Ensemble Methods.  2007. 



Boosting (1) 

• Principles 
– Boost a set of weak learners to a strong learner 

– Make records currently misclassified more important 

• Example 
– Record 4 is hard to classify  

– Its weight is increased, therefore it is more likely 

to be chosen again in subsequent rounds 

from P. Tan et al. Introduction to Data Mining. 



Boosting (2) 

• AdaBoost 

– Initially, set uniform weights on all the records 

– At each round 

• Create a bootstrap sample based on the weights 

• Train a classifier on the sample and apply it on the original 

training set 

• Records that are wrongly classified will have their weights 
increased 

• Records that are classified correctly will have their weights 
decreased 

• If the error rate is higher than 50%, start over 

– Final prediction is weighted average of all the 

classifiers with weight representing the training 

accuracy 



Boosting (3) 

• Determine the weight 

– For classifier i, its error is 

 

– The classifier’s 

importance is 

represented as: 

– The weight of each 

record is updated as: 

– Final combination: 
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Boosting (4) 

• Explanation 

– Among the classifiers of the form:  

 

 

– We seek to minimize the exponential loss function: 

 

 

 

– Not robust in noisy settings 
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Diversity in Boosting 

 It seems error diversity and generalization error are 

negatively correlated.  



Random Forests (1) 

• Algorithm 

– Choose T — number of trees to grow 

– Choose m<M (M is the number of total features) —

number of features used to calculate the best split at 

each node (typically 20%) 

– For each tree 

• Choose a training set by choosing N times (N is the number of 

training examples) with replacement from the training set 

• For each node, randomly choose m features and calculate the 

best split 

• Fully grown and not pruned 

– Use majority voting among all the trees 

[Breiman01] 



Random Forests (2) 

• Discussions 

– Bagging + random features 

– Improve accuracy 

• Incorporate more diversity and reduce variances 

– Improve efficiency 

• Searching among subsets of features is much faster 

than searching among the complete set 

 



Diversity in Random Forests 

• Diversity is important in the beginning.  



Diversity Generation Methods 

• Diversity Encouragement by Data Manipulation 

 

• Diversity Encouragement by Architectures 

Manipulation 

 

• Diversity Encouragement by Hypothesis Space 

Traversal  

 



Diversity Encouragement by Architectures Manipulation 

• Hybrid Ensemble 

– Different base 

learners: MLP, RBF, 

decision tress, KNN… 

 

– Kind of mixture of 

experts 

 

– Perform well but 

without solid 

foundations 

 
[Islam03] 

…… 

Neural Networks 

KNN 

SVM 

Data 



Architectures Manipulation 

• Evolutionary neural networks approaches:  

− number of hidden nodes – least useful  

− Network topology  

− Cooperative training algorithm, negative 

correlation learning  

− Ensemble generation by combining final 

populations 

− Evolutionary neural networks methods: 

Cooperative neural-network ensembles (CNNE)  

 



DIVerse and Accurate Ensemble Learning Algorithm (DIVACE) 

• Level 1: 

Methodological 

difference 

 

• Level 2: Training 

set structure  

 

• Level 3: Predictor 

intricacies  

 

 

[Chandra06] 



Genotypic Representation of an Individual 

 

[Chandra06] 



Diversity Generation Methods 

• Diversity Encouragement by Data Manipulation 

 

• Diversity Encouragement by Architectures 

Manipulation 

 

• Diversity Encouragement by Hypothesis Space 

Traversal  

 



Diversity Encouragement by Hypothesis Space Traversal 

• Penalty methods by adding correlated terms  

 

 

 

      is a weigthing paramter on the penalty term R 

• This is not a regularization term in the sense of 

Tikhonov regularization. 

