
LightGCN: Simplifying and Powering Graph Convolution
Network for Recommendation

Xiangnan He
University of Science and Technology

of China
xiangnanhe@gmail.com

Kuan Deng
University of Science and Technology

of China
dengkuan@mail.ustc.edu.cn

Xiang Wang
National University of Singapore

xiangwang@u.nus.edu

Yan Li
Beijing Kuaishou Technology

Co., Ltd.
liyan@kuaishou.com

Yongdong Zhang
University of Science and Technology

of China
zhyd73@ustc.edu.cn

Meng Wang∗
Hefei University of Technology
eric.mengwang@gmail.com

ABSTRACT
Graph Convolution Network (GCN) has become new state-of-
the-art for collaborative filtering. Nevertheless, the reasons of
its effectiveness for recommendation are not well understood.
Existing work that adapts GCN to recommendation lacks thorough
ablation analyses on GCN, which is originally designed for graph
classification tasks and equipped with many neural network
operations. However, we empirically find that the two most
common designs in GCNs — feature transformation and nonlinear
activation — contribute little to the performance of collaborative
filtering. Even worse, including them adds to the difficulty of
training and degrades recommendation performance.

In this work, we aim to simplify the design of GCN to
make it more concise and appropriate for recommendation. We
propose a new model named LightGCN, including only the most
essential component in GCN — neighborhood aggregation — for
collaborative filtering. Specifically, LightGCN learns user and
item embeddings by linearly propagating them on the user-item
interaction graph, and uses the weighted sum of the embeddings
learned at all layers as the final embedding. Such simple, linear,
and neat model is much easier to implement and train, exhibiting
substantial improvements (about 16.0% relative improvement on
average) over Neural Graph Collaborative Filtering (NGCF) — a
state-of-the-art GCN-based recommender model — under exactly
the same experimental setting. Further analyses are provided
towards the rationality of the simple LightGCN from both analytical
and empirical perspectives. Our implementations are available in
both TensorFlow1 and PyTorch2.

∗Meng Wang is the corresponding author.
1https://github.com/kuandeng/LightGCN
2https://github.com/gusye1234/pytorch-light-gcn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401063

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Collaborative Filtering, Recommendation, Embedding Propagation,
Graph Neural Network
ACM Reference Format:
Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution
Network for Recommendation. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’20), July 25–30, 2020, Virtual Event, China. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3397271.3401063

1 INTRODUCTION
To alleviate information overload on the web, recommender system
has been widely deployed to perform personalized information
filtering [7, 45, 46]. The core of recommender system is to predict
whether a user will interact with an item, e.g., click, rate, purchase,
among other forms of interactions. As such, collaborative filtering
(CF), which focuses on exploiting the past user-item interactions to
achieve the prediction, remains to be a fundamental task towards
effective personalized recommendation [10, 19, 28, 39].

The most common paradigm for CF is to learn latent features
(a.k.a. embedding) to represent a user and an item, and perform
prediction based on the embedding vectors [6, 19]. Matrix
factorization is an early such model, which directly projects the
single ID of a user to her embedding [26]. Later on, several research
find that augmenting user ID with the her interaction history as
the input can improve the quality of embedding. For example,
SVD++ [25] demonstrates the benefits of user interaction history
in predicting user numerical ratings, and Neural Attentive Item
Similarity (NAIS) [18] differentiates the importance of items in
the interaction history and shows improvements in predicting
item ranking. In view of user-item interaction graph, these
improvements can be seen as coming from using the subgraph
structure of a user — more specifically, her one-hop neighbors — to
improve the embedding learning.

