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ABSTRACT
Time series prediction is an intensively studied topic in data mining.

In spite of the considerable improvements, recent deep learning-

based methods overlook the existence of extreme events, which
result in weak performance when applying them to real time series.

Extreme events are rare and random, but do play a critical role in

many real applications, such as the forecasting of financial crisis

and natural disasters. In this paper, we explore the central theme of

improving the ability of deep learning on modeling extreme events

for time series prediction.

Through the lens of formal analysis, we first find that the weak-

ness of deep learning methods roots in the conventional form of

quadratic loss. To address this issue, we take inspirations from

the Extreme Value Theory, developing a new form of loss called

Extreme Value Loss (EVL) for detecting the future occurrence of

extreme events. Furthermore, we propose to employ Memory Net-

work in order to memorize extreme events in historical records.

By incorporating EVL with an adapted memory network module,

we achieve an end-to-end framework for time series prediction

with extreme events. Through extensive experiments on synthetic

data and two real datasets of stock and climate, we empirically val-

idate the effectiveness of our framework. Besides, we also provide

a proper choice for hyper-parameters in our proposed framework

by conducting several additional experiments.

CCS CONCEPTS
•Mathematics of computing→ Probabilistic algorithms; • Com-
puting methodologies→ Neural networks;
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1 INTRODUCTION
Time series prediction as a classical research topic, has been inten-

sively studied by interdisciplinary researchers over the past several

decades. As its application increasingly ventures into safety-critical

real-world scenarios, such as climate prediction [35] and stocks
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price monitoring [16], how to obtain more accurate predictions

remains an open problem to solve.

Historically, traditional methods such as autoregressive mov-

ing average (ARMA) [46] and nonlinear autoregressive exogenous

(NARX) [31] use statistical models with few parameters to exploit

patterns in time series data. Recently, with the celebrated success

of Deep Neural Network (DNN) in many fields such as image classi-

fication [28] and machine translation [4], a number of DNN based

techniques have been subsequently developed for time-series pre-

diction tasks, achieving noticeable improvements over traditional

methods [11, 49]. As a basic component of these models, Recurrent

Neural Network (RNN) module serves as an indispensable factor

for these note-worthy improvements [31, 48]. Compared with tra-

ditional methods, one of the major advantages of RNN structure is

that it enables deep non-linear modeling of temporal patterns. In

recent literature, some of its variants show even better empirical

performance, such as the well-known Long-Short Term Memory

(LSTM) [22, 36, 50] and Gated Recurrent Unit (GRU) [10], while the

latter appears to be more efficient on smaller and simpler dataset

[10]. However, most previously studied DNN are observed to have

troubles in dealing with data imbalance [15, 42, 44]. Illustratively,

let us consider a binary classification task with its training set in-

cluding 99% positive samples and only 1% negative samples, which

is said to contain data imbalance. Following the discussion in Lin

et al., such an imbalance in data will potentially bring any classi-

fier into either of two unexpected situations: a. the model hardly

learns any pattern and simply chooses to recognize all samples as

positive. b. the model memorizes the training set perfectly while it

generalizes poorly to test set.

In fact, we have observed that, in the context of time-series pre-

diction, imbalanced data in time series, or extreme events, is also
harmful to deep learning models. Intuitively, an extreme event in

time series is usually featured by extremely small or large values,

of irregular and rare occurrences [24]. As an empirical justification

of its harmfulness on deep learning models, we train a standard

GRU to predict one-dimensional time series, where certain thresh-

olds are used to label a small proportion of datasets as extreme

events in prior (dotted line in Fig 1). As clearly shown, the learn-

ing model indeed falls into the two priorly discussed situations:

a. In Fig. 1(a), most of its predictions are bounded by thresholds

and therefore it fails to recognize future extreme events, we claim

this as underfitting phenomenon. b. In Fig. 1(b), although the model

learns extreme events in the train set correctly, it behaves poorly

on test sets, we cliam this as overfitting phenomenon. Previously,
people always tend to tolerate the underfitting phenomenon since

models would still have an averagely tolerable performance on test

sets. However from our perspective, it would be really valuable

if a time-series prediction model could recognize future extreme

events with reasonable predictions. With more accurate modeling

https://doi.org/10.1145/3292500.3330896
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(a) Underfitting Phenomenon

(b) Overfitting Phenomenon

Figure 1: The extreme event problem in time-series predic-
tion. The data are sampled from climate dataset.

of extreme events in many real-world cases, prediction models are

expected to aid influential decisions by providing alarms on future

incidents such as extreme winds [35] or financial crisis [41].