• Negative Correlation Learning = “Do not make 

error in the same place” 
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Theoretical analysis of Ensemble and Diversity 

– Error Decomposition for Regression and 

Classification Ensembles  

– Bias, Variance Tradeoff 

– Bias, Variance and Covariance Tradeoff  

 

 



Regression Ensemble Error Decomposition 

The Ambiguity Decomposition given         and  
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Application 

• Ambiguity has been used in many ways: 

– Pattern selection [Krogh95] 

– Feature selection [Opitz99] 

– Optimising topologies [Opitz96] 

– Optimising combination [Krogh95] 

– Optimising training time [Carney99] 

 

– Optimising network weights (NC Learning)  
 



Diversity for Classification: Pair-wise diversity measures 

• Q statistics [Yule1900] 

– The coefficient of association for two classifiers [-1,1] 

•  Kappa statistics [Dietterich00] 

– The chance-corrected proportional agreement 

• Correlation coefficient [Sneath73] 

– The strength and direction of a linear relationship 

between two classifiers 

• Disagreement measure [Ho98] 

– The ratio between the number of observations on which 

one classifier is correct and the other is incorrect to the 

total number of observations 



Non-pairwise diversity measures 

• Entropy measure [Cunningham00] 

– Measure the entropy measure 

• Kohavi-Wolpert variance [Kohavi96] 

– Based on bias-variance decomposition of expected 

misclassification rate 

• Measure of difficulty [Hansen90] 

– measure the distribution of difficulty and in order to 

capture the distribution shape 

• Generalized diversity and Coincident failure diversity 

[Partridge97] 

– Based on the definitions of minimal diversity (randomly picked 

classifier failing) and maximal diversity (one incorrect, others 

correct) 



• Given the definition of 0/1 classification error function    

 

 

 

    and the definition of ensemble  

 

The error decomposition:   

Classification Ensemble Error Decomposition 
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Classification Diversity  

• The right hand side can be written as: 

 

 

    where       measures the difference 

between the number of positive and negative 

votes. 
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Bias and Variance 

• Ensemble methods 

– Combine learners to reduce variance 

 

 

from Elder, John.  From Trees to Forests and Rule Sets - A Unified 
Overview of Ensemble Methods.  2007. 
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Bias ,Variance and Covariance in Ensemble 

and if  f  is a simple-average combination of other learning machines : 
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Bias ,Variance and Covariance in Ensemble 

 

 

 

 

 

 

 
 

• This decomposition provides the theoretical grounding of negative correlation 

learning which takes amount of correlation together with the empirical error in 

training neural networks. 

  if  f  is a simple-average combination of other learning machines : 
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Manage Diversity in Ensemble  

 

– Negatively Correlated Ensembles for Diversity 

Management  

– Various Training Algorithms  

– Regularized Negatively Correlated Ensembles 

with Bayesian Inference  
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Negatively Correlated Ensembles 

•Bagging, Random forests, often train ensemble members 

independently. 

•Negative correlation learning (NCL) aims to negatively 

correlate errors of ensemble member. Make it cooperative.  

•NCL uses a number of neural networks as ensemble members. 

•Given the data set                 , the training function of a neural 

network is listed as follows: 

 

 

},{
1nn yx

N

n





N

n

nn

N

n

n yxfE
1

2

1

))((min



Formulation of NCL 

•The training of NCL is implemented by minimized the 

following error function for every network 
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Over fitting of Neural Network 

•This formulation that only minimizes the training error might lead to overfitting 

 

 

•Weight Decay or some other model selection techniques are used to control the 

complexity of neural networks, such as 

 

 

 

•Recall the formulation of NCL, when          , is  

 

 

 

Without regularization, this formulation might lead to overfitting.  
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Under fitting and over fitting 

The parameter of      is very important to the system.  

Improper one will lead to either underfitting or overfitting. 

Bayesian  methods can be used to find the “optimal”       value under Bayesian 

framework.   

Large      value 

Under fitting  

 Small       value 

Over fitting  
Relationship between under 

fitting and overfitting.  