To deepen the use of subgraph structure with high-hop
neighbors, Wang et al. [39] recently proposes NGCF and achieves
state-of-the-art performance for CF. It takes inspiration from the
Graph Convolution Network (GCN) [14, 23], following the same

https://github.com/kuandeng/LightGCN
https://github.com/gusye1234/pytorch-light-gcn
https://doi.org/10.1145/3397271.3401063
https://doi.org/10.1145/3397271.3401063

propagation rule to refine embeddings: feature transformation,
neighborhood aggregation, and nonlinear activation. Although
NGCF has shown promising results, we argue that its designs
are rather heavy and burdensome — many operations are directly
inherited from GCN without justification. As a result, they are not
necessarily useful for the CF task. To be specific, GCN is originally
proposed for node classification on attributed graph, where each
node has rich attributes as input features; whereas in user-item
interaction graph for CF, each node (user or item) is only described
by a one-hot ID, which has no concrete semantics besides being
an identifier. In such a case, given the ID embedding as the input,
performing multiple layers of nonlinear feature transformation —
which is the key to the success of modern neural networks [16]
— will bring no benefits, but negatively increases the difficulty for
model training.

To validate our thoughts, we perform extensive ablation studies
on NGCF. With rigorous controlled experiments (on the same data
splits and evaluation protocol), we draw the conclusion that the
two operations inherited from GCN — feature transformation and
nonlinear activation — has no contribution on NGCF’s effectiveness.
Even more surprising, removing them leads to significant accuracy
improvements. This reflects the issues of adding operations that
are useless for the target task in graph neural network, which not
only brings no benefits, but rather degrades model effectiveness.
Motivated by these empirical findings, we present a new model
named LightGCN, including the most essential component of
GCN — neighborhood aggregation — for collaborative filtering.
Specifically, after associating each user (item)with an ID embedding,
we propagate the embeddings on the user-item interaction graph
to refine them. We then combine the embeddings learned at
different propagation layers with a weighted sum to obtain the final
embedding for prediction. The whole model is simple and elegant,
which not only is easier to train, but also achieves better empirical
performance than NGCF and other state-of-the-art methods like
Mult-VAE [28].

To summarize, this workmakes the followingmain contributions:

• We empirically show that two common designs in GCN,
feature transformation and nonlinear activation, have no
positive effect on the effectiveness of collaborative filtering.

• We propose LightGCN, which largely simplifies the model
design by including only the most essential components in
GCN for recommendation.

• We empirically compare LightGCN with NGCF by following
the same setting and demonstrate substantial improvements.
In-depth analyses are provided towards the rationality of
LightGCN from both technical and empirical perspectives.

2 PRELIMINARIES
We first introduce NGCF [39], a representative and state-of-the-art
GCN model for recommendation. We then perform ablation studies
on NGCF to judge the usefulness of each operation in NGCF. The
novel contribution of this section is to show that the two common
designs in GCNs, feature transformation and nonlinear activation,
have no positive effect on collaborative filtering.

Table 1: Performance of NGCF and its three variants.
Gowalla Amazon-Book

recall ndcg recall ndcg
NGCF 0.1547 0.1307 0.0330 0.0254
NGCF-f 0.1686 0.1439 0.0368 0.0283
NGCF-n 0.1536 0.1295 0.0336 0.0258
NGCF-fn 0.1742 0.1476 0.0399 0.0303

2.1 NGCF Brief
In the initial step, each user and item is associated with an ID
embedding. Let e(0)

u denote the ID embedding of user u and e(0)
i

denote the ID embedding of item i . Then NGCF leverages the user-
item interaction graph to propagate embeddings as:

e(k+1)
u = σ

(
W1e

(k)
u +

∑
i ∈Nu

1√
|Nu | |Ni |

(W1e
(k)
i + W2(e(k)

i ⊙ e(k)
u))

)
,

e(k+1)
i = σ

(
W1e

(k)
i +

∑
u ∈Ni

1√
|Nu | |Ni |

(W1e
(k)
u + W2(e(k)

u ⊙ e(k)
i))

)
,

(1)
where e(k)

u and e(k)
i respectively denote the refined embedding of

user u and item i after k layers propagation, σ is the nonlinear
activation function, Nu denotes the set of items that are interacted
by user u, Ni denotes the set of users that interact with item i ,
and W1 and W2 are trainable weight matrix to perform feature
transformation in each layer. By propagating L layers, NGCF obtains
L + 1 embeddings to describe a user (e(0)

u , e
(1)
u , ..., e

(L)
u) and an item

(e(0)
i , e

(1)
i , ..., e

(L)
i). It then concatenates these L + 1 embeddings to

obtain the final user embedding and item embedding, using inner
product to generate the prediction score.