With motivations above, in this paper, we focus on improving

the performance of DNN on predicting time series with extreme

values. First, besides the empirical validation above, we present

a formal analysis on why DNN could easily fall into underfitting

or overfitting phenomenons when it is trained with time series

with extreme events. Through the lens of Extreme Value Theory

(EVT), we observe that the main reason lies in previous choices of

loss function, which inherently lacks the ability to model extreme

events in a find-grained way. Therefore we propose a novel form

of loss called Extreme Value Loss (EVL) to improve predictions on

occurrences of extreme events. Furthermore, Inspired by previous

studies on dynamics of extreme events, which pointed out that the

randomness of extreme events have limited degrees of freedom

(DOF) [33]. As a result, its patterns could indeed be memorized

[2, 8]. We informatively propose a neural architecture to memorize

extreme events from historical information, with the aid of Memory

Network [45]. Together with our proposed EVL, our end-to-end

framework is thus constructed for better predictions on time series

data with extreme events. Our main contributions are

• We provide a formal analysis on why deep neural network suffers

underfitting or overfitting phenomenons during predicting time

series data with extreme value.

• We propose a novel loss function called Extreme Value Loss (EVL)

based on extreme value theory, which provides better predictions

on future occurrences of extreme events.

• We propose a brand-newMemory Network based neural architec-

ture to memorize extreme events in history for better predictions

of future extreme values. Experimental results validates the supe-

riority of our framework in prediction accuracy compared with

the state-of-the-arts.

2 PRELIMINARIES
In this section, we briefly describe the time-series prediction prob-

lem and introduce extreme events in time-series data.

2.1 Time Series Prediction
Suppose there are N sequences of fixed length T . For the i-th se-

quence the time series data can be described as,(
X (i)
1:T ,Y

(i)
1:T

)
=

[
(x

(i)
1
,y

(i)
1
), (x

(i)
2
,y

(i)
2
), · · · , (x

(i)
T ,y

(i)
T )

]
(1)

, where x
(i)
t and y

(i)
t are input and output at time t respectively.

In one-dimensional time series prediction we have x
(i)
t ,y

(i)
t ∈ R

and y
(i)
t := x

(i)
t+1. For the sake of convenience, we will use X1:T =

[x1, · · · ,xT ] and Y1:T = [y1, · · · ,yT ] to denote general sequences
without referring to specific sequences.

The goal of time-series prediction is that, given observations

(X1:T ,Y1:T ) and future inputs XT :T+K , how to predict outputs

YT :T+K in the future. Suppose a model predicts ot at time t given
input xt , the common optimization goal can be written as,

min

T∑
t=1

∥ot − yt ∥
2

(2)

Then after the inference the model could predict the correspond-

ing outputs O1:T+K give inputs X1:T+K . Traditional methods such

as autoregressive moving average model (ARMA) [46] and Non-

linear autoregressive exogenous (NARX)[31] predicts outputs by

conducting linear or non-linear regression on past inputs. Recently,

deep neural network such as Recurrent Neural Network (RNN)

shows superior advantages compared with traditional methods in

modeling time-series data. Numerous improvements have been

made on RNN such as Long-short Term Memory [22] and Gated

Recurrent Unit [9].

2.2 Extreme Events
Although DNN such as GRU has achieved noticeable improvements

in predicting time-series data, this model tends to fall into either

overfitting or underfitting if trained with imbalanced time series, as

we have demonstrated in introductory part. We will refer to such a

phenomenon as Extreme Event Problem. Towards a formal under-

standing of this phenomenon, it will be convenient to introduce an

auxiliary indicator sequence V1:T = [v1, · · · ,vT ]:

vt =


1 yt > ϵ1
0 yt ∈ [−ϵ2, ϵ1]
−1 yt < −ϵ2

(3)

where large constants ϵ1, ϵ2 > 0 are called thresholds. For time step

t , if vt = 0, we define the output yt as normal event. If vt > 0, we

define the output yt as right extreme event. If vt < 0, we define the

output yt as left extreme event.

2.2.1 Heavy-tailed Distributions. There are many researches pay

attention to these large observations in other tasks, e.g., previous

work notices that empirical distribution of real-world data always

appear to be heavy-tailed [37]. Intuitively, if a random variable Y is

said to respect a heavy-tailed distribution, then it usually has a non-

negligible probability of taking large values (larger than a threshold)

[37]. In fact, a majority of widely applied distributions including
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Table 1: Mathematical Notations

Symbol Size Description

x
(i)
t R Input of time t in i-th sequence

y
(i)
t R Output of time t in i-th sequence

v
(i)
t {−1, 0, 1} Extreme event indicator of time t in i-th

sequence

N N Number of sequences

T N Train length of each sequence

H N Size of latent factors in GRU

M N Size of memory module

∆ N Size of each window

ot R Prediction of time t in i-th sequence

ht RH Hidden state from GRU at time t

w j R∆ Window j of memory network

sj RH Latent representation of window j
qj {−1, 0, 1} Extreme event indicator of window j
pj [−1, 1] Prediction of extreme event indicator of

window j

õt R Prediction from GRU part at time t

αt RM Attentive weights at time t
ut [−1, 1] Prediction of extreme event at time t

Gaussian, Poisson are not heavy-tailed, therefore, light-tailed. Only
a few number of parametric distributions are heavy-tailed, e.g.