Regularized Negative Correlation Learning 

Control the complexity to avoid overfitting of 

NCL 

 

 

The error function for network i can be 

obtained as follows: 
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Bayesian Inference for Parameters(1) 

• Assume targets are sampled from the model 

with additive/independent noise 

 

 

• According to the Bayesian theorem, 

 

    where    is the weight vector,     and     are 

hyperparameters. 
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Bayesian Inference for Parameters(2) 

• Assume weight vector of each network     is a 

Gaussian distribution with mean zero and 

variance      . 

 

• The prior of the weight vector w is obtained 

as follows 
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Bayesian Inference for Parameters(3) 

• Omit all the constants and the normalization 

factor, and apply Bayesian theorem: 

 

 

• Taking the negative logarithm, the maximum 

of the posterior w is obtained as  
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Bayesian Inference for Parameters (4) 

• According to Bayesian rule, the posteriors of          

    and     are obtained by 

 

 

  where a flat prior is assumed on the hyperparameters. 
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NCL: with and without Regularization (1) 

• Two synthetic data sets are used with randomly 
generated noisy points, denoted with circle points. 

LEFT: Synth Problem. Green (RNCL), Black  (NCL) 

RIGHT: Gaussian Problem. Green (RNCL), Black  (NCL) 



NCL: with and without Regularization (2) 

 

 

 

 

 

 

 Classification error of RNCL (solid), NCL (circled), and NCL (dashed) versus noise levels. 

 A statistical t-test (95% significance level) is conducted to compare RNCL with NCL 

 The triangles represent those points where RNCL significantly outperforms NCL 

RNCL are more robust against noise.  



Diversity Management with Semi-supervised Learning  

– Ensemble Methods for Semi-supervised 

Problems  

 

– Diversity Encouragement in both Labelled and 

Unlabeled Space  

 

 



Semi-supervised NC Ensemble 

• Given labelled set                               and 

unlabelled set  

• The training error is: 
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Bounds on the Penalty Coefficients 

• Hessian matrix non-positive definite 

 

 

 

 

 

• RBF networks  

• Negative λ        positively correlated ensemble 

• large positive λ      non-positive definite Hessian. 
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SemiNCL for SinC (1) 

 

 

 

 

 

 

 SemiNCL without unlabelled data SemiNCL with 2000 unlabelled points 



SemiNCL for SinC (2) 

• SemiNCL achieves better performance by encouraging diversity,  

• compensates the increment of accuracy, in both labelled and unlabelled 

areas. 

SemiNCL with Different Unlabelled Data 



Implementations 

• Gradient Descent 

– Time consuming 

– Optimize RBF centers with widths 

– Better performance with more time 

• Matrix Inversion 

– No local optimization 

– Fast for some problems 

– Not scalable  

• Distributed SemiNCL 

– Fast implementation 

– Approximate the cost function 



Distributed Semi NCL 

 

 

 

 

 

 

 



Diversity with Ensemble Pruning  

– Selection based Ensemble Pruning  

– Weight based Ensemble Pruning  

– Empirical, Greedy and Probabilistic Ensemble 

Pruning Methods  

 



Selection based Ensemble Pruning  

• Classifier ranking and pick the best ones 

• KL-divergence pruning 

• Kappa pruning 

• Kappa-error convex hull pruning 

• Back-fitting pruning 

• maximizing the pair-wise difference between 

the selected ensemble members 

• several pruning algorithms for their 

distributed data mining systemHeuristics  

 

 

[Chawla04] 



Weight based Ensemble Pruning (1) 

• The optimal combination weights minimizing the mean 

square error (MSE) can be calculated analytically 

 

 

 where C is the correlation matrix with elements indexed as 

 

 

 

 

• This approach rarely works well in real-world applications.  