NGCF largely follows the standard GCN [23], including the use
of nonlinear activation function σ (·) and feature transformation
matricesW1 andW2. However, we argue that the two operations
are not as useful for collaborative filtering. In semi-supervised
node classification, each node has rich semantic features as input,
such as the title and abstract words of a paper. Thus performing
multiple layers of nonlinear transformation is beneficial to feature
learning. Nevertheless, in collaborative filtering, each node of user-
item interaction graph only has an ID as input which has no
concrete semantics. In this case, performing multiple nonlinear
transformations will not contribute to learn better features; even
worse, it may add the difficulties to train well. In the next subsection,
we provide empirical evidence on this argument.

2.2 Empirical Explorations on NGCF
We conduct ablation studies on NGCF to explore the effect of
nonlinear activation and feature transformation. We use the codes
released by the authors of NGCF3, running experiments on the
same data splits and evaluation protocol to keep the comparison as
fair as possible. Since the core of GCN is to refine embeddings by
propagation, we are more interested in the embedding quality under
the same embedding size. Thus, we change the way of obtaining
final embedding from concatenation (i.e., e∗u = e(0)

u ∥· · · ∥e(L)
u) to

sum (i.e., e∗u = e(0)
u + · · ·+ e(L)

u). Note that this change has little effect
3https://github.com/xiangwang1223/neural_graph_collaborative_filtering

https://github.com/xiangwang1223/neural_graph_collaborative_filtering

0 100 200 300 400 500

Epoch

0.000

0.005

0.010

0.015

0.020

0.025

0.030

tr
a
in

n
in

g
 l
o
s
s

Gowalla

(a) Training loss on Gowalla

0 100 200 300 400 500

Epoch

0.08

0.10

0.12

0.14

0.16

0.18

re
c
a
ll
@
2
0

Gowalla

(b) Testing recall on Gowalla

0 25 50 75 100 125 150 175

Epoch

0.000

0.005

0.010

0.015

0.020

0.025

0.030

tr
a
in

n
in

g
 l
o
s
s

Amazon-Book

(c) Training loss on Amazon-Book

0 25 50 75 100 125 150 175

Epoch

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

re
ca
ll@

2
0

Amazon-Book

(d) Testing recall on Amazon-Book
Figure 1: Training curves (training loss and testing recall) of NGCF and its three simplified variants.

on NGCF’s performance, but makes the following ablation studies
more indicative of the embedding quality refined by GCN.

We implement three simplified variants of NGCF:

• NGCF-f, which removes the feature transformation matrices W1
andW2.

• NGCF-n, which removes the non-linear activation function σ .
• NGCF-fn, which removes both the feature transformation
matrices and non-linear activation function.

For the three variants, we keep all hyper-parameters (e.g.,
learning rate, regularization coefficient, dropout ratio, etc.) same as
the optimal settings of NGCF. We report the results of the 2-layer
setting on the Gowalla and Amazon-Book datasets in Table 1. As
can be seen, removing feature transformation (i.e., NGCF-f) leads
to consistent improvements over NGCF on all three datasets. In
contrast, removing nonlinear activation does not affect the accuracy
that much. However, if we remove nonlinear activation on the basis
of removing feature transformation (i.e., NGCF-fn), the performance
is improved significantly. From these observations, we conclude
the findings that:

(1) Adding feature transformation imposes negative effect on
NGCF, since removing it in both models of NGCF and NGCF-n
improves the performance significantly;

(2) Adding nonlinear activation affects slightly when feature
transformation is included, but it imposes negative effect when
feature transformation is disabled.