Pareto distribution and log-Cauchy distribution. Therefore mod-

eling with light-tailed parametric distributions would bring un-

avoidable losses in the tail part of the data. Such a statement can be

illustratively presentedwith Fig. 2(a), where we choose a light-tailed

truncated normal distribght-tailed distribution fits data around the

center quite well, the inaccuracy on the tail part is intolerable.

2.2.2 Extreme Value Theory. Historically, Extreme Value Theory

(EVT) take a further step on studying these heavy-tailed data. EVT

studies the distribution of maximum in observed samples [43]. For-

mally speaking, suppose T random variables y1, . . . ,yT are i.i.d

sampled from distribution FY , then the distribution of the maxi-

mum is,

lim

T→∞
P{max(y1, · · · ,yT ) ≤ y} = lim

T→∞
FT (y) = 0 (4)

In order to obtain a non-vanishing form of P{max(y1, · · · ,yT ) ≤
y}, previous researches proceeded by performing a linear trans-

formation on the maximum. As a fundamental result in EVT, the

following theorem states that the distribution of Y after linearly

transformed is always limited to few cases.

Theorem 2.1 ([17, 20]). If there exists a linear transformation
on Y which makes the distribution in Eq. 4 non-degenetated to 0.
Then the class of the non-degenerated distribution G(y) after the
transformation must be the following distribution:

G(y) =

{
exp

(
− (1 − 1

γ y)
γ
)
,γ , 0, 1 − 1

γ y > 0

exp

(
− e−y

)
,γ = 0

(5)

Usually, the form G(y) is called Generalized Extreme Value dis-

tribution, with γ , 0 as extreme value index. Such a statement

sometimes is also regarded as the law of large numbers for the

maximum [27]. In fact, the theorem above has a natural extension

(a) Illustration of Heavy Tail Distribution (b) Illustration of Optimized P (o)

Figure 2: Distributions ofyt in time-series data, whereyt are
sampled from climate dataset as introduced in experiments.

to observations which exceed certain fixed threshold as follows,

which would be useful in the next part.

2.2.3 Modeling The Tail. Previous works extend the above theorem
to model the tail distribution of real-world data by [18, 47],

1 − F (y) ≈ (1 − F (ξ ))
[
1 − logG

(y − ξ

f (ξ )

)]
,y > ξ (6)

where ξ > 0 is a sufficiently large threshold.Previous researches

point that the approximation in Eq. 6 can fit the tail distribution well

[12]. Although there are many methods for modeling the distribu-

tions of extreme values [1], due to the rare and irregular essence of

extreme events, it is always hard to forecast these pumping points

[19]. What is worse, these extreme events could affect the learning

of deep neural networks, where we will discuss the reason in detail

in the next section.

3 PROBLEMS CAUSED BY EXTREME EVENTS
In this part we will deliver our explanation on why extreme event

problem is almost inevitable for previously studied DNN models in

time-series prediction.

3.1 Empirical Distribution After Optimization
We further investigate the influence of extreme events in time series

prediction. For the sake of simplicity, we only pay our attention to

one sequence, that is,X1:T andY1:T . From the probabilistic perspec-

tive, minimization of the loss function in Eq. 2 is in essence equiva-

lent to the maximization of the likelihood P(yt |xt ). Based on Breg-

man’s theory [5, 40], minimizing such square loss always has the

form of Gaussian with variance τ , that is, p(yt |xt ,θ ) = N(ot ,τ
2),

where θ is the parameter of the predicting model,O1:T are outputs

from the model.

Therefore, Eq. 2 can be replaced with its equivalent optimization

problem as follows

max

θ

T∏
t=1

P
(
yt |xt ,θ

)
(7)

With Bayes’s theorem, the likelihood above can be written as,

P(Y |X ) =
P(X |Y )P(Y )

P(X )
(8)

By assuming the model has sufficient learning capacity with

parameter θ [23, 29], we claim the inference problem will yield

an optimal approximation to P(Y |X ). It is worth to notice that our
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assumption on learning capacity is a widely adopted assumption

in previous researches [3, 21] and can be implemented with a deep

neural network structure in practice. Furthermore, if P(Y |X ) has

been perfectly learned, so as the distributions P(Y ), P(X ), P(X |Y ),
which are therefore totally independent of inputsX . By considering

the following observations,

• The discriminative model (Eq. 2) has no prior on yt
• The output ot is learned under likelihood as normal distribution

it is therefore reasonable to state that empirical distribution P(Y )
after optimization should be of the following form,

P̂(Y ) =
1

N

T∑
t=1

N(yt , τ̂
2) (9)

where constant τ̂ is an unknown variance. In consideration of its

similarity to Kernel Density Estimator (KDE) with Gaussian Kernel

[38], we can reach an intermediate conclusion that such a model

would perform relatively poor if the true distribution of data in

series is heavy-tailed, according to [7].