• ill-conditioned matrix C due to the fact that there are often 

some estimators that are quite similar in performance 
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Weight based Ensemble Pruning (2) 

• Least square (LS) pruning 

– Minimize the ensemble MSE 

– Lead to negative combination weights 

– negative combination weights are unreliable [Ueda00] 

• Genetic algorithm pruning [Yao98] [Zhou02]  

– weigh the ensemble members by constraining the weighs to be positive 

– sensitive to noise. 

 

• Mathematical Programming [Zhang06]  

– mathematical programming to look for good weighting schemes. 

 

• Bayesian Automatic Relevance Determination (ARD) 

Pruning [Tipping01] 

– Sparse prior for sparse ensembles 

 



ARD Pruning 

• weighted-based ensemble pruning can be 

viewed as a sparse Bayesian learning 

problem by applying Tipping's relevance 

vector machine 

 



Automatic Relevance Determination (ARD) 

• Give the classifier weight  independent Gaussian 

priors whose variance,      , controls how far away 

from zero each weight is allowed to go:  

 

 

• Maximize            , the marginal likelihood of the 

model, with respect to    .  

• Outcome: many elements of     go to infinity, which 

naturally prunes irrelevant features in the data.  
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Ensemble Selection by Expectation Propagation 

• Small ensembles can be better than large 

ensembles in terms of accuracy and 

computational complexity [Zhou02] 

 

 

 

• Adopt truncated Gaussian prior for weight 

vectors to prune some ensemble members 

 

 



Truncated Gaussian Prior 

• Negative weight vectors 

are neither intuitive nor 

reliable. 

• Bayesian inference is 

intractable with truncated 

prior 



Ensemble Selection by Expectation Propagation 

• Expectation propagation (EP) a integral approximating algorithm. 

 

• EP adopts a family of Gaussian functions to approximate each 

term by minimizing the KL-divergence between the exact term 

and the approximation term, and then combines these 

approximations analytically to obtain a Gaussian posterior. 

 

 

 

 

 



EP for Ensemble Selection 

 

• Prior  

 

 

• Likelihood 

 

  Where                                         is the Gaussian cdf. 

 

• Posterior 



Hyperparameters Optimization 

• Update the hyperparameter alpha based on 

the type-II marginal likelihood, also known as 

the evidence. 

 

• According to the updated value, we choose 

to add one learner to the ensemble, delete 

one ensemble member or re-estimate the 

hyperparameter alpha. 

 



Expectation Propagation and MCMC 

• The posteriors of combination weights calculated by MCMC 
(30000 sampling points) and EP. The color bar indicates the 
density (the number of overlapping points) in each place. 
 



Decision Boundary by EP 

• Comparison of EP-pruned ensembles and un-pruned Adaboost 
ensembles on Synth and banana data sets. The Adaboost 
ensemble consists of 100 neural networks with random 
selected hidden nodes (3-6 nodes). 



Regression 

 

Bagging Random Forest 



 

Bagging 

Random 

Forest 

Adaboost 

Classification 

Problems 



Diversity Management via Multi-objective Optimization  

– Diversity, Accuracy, Regularization with 

Generalization  

– Multi-objective Optimization to optimize the 

trade-off  

 



Multi-objective Optimization (MOO) 

• Multi-objective optimization is the 

optimization of conflicting objectives. 
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Difference Between Optimization and Learning 

• Optimization: optimal solutions 

 

• Learning: generalized solutions 

 

• Generalized solutions require proper model 

formulations, e.g. regularization to control 

model complexity 

 

 



Ensemble with MOO 

• Objective of Performance 
    This objective measures the empirical mean square 

error based on the training set. 

 

• Objective of Correlation 
   This objective measures the amount of variability among 

the ensemble member and this term can also be treated 
as the diversity measure 

 

• Objective of Regularization 
    This objective causes the weights to converge to smaller 

absolute values than they otherwise would. 

 



Evolutionary Neural Network Operators 

• Component networks 

– Radial basis function (RBF) network 

– multilayer perceptron 

• Crossover Operators 

– Exchange the basis functions 

– Exchange the topology 

• Mutation Operators 

– Deleting a weight connection 

– Adding a weight connection 

– Deleting one basis function. 