(3) As a whole, feature transformation and nonlinear activation
impose rather negative effect on NGCF, since by removing them
simultaneously, NGCF-fn demonstrates large improvements over
NGCF (9.57% relative improvement on recall).

To gain more insights into the scores obtained in Table 1 and
understand why NGCF deteriorates with the two operations, we
plot the curves of model status recorded by training loss and testing
recall in Figure 1. As can be seen, NGCF-fn achieves a much lower
training loss than NGCF, NGCF-f, and NGCF-n along the whole
training process. Aligning with the curves of testing recall, we
find that such lower training loss successfully transfers to better
recommendation accuracy. The comparison between NGCF and
NGCF-f shows the similar trend, except that the improvement
margin is smaller.

From these evidences, we can draw the conclusion that
the deterioration of NGCF stems from the training difficulty,
rather than overfitting. Theoretically speaking, NGCF has higher
representation power than NGCF-f, since setting the weight
matrix W1 and W2 to identity matrix I can fully recover

the NGCF-f model. However, in practice, NGCF demonstrates
higher training loss and worse generalization performance than
NGCF-f. And the incorporation of nonlinear activation further
aggravates the discrepancy between representation power and
generalization performance. To round out this section, we claim
that when designing model for recommendation, it is important
to perform rigorous ablation studies to be clear about the impact
of each operation. Otherwise, including less useful operations will
complicate the model unnecessarily, increase the training difficulty,
and even degrade model effectiveness.

3 METHOD
The former section demonstrates that NGCF is a heavy and
burdensome GCN model for collaborative filtering. Driven by
these findings, we set the goal of developing a light yet effective
model by including the most essential ingredients of GCN for
recommendation. The advantages of being simple are several-
fold — more interpretable, practically easy to train and maintain,
technically easy to analyze the model behavior and revise it towards
more effective directions, and so on.

In this section, we first present our designed Light Graph
Convolution Network (LightGCN) model, as illustrated in Figure 2.
We then provide an in-depth analysis of LightGCN to show the
rationality behind its simple design. Lastly, we describe how to do
model training for recommendation.

3.1 LightGCN
The basic idea of GCN is to learning representation for nodes by
smoothing features over the graph [23, 40]. To achieve this, it
performs graph convolution iteratively, i.e., aggregating the features
of neighbors as the new representation of a target node. Such
neighborhood aggregation can be abstracted as:

e(k+1)
u = AGG(e(k)

u , {e
(k)
i : i ∈ Nu }). (2)

TheAGG is an aggregation function— the core of graph convolution
— that considers the k-th layer’s representation of the target node
and its neighbor nodes. Many work have specified the AGG, such
as the weighted sum aggregator in GIN [42], LSTM aggregator in
GraphSAGE [14], and bilinear interaction aggregator in BGNN [48]
etc. However, most of the work ties feature transformation or
nonlinear activationwith the AGG function. Although they perform
well on node or graph classification tasks that have semantic input
features, they could be burdensome for collaborative filtering (see
preliminary results in Section 2.2).

Light Graph Convolution (LGC)

Normalized Sum

Layer Combination (weighted sum)

Normalized Sum

Prediction

neighbors of u1 neighbors of i4

Figure 2: An illustration of LightGCN model architecture.
In LGC, only the normalized sum of neighbor embeddings
is performed towards next layer; other operations like
self-connection, feature transformation, and nonlinear
activation are all removed, which largely simplifies GCNs.
In Layer Combination, we sum over the embeddings at each
layer to obtain the final representations.