3.2 Why Deep Neural Network Could Suffer
Extreme Event Problem

As discussed above, the distribution of output from a learningmodel

with optimal parameters can be regarded as a KDE with Gaussian

Kernel (Eq. 7).

Since nonparametric kernel density estimator only works well

with sufficient samples, the performance therefore is expected to

decrease at the tail part of the data, where sampled data points

would be rather limited [7]. The main reason is that the range of

extreme values are commonly very large, thus few samples hardly

can cover the range. As depicted in Fig. 2(b), we sample yt from the

true distribution and fit a KDE with Gaussian Kernel. As is shown,

since there are only two samples with yt > 1.5, the shape of fitted

KDE peaks inconsistently around these points. Moreover, as a large

majority of samples are centered at 0, therefore the probability

density around origin estimated by KDE tends to be much higher

than the true distribution.

Formally, let us suppose x1,x2 are two test samples with cor-

responding outputs as o1 = 0.5,o2 = 1.5. As our studied model is as-

sumed to have sufficient learning capacity formodeling P(X ), P(X |Y ),
thus we have

P(y1 |x1,θ ) =
P(X |Y )P̂(Y )

P(X )
≥

P(X |Y )Ptrue(Y )

P(X )
= Ptrue(y1 |x1) (10)

Similarly P(y2 |x2,θ ) ≤ Ptrue(y2 |x2). Therefore, in this case, the

predicted value from deep neural network are always bound, which

immediately disables deep model from predicting extreme events,

i.e. causes the underfitting phenomenon.
On the other side, as we have discussed in related work, several

methods propose to accent extreme points during the training by,

for example, increasing the weight on their corresponding training

losses. In our formulation, thesemethods are equivalent to repeating

extreme points for several times in the dataset when fitting KDE.

Its outcome is illustrated by dot line in Fig. 2(b). As a consequence,

we have

P(y2 |x2,θ ) =
P(X |Y )P̂(Y )

P(X )
≥

P(X |Y )Ptrue(Y )

P(X )
= Ptrue(y2 |x2) (11)

Intuitively, the inequality above indicates, with the estimated prob-

ability of extreme events being added up, the estimation of normal

events would simultaneously become inaccurate. Therefore, normal

data in the test set is prone to be mis-classified as extreme events,

which therefore marks the overfitting phenomenon.
As we can see, the extreme events problem in DNN is mainly

caused by that there is no sufficient prior on tail part of observations

yt . Through maximizing likelihood could lead to a nonparametric

estimation of yt , which could easily cause underfitting problem.

On the other side, if we increase the weight on those large values,

DNN could easily suffer the overfitting problem. In order to alleviate

these problems in DNN, we will provide an elegant solution, which

aims at imposing prior on extreme events for DNN in predicting

time series data.

4 PREDICTING TIME-SERIES DATAWITH
EXTREME EVENTS

In order to impose prior information on tail part of observations for

DNN, we focus on two factors:memorizing extreme events andmod-
eling tail distribution. For the first factor we propose to use memory

network to memorize the characteristic of extreme events in his-

tory, and for the latter factor we propose to impose approximated

tailed distribution on observations and provide a novel classifica-

tion called Extreme Value Loss (EVL). Finally we combine these two

factors and introduce the full solution for predicting time series

data with extreme values.

4.1 Memory Network Module
As pointed out by Ghil et al., extreme events in time-series data

often show some form of temporal regularity [19]. Inspired from

this point, we propose to use memory network to memorize these
extreme events, which is proved to be effective in recognizing

inherent patterns contained in historical information [45]. First,

define the concept of window in our context.

4.1.1 Historical Window. For each time step t , we first randomly

sample a sequence of windows by W = {w1, · · · ,wM }, where M
is the size of the memory network. Each window w j is formally

defined asw j = [xtj ,xtj+1, · · · ,xtj+∆], where ∆ as the size of the

window satisfying 0 < tj < t − ∆.
Then we propose to apply GRU module to embed each window

into feature space. Specifically, we usew j as input, and regard the

last hidden state as the latent representation of this window, de-

noted as sj = GRU([xtj ,xtj+1, · · · ,xtj+∆]) ∈ R
H
. Meanwhile, we

apply a memory networkmodule to memorize whether there is a ex-

treme event in tj +∆+1 for each windoww j . In implementation, we

propose to feed the memory module by qj = vtj+∆+1 ∈ {−1, 0, 1}.

For an overview of our memory network based module, please

see Fig. 3(a). In summary, at each time step t , the memory of our

proposed architecture consists of the following two parts:

• Embedding Module S ∈ RM×H
: sj is the latent representation of

history window j.
• History Module Q ∈ {−1, 0, 1}M : qj is the label of whether there
is a extreme event after the window j.