– Adding one basis function. 



MOO Algorithm & Fitness Evolution 

State-of-the-art MOO algorithms 

• Multiobjective Evolutionary Algorithm Based on 
Decomposition (MOEA/D) [Zhang07] 
– Decomposes a MOO problem into a number of different 

single objective optimization subproblems  

– Use neighbourhood relations among these subproblems 

 

• NSGA II and fitness sharing [Srinivas95] 
– nondominated sorting algorithm  

– fitness sharing for more diversity in the search. 

 



NSGA-II  

• See:  Kangal resources, incl. K. Debs’ web-

pages http://www.iitk.ac.in/kangal/pub.htm 

 Pareto front for 

multiple optimal sets 

 Use of ‘crowding’ for 

well-spread set of 

non-dominated gene 

sets  

 Find smallest set of 

genes that classify 

samples in training 

set and extrapolate 

to a hold-out set 

 Various MOEA 

variants since 

developed by others 



Experiments: Synthetic Data Sets (1) 

• Comparison of MRNCL and MNCL on four synthetic classification data 
sets. Two classes are shown as crosses and dots.  

• LEFT:   Synth problem 

• RIGHT: Overlap problem 



Experiments: Synthetic Data Sets (2) 

• LEFT:  Bumpy problem  

• Right:  Relevance problem 

• The separating lines were obtained by projecting test data over 
a grid. The lines in green(thin) and black(thick) were obtained 
by MRNCL and MNCL, respectively. 



Evolutionary Information (Banana) 

 

• Left: the summation of the mean of three objectives, training error, regularization and 

       correlation in different generations. The right-y axis (blue line with triangles) is the standard 
deviation of the summation.  

• Right: the mean value of these three objectives in different generations. The arrow points 

       from the beginning (Generation = 1) to end (Generation = 100). 



Evolutionary Information (Overlap) 

 

 

 

 

 

 

 

 

 Although the direct summation of the three objectives into one term is an 

inaccurate estimation, as we do not consider the combination weights 

and we use the mean value instead of summation of the three objectives 

for every individual, the summation does reflect the tendency of MRNCL 

in the multiobjective algorithm. 



Further Topics and Open Discussions  

• Online Ensemble Learning  

– Online Bagging 

– Online Boosting 

• Imbalanced Ensemble Learning  

 



Negative Correlation On-line Learning 

On-line Bagging 

• When the number of examples tends to infinite, each base 
model contains K copies of each of the original training 
examples, where the distribution of K tends to a 
Poisson(1) distribution. 

 

• Inputs:  

– Example d to  

 be learnt. 

– Current  

 ensemble h. 

– On-line learning  

 algorithm Lo. 

 



From Off-line to On-line Boosting 

Input Input 

- set of labeled training samples 

- weight distribution over samples 

- ONE labeled training sample 

- strong classifier to update 

- initial sample importance 

For n=1 to N 

- train a weak classifier using samples and 
weight distribution 

- calculate error 

- calculate confidence 

- update weight distribution 

End 

For n=1 to N 

- update weak classifier using samples 
and importance 

- update error estimate 

- update confidence 

- update importance 

End 

Algorithm Algorithm 

Off-line On-line 



Online Boosting [Oza, Russell 01] 

Input 

- ONE labeled training sample 

- strong classifier 

for n=1 to N  // number of weak classifiers 

- update weak classifier using sample and 
importance 

- update error estimate 

- update classifier weight 

- update sample importance 

end 

Algorithm 

Result 

Feature space 

- initial sample importance 



The Class Imbalance Problem I 

• Data sets are said to be balanced if there are, 
approximately, as many positive examples of the 
concept as there are negative ones. 

 

• There exist many domains that do not have a 
balanced data set. 