3.1.1 Light Graph Convolution (LGC). In LightGCN, we adopt the
simple weighted sum aggregator and abandon the use of feature
transformation and nonlinear activation. The graph convolution
operation (a.k.a., propagation rule [39]) in LightGCN is defined as:

e(k+1)
u =

∑
i ∈Nu

1√
|Nu |

√
|Ni |

e(k)
i ,

e(k+1)
i =

∑
u ∈Ni

1√
|Ni |

√
|Nu |

e(k)
u .

(3)

The symmetric normalization term 1√
|Nu |

√
|Ni |

follows the design

of standard GCN [23], which can avoid the scale of embeddings
increasing with graph convolution operations; other choices can
also be applied here, such as the L1 norm, while empirically we
find this symmetric normalization has good performance (see
experiment results in Section 4.4.2).

It is worth noting that in LGC, we aggregate only the connected
neighbors and do not integrate the target node itself (i.e., self-
connection). This is different from most existing graph convolution
operations [14, 23, 36, 39, 48] that typically aggregate extended
neighbors and need to handle the self-connection specially.
The layer combination operation, to be introduced in the next
subsection, essentially captures the same effect as self-connections.
Thus, there is no need in LGC to include self-connections.

3.1.2 Layer Combination and Model Prediction. In LightGCN, the
only trainable model parameters are the embeddings at the 0-th
layer, i.e., e(0)

u for all users and e(0)
i for all items. When they are

given, the embeddings at higher layers can be computed via LGC
defined in Equation (3). AfterK layers LGC, we further combine the
embeddings obtained at each layer to form the final representation

of a user (an item):

eu =
K∑
k=0

αke
(k)
u ; ei =

K∑
k=0

αke
(k)
i , (4)

where αk ≥ 0 denotes the importance of the k-th layer embedding
in constituting the final embedding. It can be treated as a hyper-
parameter to be tuned manually, or as a model parameter (e.g.,
output of an attention network [3]) to be optimized automatically.
In our experiments, we find that setting αk uniformly as 1/(K + 1)
leads to good performance in general. Thus we do not design
special component to optimize αk , to avoid complicating LightGCN
unnecessarily and to keep its simplicity. The reasons that we
perform layer combination to get final representations are three-
fold. (1)With the increasing of the number of layers, the embeddings
will be over-smoothed [27]. Thus simply using the last layer is
problematic. (2) The embeddings at different layers capture different
semantics. E.g., the first layer enforces smoothness on users and
items that have interactions, the second layer smooths users (items)
that have overlap on interacted items (users), and higher-layers
capture higher-order proximity [39]. Thus combining them will
make the representation more comprehensive. (3) Combining
embeddings at different layers with weighted sum captures the
effect of graph convolution with self-connections, an important
trick in GCNs (proof sees Section 3.2.1).

The model prediction is defined as the inner product of user and
item final representations:

ŷui = eTu ei , (5)

which is used as the ranking score for recommendation generation.

3.1.3 Matrix Form. We provide the matrix form of LightGCN to
facilitate implementation and discussion with existing models. Let
the user-item interaction matrix be R ∈ RM×N where M and N
denote the number of users and items, respectively, and each entry
Rui is 1 if u has interacted with item i otherwise 0. We then obtain
the adjacency matrix of the user-item graph as

A =
(
0 R
RT 0

)
, (6)

Let the 0-th layer embedding matrix be E(0) ∈ R(M+N)×T , where T
is the embedding size. Then we can obtain the matrix equivalent
form of LGC as:

E(k+1) = (D− 1
2 AD− 1

2)E(k), (7)

whereD is a (M +N)× (M +N) diagonal matrix, in which each entry
Dii denotes the number of nonzero entries in the i-th row vector
of the adjacency matrix A (also named as degree matrix). Lastly,
we get the final embedding matrix used for model prediction as:

E = α0E(0) + α1E(1) + α2E(2) + ... + αKE(K)

= α0E(0) + α1ÃE(0) + α2Ã
2E(0) + ... + αK Ã

KE(0),
(8)

where Ã = D− 1
2 AD− 1

2 is the symmetrically normalized matrix.