4.1.2 Attention Mechanism. In this part, we further incorporate

the module demonstrated above into our framework for imbalanced
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(a) Illustration of Memory Network Module at time step t (b) Attention mechanism for prediction.

Figure 3: Illustration of predicting process. For each time step t , we sample M windows and use GRU to build the memory
network module.

time-series prediction. At each time step t , we use GRU to produce

the output value:

õt =W
T
o ht + bo , where ht = GRU ([x1,x2, · · · ,xt ]) (12)

, where ht and sj share the same GRU units. As we have discussed

previously, the prediction of õt may lack the ability of recognizing

extreme events in the future. Therefore we also require our model

to retrospect its memory to check whether there is a similarity

between the target event and extreme events in history. To achieve

this, we propose to utilize attention mechanism [4] to our ends.

Formally,

αt j =
exp(ct j )∑M
j=1 exp(ct j )

, where ct j = h
T
t sj (13)

Finally, the prediction of whether an extreme event would hap-

pen after referring historical information can be measured by im-

posing attentive weights on qj . The output of our model at time

step t is calculated as

ot = õt + b
T · ut , where ut =

M∑
j=1

αt j · qj (14)

In the definition ut ∈ [−1, 1] is the prediction of whether there

will be an extreme event after time step t , and b ∈ R+ is the scale
parameter. Intuitively, the main advantage of our model lies in, it

enables a flexible switch between yielding predictions of normal

values and extreme values. When there is a similarity between the

current time step and certain extreme events in history, thenut will
help detect such a pumping point by settingut non-vanishing, while
when the current event is observed to hardly have any relation with

the history, then the output would choose to mainly depend on õt ,
i.e. the value predicted by a standard GRU gate. The loss function

can be written as square loss defined in Eq. 2 in order to minimize

the distance between output ot and observation yt .

4.2 Extreme Value Loss
Although memory network could forecast some extreme events,

such loss function still suffer extreme events problem. Therefore we

continue to model the second factor. As we have discussed in Sec. 3,

the common square loss could lead to a nonparametric approxima-

tion on yt . Without imposed prior P(Y ), the empirical estimation

P̂(Y ) could easily lead to two kinds of phenomenons. Therefore, in

order to influence the distribution of P(Y ), we propose to impose

Algorithm 1 The proposed framework (Non-batch).

Input: X1:T = [x1, · · · ,xT ,xT+1, · · · ,xT+K ], extreme indicator

V1:T = [v1, · · · ,vT ], training output Y1:T = [y1, · · · ,yT ],
hyper-parameters γ , memory size M , size of the window ∆,
learning rate and regularization parameter.

Output: Predicted value [oT+1, · · · ,oT+K ]
Initialize: Parameters θ ,ϕ,ψ ,b
1: procedure Train(Sample i)
2: for t = 1, · · · ,T do
3: Calculating weights β in Eq. 16

4: Construct memory module S,Q (Sec. 4.1)

5: for j = 1, · · · ,M do
6: Calculate pj for window j.
7: end for
8: Minimizing loss function L2(θ ,ψ ) (Eq. 18)

9: Calculate ut and output ot (Eq. 14)

10: end for
11: Minimizing loss function L1(θ ,ϕ,b). (Eq. 17)

12: end procedure
13: function Predict(Sample i)
14: Construct memory module S,Q with t ≤ T (Sec. 4.1)

15: for t = 1, · · · ,T + K do
16: Calculate ut and output ot (Eq. 14)

17: end for
18: return {ot }

T+K
t=1

19: end function

prior of tailed data on loss function. Rather than modeling the out-

put ot directly, we pay our attention to the extreme event indicator

ut . For the sake of simplicity, we first consider right extreme events.

In order to incorporate the tail distribution with P(Y ), we first
consider the approximation defined in Eq. 6, which can approximate

the tail distribution of observations. In our problem, for observation

yt , the approximation can be written as,

1 − F (yt ) ≈
(
1 − P(vt = 1)

)
logG

(yt − ϵ1
f (ϵ1)

)
(15)

, where positive function f is the scale function. Further, if we

consider a binary classification task for detecting right extreme

events. In our model the predicted indicator is ut , which can be

regarded as a hard approximation for (yt − ϵ1)/f (ϵ1). We regard
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the approximation as weights and add them on each term in binary

cross entropy,

EVL(ut ) = −
(
1 − P(vt = 1)

) [
logG(ut )

]
vt log(ut )

−
(
1 − P(vt = 0)

) [
logG(1 − ut )

]
(1 −vt ) log(1 − ut )

= − β0
[
1 −

ut
γ

]γ
vt log(ut )

− β1
[
1 −

1 − ut
γ

]γ
(1 −vt ) log(1 − ut ) (16)

, where β0 = P(vt = 0), which is the proportion of normal events in

the dataset and P(vt = 1) is the proportion of right extreme events

in the dataset. γ is the hyper-parameter, which is the extreme value
index in the approximation. We call the proposed classification loss

function as Extreme Value Loss (EVL). Similarly we have the binary

classification loss function for detecting whether there will be a left

extreme event in the future. Combining two loss functions together

we can extend EVL to the situation of vt = {−1, 0, 1}.