 

• Examples: 
– Fault detection 
– Fraud detection  

 

 



Nature of the Imbalanced learning problem(2/3) 

• Relative imbalance and imbalance due to 

rare instances(absolute rarity) 

• Data set complexity 

• Primary determining factor of classification 

deterioration 

• Within-class imbalance 
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The Class Imbalance Problem 

 The problem with class imbalances is that standard 
learners are often biased towards the majority 
class.  

 

 That is because these classifiers attempt to reduce 
global quantities such as the error rate, not taking 
the data distribution into consideration. 

 

 As a result examples from the overwhelming class 
are well-classified whereas examples from the 
minority class tend to be misclassified.  

 



Supervised Classification Techniques 

• Manipulating data records (oversampling / 

undersampling / generating artificial examples)  

 

• Cost-sensitive classification techniques 

 

• Ensemble based algorithms (SMOTEBoost, 

RareBoost 



Manipulating Data Records 

•Over-sampling the rare class 

– Make the duplicates of the rare events until the data set contains as many 

examples as the majority class => balance the classes 

– Does not increase information but increase misclassification cost 

•Down-sizing (undersampling) the majority class  

– Sample the data records from majority class (Randomly, Near miss examples, 

Examples far from minority class examples (far from decision boundaries)  

– Introduce sampled data records into the original data set instead of original data 

records from the majority class 

– Usually results in a general loss of information and overly general rules 

•Generating artificial anomalies 

– SMOTE (Synthetic Minority Over-sampling TEchnique)  - new rare class 

examples are generated inside the regions of existing rare class examples 

– Artificial anomalies are generated around the edges of the sparsely populated 

data regions  

– Classify synthetic outliers vs. real normal data using active learning  
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SMOTE’s Informed Oversampling Procedure 

: Minority sample 

: Synthetic sample 

… But what if there 

is a majority sample 

Nearby? 

: Majority sample 



Metrics for Performance Evaluation 

• Focus on the predictive capability of a model 

– Rather than how fast it takes to classify or build 

models, scalability, etc. 

• Confusion Matrix: 

PREDICTED CLASS 

 

 

ACTUAL 

CLASS 

Class=Yes Class=No 

Class=Yes a b 

Class=No c d 

a: TP (true positive) 

b: FN (false 

negative) 

c: FP (false 

positive) 

d: TN (true 

negative) 



Metrics for Performance Evaluation 

 

 

 

 

 

 

• Most widely-used metric: 

 

PREDICTED CLASS 

 

 

ACTUAL 

CLASS 

Class=Yes Class=No 

Class=Yes a 

(TP) 

b 

(FN) 

Class=No c 

(FP) 

d 

(TN) 

FNFPTNTP

TNTP
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Limitation of Accuracy 

• Consider a 2-class problem 

– Number of Class 0 examples = 9990 

– Number of Class 1 examples = 10 

 

• If model predicts everything to be class 0, 

accuracy is 9990/10000 = 99.9 % 

– Accuracy is misleading because model does not 

detect any class 1 example 

 

 



Cost-Sensitive Measures 
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Open Discussions 

• How to further use diversity to encourage 

performance of ensemble? 

 

• Is there any way that let us know more on 

ensemble?  

 

• White box ensemble?  



Tutorial on Ensemble of Classifiers 

• Survey of Boosting from an Optimization 

Perspective. Manfred K. Warmuth and S.V.N. 

Vishwanathan. ICML'09, Montreal, Canada, June 

2009. 

• Theory and Applications of Boosting. Robert 

Schapire. NIPS'07, Vancouver, Canada, 

December 2007. 

• From Trees to Forests and Rule Sets--A Unified 

Overview of Ensemble Methods. Giovanni Seni 

and John Elder. KDD'07, San Jose, CA, August 

2007. 
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The End … is the Beginning! 

 

 

 

Thanks for your attention! 

 
 Slides and more references available at  

http://www.cs.bham.ac.uk/~hxc/tutorial/ 