3.2 Model Analysis
We conduct model analysis to demonstrate the rationality behind
the simple design of LightGCN. First we discuss the connection
with the Simplified GCN (SGCN) [40], which is a recent linear

GCN model that integrates self-connection into graph convolution;
this analysis shows that by doing layer combination, LightGCN
subsumes the effect of self-connection thus there is no need for
LightGCN to add self-connection in adjacency matrix. Then we
discuss the relationwith the Approximate Personalized Propagation
of Neural Predictions (APPNP) [24], which is recent GCN variant
that addresses oversmoothing by inspiring from Personalized
PageRank [15]; this analysis shows the underlying equivalence
between LightGCN and APPNP, thus our LightGCN enjoys
the sames benefits in propagating long-range with controllable
oversmoothing. Lastly we analyze the second-layer LGC to show
how it smooths a user with her second-order neighbors, providing
more insights into the working mechanism of LightGCN.

3.2.1 Relation with SGCN. In [40], the authors argue the
unnecessary complexity of GCN for node classfication and propose
SGCN, which simplifies GCN by removing nonlinearities and
collapsing the weight matrices to one weight matrix. The graph
convolution in SGCN is defined as4:

E(k+1) = (D + I)−
1
2 (A + I)(D + I)−

1
2 E(k), (9)

where I ∈ R(M+N)×(M+N) is an identity matrix, which is added on
A to include self-connections. In the following analysis, we omit the
(D + I)−

1
2 terms for simplicity, since they only re-scale embeddings.

In SGCN, the embeddings obtained at the last layer are used for
downstream prediction task, which can be expressed as:

E(K) = (A + I)E(K−1) = (A + I)KE(0)

=
(
K

0

)
E(0) +

(
K

1

)
AE(0) +

(
K

2

)
A2E(0) + ... +

(
K

K

)
AKE(0).

(10)

The above derivation shows that, inserting self-connection into A
and propagating embeddings on it, is essentially equivalent to a
weighted sum of the embeddings propagated at each LGC layer.

3.2.2 Relation with APPNP. In a recent work [24], the authors
connect GCN with Personalized PageRank [15], inspiring from
which they propose a GCN variant named APPNP that can
propagate long rangewithout the risk of oversmoothing. Inspired by
the teleport design in Personalized PageRank, APPNP complements
each propagation layer with the starting features (i.e., the 0-th layer
embeddings), which can balance the need of preserving locality
(i.e., staying close to the root node to alleviate oversmoothing)
and leveraging the information from a large neighborhood. The
propagation layer in APPNP is defined as:

E(k+1) = βE(0) + (1 − β)ÃE(k), (11)

where β is the teleport probability to control the retaining of
starting features in the propagation, and Ã denotes the normalized
adjacency matrix. In APPNP, the last layer is used for final
prediction, i.e.,

E(K) = βE(0) + (1 − β)ÃE(K−1),

= βE(0) + β(1 − β)ÃE(0) + (1 − β)2Ã2E(K−2)

= βE(0) + β(1 − β)ÃE(0) + β(1 − β)2Ã2E(0) + ... + (1 − β)K ÃKE(0).
(12)

4Theweight matrix in SGCN can be absorbed into the 0-th layer embedding parameters,
thus it is omitted in the analysis.

Aligning with Equation (8), we can see that by setting αk
accordingly, LightGCN can fully recover the prediction embedding
used by APPNP. As such, LightGCN shares the strength of APPNP
in combating oversmoothing — by setting the α properly, we
allow using a large K for long-range modeling with controllable
oversmoothing.

Another minor difference is that APPNP adds self-connection
into the adjacency matrix. However, as we have shown before, this
is redundant due to the weighted sum of different layers.