As we have discussed in Sec. 3, without proper weight on non-

parameteric estimator DNN will suffer overfitting problem. The key

point of EVL is to find the proper weights by adding approximation,

e.g., β0[1 − ut /γ ]
γ
, on tail distribution of the observations through

extreme value theory. Intuitively, for detecting right extreme event,

term β0 will increase the penalty when the model recognizes the

event as normal event. Meanwhile, the term [1 − ut /γ ]
γ
also in-

crease the penalty when the model recognize the extreme event

with little confidence. In the following part we will demonstrate

how to incorporate EVL with the proposed memory network based

framework.

4.3 Optimization
In this part, we present the optimization algorithm for our frame-

work. First, in order to incorporate EVL with the proposed memory

network, a direct thought is to combine the predicted outputs ot
with the prediction of the occurrence of extreme events,

L1 =
T∑
t=1

∥ot − yt ∥
2 + λ1EVL

(
ut ,vt

)
(17)

Furthermore, in order to enhance the performance of GRU units,

we propose to add the penalty term for each window j , which aims

at predicting extreme indicator qj of each window j:

L2 =
T∑
t=1

M∑
j=1

EVL
(
pj ,qj

)
(18)

, where pj ∈ [−1, 1] is calculated through sj , which is the embedded

representation of window j, by a full connection layer. Finally we

list the whole parameters to learn as follows.

• Parametersθ in GRUunits:Wz ,Wr ,Wh ,bz ,br ,bh ∈ RH ,Uz ,Ur ,Uh ∈

RH×H

• Parameters ϕ in output gate:Wo ∈ RH , b ∈ R.
• Parametersψ in predicting the happening of extreme events in

history data:Wp ,bp ∈ RH .

• Parameters b in attention model: b ∈ R3+.

We useAdam [26] to learn the parameters. For thewhole learning

process, please refer to Algorithm 1.

5 EMPIRICAL RESULTS
In this section, we present empirical results for our proposed frame-

work. In particular, the main research questions are:

• RQ1: Is our proposed framework effective in time series predic-

tion?

• RQ2: Is our proposed loss function worked in detecting extreme

events?

• RQ3: What is the influence of hyper-parameters in the frame-

work?

5.1 Experimental Settings
We conduct experiments on three different kinds of datasets:

• Stock Dataset We collect the stock price of 564 corporations

in Nasdaq Stock Market, with one sample per week. Our col-

lected data covers the time duration from September 30,2003 to

December 29,2017.

• Climate Datasets The climate datasets are composed of "Green

Gas Observing Network Dataset" and "Atmospheric Co2 Dataset"

which are built by Keeling and Whorf and Lucas et al. respec-

tively [25, 34]. The green house dataset contains green house gas

concentrations at 2921 grid cells in California covering an area

of 12 km by 12 km which are spaced 6 hours apart (4 samples

per day) over the period May 10-July 31,2010. The Co2 dataset

contains atmospheric Co2 concentrations collected from Mount

Monalo in Hawaii week by week over the period March 1958 -

December 2001.

• Pseudo Periodic Synthetic Dataset The original dataset con-
tains one million data points which has been split into 10 sections.

All values are in range [−0.5, 0.5].

For these first two datasets, we set the time length as 500 for

training and 200 for testing, while for the last dataset, we randomly

extract 150 time series per section with 400 data points, setting the

time length as 300 for training and 100 for testing. It is worth to

notice that the regularity of our selected there datasets increase

in order, i.e. the pattern of pseudo datasets is totally fixed while

stock data has intensive noises. We further preprocessed the data

by replacing the raw data with the difference between time t and
t − 1. By a subsequent normalization of data value to a fixed range,

the final datasets were therefore constructed.

For each experiment, we conducted a 10-fold cross validation and

reported the averaged results. For the choice of hyper-parameter γ
in EVL, on one hand, previous works have pointed out that maximiz-

ing likelihood methods only work well when γ > 2 on estimating

extreme value distribution [12]. On the other hand, we have no-

ticed that it is improper to set γ a large value due to the fact that

p ∈ [0, 1]. Therefore in most cases we chose γ optimally from (2, 3].

On the influence of different γ , an analysis will be presented in

experiments. We set the memory sizeM as 80 and the window size

∆ as 50. We will also analyze the different choices ofM and ∆ later.

The learning rate was commonly set as 0.0005.