3.2.3 Second-Order Embedding Smoothness. Owing to the linearity
and simplicity of LightGCN, we can draw more insights into how
does it smooth embeddings. Here we analyze a 2-layer LightGCN
to demonstrate its rationality. Taking the user side as an example,
intuitively, the second layer smooths users that have overlap on
the interacted items. More concretely, we have:

e(2)
u =

∑
i ∈Nu

1√
|Nu |

√
|Ni |

e(1)
i =

∑
i ∈Nu

1
|Ni |

∑
v ∈Ni

1√
|Nu |

√
|Nv |

e(0)
v .

(13)
We can see that, if another user v has co-interacted with the target
user u, the smoothness strength of v on u is measured by the
coefficient (otherwise 0):

cv−>u =
1√

|Nu |
√
|Nv |

∑
i ∈Nu∩Nv

1
|Ni |
. (14)

This coefficient is rather interpretable: the influence of a second-
order neighbor v on u is determined by 1) the number of co-
interacted items, the more the larger; 2) the popularity of the
co-interacted items, the less popularity (i.e., more indicative of
user personalized preference) the larger; and 3) the activity of v ,
the less active the larger. Such interpretability well caters for the
assumption of CF in measuring user similarity [2, 37] and evidences
the reasonability of LightGCN. Due to the symmetric formulation
of LightGCN, we can get similar analysis on the item side.

3.3 Model Training
The trainable parameters of LightGCN are only the embeddings of
the 0-th layer, i.e., Θ = {E(0)}; in other words, the model complexity
is same as the standard matrix factorization (MF). We employ the
Bayesian Personalized Ranking (BPR) loss [32], which is a pairwise
loss that encourages the prediction of an observed entry to be
higher than its unobserved counterparts:

LBPR = −
M∑
u=1

∑
i ∈Nu

∑
j /∈Nu

lnσ (ŷui − ŷuj) + λ | |E(0) | |2 (15)

where λ controls the L2 regularization strength. We employ the
Adam [22] optimizer and use it in a mini-batch manner. We
are aware of other advanced negative sampling strategies which
might improve the LightGCN training, such as the hard negative
sampling [31] and adversarial sampling [9]. We leave this extension
in the future since it is not the focus of this work.

Note that we do not introduce dropout mechanisms, which are
commonly used in GCNs and NGCF. The reason is that we do not
have feature transformation weight matrices in LightGCN, thus
enforcing L2 regularization on the embedding layer is sufficient
to prevent overfitting. This showcases LightGCN’s advantages of
being simple — it is easier to train and tune than NGCF which

Table 2: Statistics of the experimented data.
Dataset User # Item # Interaction # Density

Gowalla 29, 858 40, 981 1, 027, 370 0.00084
Yelp2018 31, 668 38, 048 1, 561, 406 0.00130
Amazon-Book 52, 643 91, 599 2, 984, 108 0.00062

additionally requires to tune two dropout ratios (node dropout and
message dropout) and normalize the embedding of each layer to
unit length.

Moreover, it is technically viable to also learn the layer
combination coefficients {αk }Kk=0, or parameterize them with an
attention network. However, we find that learning α on training
data does not lead improvement. This is probably because the
training data does not contain sufficient signal to learn good α that
can generalize to unknown data. We have also tried to learn α from
validation data, as inspired by [5] that learns hyper-parameters on
validation data. The performance is slightly improved (less than 1%).
We leave the exploration of optimal settings of α (e.g., personalizing
it for different users and items) as future work.

4 EXPERIMENTS
We first describe experimental settings, and then conduct detailed
comparison with NGCF [39], the method that is most relevant with
LightGCN but more complicated (Section 4.2). We next compare
with other state-of-the-art methods in Section 4.3. To justify the
designs in LightGCN and reveal the reasons of its effectiveness, we
perform ablation studies and embedding analyses in Section 4.4.
The hyper-parameter study is finally presented in Section 4.5.