5.2 Effectiveness of Time Series Prediction
We first validate our complete framework for time series data pre-

diction. We chose Rooted Mean Square Error (RMSE) as the metric,

where a smaller RMSE means a better performance. We compared
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Table 2: F1 value of detecting extreme events with different classification loss function.

Model

Climate Stock Pseudo

Micro Macro Weighted Micro Macro Weighted Micro Macro Weighted

LSTM+CE 0.435 0.833 0.786 0.247 0.617 0.527 0.830 0.900 0.899

GRU+CE 0.471 0.717 0.733 0.250 0.617 0.547 0.854 0.917 0.917

GRU+EVL (γ = 0.5) 0.644 0.883 0.859 0.281 0.583 0.523 0.833 0.900 0.902

GRU+EVL (γ = 1.0) 0.690 0.900 0.881 0.267 0.667 0.547 0.874 0.933 0.933
GRU+EVL (γ = 2.0) 0.646 0.867 0.851 0.324 0.617 0.555 0.869 0.917 0.920

GRU+EVL (γ = 3.0) 0.508 0.867 0.825 0.295 0.617 0.548 0.810 0.900 0.897

GRU+EVL (γ = 4.0) 0.617 0.817 0.813 0.295 0.617 0.543 0.825 0.883 0.886

Table 3: RMSE results of time series prediction.

Climate Stock Pseudo

LSTM 0.188 0.249 5.2 × 10
−3

Time-LSTM 0.193 0.256 4.7 × 10
−3

GRU 0.174 0.223 5.3 × 10
−3

Mem 0.181 0.197 3.6 × 10
−3

Mem+EVL 0.125 0.168 2.5 × 10−3

our model with several state-of-the-art baselines: GRU, LSTM and

Time-LSTM [50], where Time-LSTM considers differences between

xt . We also compare our model with memory network without EVL,

by replacing EVL with cross entropy (CE). The results are in Table 3.

Surprisingly, GRU outperformed other baselines although it has the

simplest structure in real-world data. We infer the reason is that,

there are much noises in real-world data, which could easily cause

overfitting problem on one-dimensional data as we have described

before. Furthermore, as we can see, the RMSE of our model were

uniformly lower than GRU. Noticeably, on the synthetic dataset we

successfully made a near 50% improvement in RMSE.

We also visualize the output from each module as an case study

(Fig. 4). As we can see from the results, the empirically success of our

model can be mainly attributed to two parts: the predicting value õt
and the extreme events label ut . The output from õt approximated

the trend of the data correctly but, usually, the value it predicted

commonly small. As a complement,ut came to rescue by amplifying

the prediction value if it predicts the occurrence of extreme event

at the current step with a high probability. Illustratively, it is worth

to notice the visualization around time step 600 in Fig. 4. Although

õt predicted the trend as up, however, it only gave a small positive

value. As a complement, the memory module detected there would

be an right extreme event at this time step, therefore it yielded a

near-1 output and imposed an amplification on õt to form the final

output, while GRU could hardly do such a complicated decision.

5.3 Effectiveness of EVL
As we can see from Table 3, EVL plays an important role during

the prediction. We further validated the effectiveness of EVL on

predictions of future occurrences of extreme events. We used F1

score to measure the effectiveness of predictions. Specifically, we

adopted the Macro, Micro and Weighted F1 score for an overall

evaluation.The results are presented in Fig. 2. We compared our

proposed EVL with GRU classifier and LSTM classifier. Also we

studied the influence of different hyper-parameter γ for EVL. First

as we can see from Fig. 2, our proposed loss function outperformed

all the baselines on each dataset. Especially on the climate dataset,

EVL outperformed the best baseline by 47% in Micro F1 score. In-

terestingly, we have observed that γ indeed influenced the final

classification results a lot. For example, when γ = 4.0, the perfor-

mance of EVL was worse than the baseline on the synthetic dataset.

As we have discussed before, γ intuitively described the character-

istics of tail distribution of the data, therefore, an improper γ could

mislead the model to an incorrect modeling of the tail distribution.

Furthermore, the experimental results also support our sugges-

tion of γ discussed in Sec. 5.1, as the optimal γ was always found

around 2.0 on each data (Table. 2). On the other hand, γ was also

observed to capture the characteristics of heavy-tailed data dis-

tribution well. For instance, since there were more noises in the

stock dataset, i.e. the extreme events occurs more frequently. In this

case, the observed optimal γ , which took a larger value than other

datasets, corresponds well to this prior knowledge. Therefore, in the

following experiments, we commonly took the hyper-parameter γ
as 2.0.

5.4 Influence of Hyper-parameters in Memory
Network

Finally we investigate the influence of hyper-parameters in memory

module, where the results are in 5. As we can see from Fig. 5(a),

the optimal choice of memory size varied on different datasets.

For instance, M = 100 for the climate dataset and M = 80 for

the stock dataset, where M = 60 for the synthetic dataset, with

an average optimal choice for memory size around 80. We infer

the reason is that, with small memory size, the model is not able

to memorize extreme events sufficiently in the history. On the

contrary, if we keep enlarging the size of the memory, the model

would otherwise pay inessential attentions to historical events

rather than making the right decision based on the current situation.

One special case is the synthetic dataset, where the smaller memory

size performs better. We speculate the reason as, considering the

inherent regularity of the data set is extremely high, a learning

model with sufficient learning capacity would easily captured the

regularity without referring to historical records.

After we investigated the influence ofM for different datasets,

we also would like to understand the influence of different window

size on our memory network module. As we have observed 5(b), the

influence of the window size was much smaller than the memory

size. However, the window size ∆ still have non-negligible effect

on the final prediction. For instance, the best ∆ was 60 for the stock

dataset. Such a phenomenon mainly comes from, when the length

is too small, the information or the pattern of extreme events is not

modeled well, which therefore would influence the effectiveness
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(a) Output from GRU (b) Output from our model (c) Output from õt

Figure 4: Case study for Our Framework via Visualizations. Although outputs from õt still suffer extreme events problem, our
model improve it by EVL and the memory network module.

(a) Influence of memory size M (b) Influence of window size ∆

Figure 5: Influence of different hyper-parameters in mem-
ory networkmodule.We only demonstrate the results in cli-
mate datasets due to the limit of space.

of the prediction, while on the other hand, when the length is set

too large, the GRU module in the memory network would lack the

ability to memorize all the characteristics inside the window.

6 RELATEDWORK
Time series prediction is a classical task in machine learning. Tra-

ditional methods such as autoregressive moving average model

[46] uses linear regression on latest inputs to predict the next

value, while Nonlinear autoregressive exogenous (NARX) adopts

non-linear mapping to improve the prediction [31]. However, their

learning capacity are limited because traditional methods use shal-

low architecture [6]. Recently, deep neural network (DNN) achieve

great success in many fields , e.g., computer vision [28] and neu-

ral language processing [4], mainly because of its deep nonlinear

architecture which allows extraction of better features from the

inputs [39]. A number of DNN based models has also been ap-

plied on time series prediction. Dasgupta and Osogami proposed

to use Boltzmann Machine [11], while Yang et al. proposed to use

Convolutional Network [49] to improve the performance. Among

these deep learning models, recurrent neural network (RNN) shows

superior advantages in modeling time-series data. For instance,

Diaconescu proposes to combine RNN with NARX model, which

largely reduces the errors in prediction [13, 48]. Numerous im-

provements have been made on RNN, such as Long-short Term

Memory [22] and Gated Recurrent Unit [9], with various empirical

results reporting the effectiveness of these deep recurrent models

[30, 36, 50].

Data imbalance is always an important issue in machine learning

and data mining. For instance, considering certain classification

task, if there exists one label which only has few samples in training

set, then the model will lack the ability to detect them [15]. Actually,

the cutting-edge deep learning models are also observed to suffer

from the data imbalance problem in most cases. As pointed out

by Lin et al., data imbalance problem mainly causes two haunting

phenomenons in DNN: (1) model lacks the ability to model rarely

occurred samples; (2) the generalization performance of model is

degenerated [32]. As we have discussed in the introductory part, in

the context of time-series data, these imbalanced samples are often

called extreme events. Previous studies mainly focus on modeling

the distributions of these extreme values [1]. Intuitively, due to the

rare and irregular essence of extreme events, it is always hard to

forecast these pumping points [19].

7 CONCLUSION
In this paper, we focus on improving the performance of deep learn-

ing methods on time series prediction, specifically with a more

find-grained modeling on the part of extreme events. As discussed

in Sec.3, without prior knowledge on tailed observations, DNN is

innately weak in capturing characteristics of the occurrences of

extreme events. Therefore, as a novel technique delicately designed

for extreme events, we have proposed a framework for forecasting

time series data with extreme events. Specifically we consider two

factors for imposing tailed priors: (1) memorizing extreme events

in historical data (2) modeling the tail distribution of observations.

For the first factor we utilize the recently proposed Memory Net-

work technique by storing historical patterns of extreme events for

future reference. For the second factor we propose a novel classifi-

cation loss function called Extreme Value Loss (EVL) for detecting

extreme events in the future, which contains the approximated tail

distribution of observations. Finally we combine them together and

form our end-to-end solution for predictions of time series with

extreme events. With intensive experiments, we have validated

both the effectiveness of EVL on extreme event detection and the

superior performance of our proposed framework on time series

prediction, compared with the state-of-the-arts. For future works,

we plan to work on an efficient extension of our framework to

multi-dimensional time series prediction in consideration of its

significance in practice and its challenges in theory. Furthermore,

we suggest it would also be interesting to exploit the possibility

of applying our proposed EVL to derive solutions for other tasks

featured with data imbalance such as Point-of-Interest (POI) rec-

ommendation [14].
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