4.1 Experimental Settings
To reduce the experiment workload and keep the comparison fair,
we closely follow the settings of the NGCF work [39]. We request
the experimented datasets (including train/test splits) from the
authors, for which the statistics are shown in Table 2. The Gowalla
and Amazon-Book are exactly the same as the NGCF paper used, so
we directly use the results in the NGCF paper. The only exception
is the Yelp2018 data, which is a revised version. According to the
authors, the previous version did not filter out cold-start items in
the testing set, and they shared us the revised version only. Thus
we re-run NGCF on the Yelp2018 data. The evaluation metrics are
recall@20 and ndcg@20 computed by the all-ranking protocol —
all items that are not interacted by a user are the candidates.

4.1.1 Compared Methods. The main competing method is NGCF,
which has shown to outperform several methods including GCN-
based models GC-MC [35] and PinSage [45], neural network-based
models NeuMF [19] and CMN [10], and factorization-based models
MF [32] and HOP-Rec [43]. As the comparison is done on the same
datasets under the same evaluation protocol, we do not further
compare with these methods. In addition to NGCF, we further
compare with two relevant and competitive CF methods:

• Mult-VAE [28]. This is an item-based CF method based on the
variational autoencoder (VAE). It assumes the data is generated
from a multinomial distribution and using variational inference
for parameter estimation. We run the codes released by the

authors5, tuning the dropout ratio in [0, 0.2, 0.5], and the β in
[0.2, 0.4, 0.6, 0.8]. The model architecture is the suggested one in
the paper: 600 → 200 → 600.

• GRMF [30]. This method smooths matrix factorization by adding
the graph Laplacian regularizer. For fair comparison on item
recommendation, we change the rating prediction loss to BPR
loss. The objective function of GRMF is:

L = −
M∑
u=1

∑
i ∈Nu

(∑
j /∈Nu

lnσ (eTu ei − eTu ej) + λд | |eu − ei | |2
)

+ λ | |E| |2,

(16)
where λд is searched in the range of [1e−5, 1e−4, ..., 1e−1].
Moreover, we compare with a variant that adds normalization
to graph Laplacian: λд | | eu√

|Nu |
−

ei√
|Ni |

| |2, which is termed

as GRMF-norm. Other hyper-parameter settings are same as
LightGCN. The two GRMF methods benchmark the performance
of smoothing embeddings via Laplacian regularizer, while our
LightGCN achieves embedding smoothing in the predictive
model.

4.1.2 Hyper-parameter Settings. Same as NGCF, the embedding
size is fixed to 64 for all models and the embedding parameters are
initialized with the Xavier method [12]. We optimize LightGCN
with Adam [22] and use the default learning rate of 0.001 and default
mini-batch size of 1024 (on Amazon-Book, we increase the mini-
batch size to 2048 for speed). The L2 regularization coefficient λ is
searched in the range of {1e−6, 1e−5, ..., 1e−2}, and in most cases
the optimal value is 1e−4. The layer combination coefficient αk is
uniformly set to 1

1+K where K is the number of layers. We test K in
the range of 1 to 4, and satisfactory performance can be achieved
when K equals to 3. The early stopping and validation strategies
are the same as NGCF. Typically, 1000 epochs are sufficient for
LightGCN to converge. Our implementations are available in both
TensorFlow6 and PyTorch7.

4.2 Performance Comparison with NGCF
We perform detailed comparison with NGCF, recording the
performance at different layers (1 to 4) in Table 4, which also shows
the percentage of relative improvement on each metric. We further
plot the training curves of training loss and testing recall in Figure 3
to reveal the advantages of LightGCN and to be clear of the training
process. The main observations are as follows:
• In all cases, LightGCN outperforms NGCF by a large margin. For
example, on Gowalla the highest recall reported in the NGCF
paper is 0.1570, while our LightGCN can reach 0.1830 under
the 4-layer setting, which is 16.56% higher. On average, the
recall improvement on the three datasets is 16.52% and the ndcg
improvement is 16.87%, which are rather significant.

• Aligning Table 4 with Table 1 in Section 2, we can see that
LightGCN performs better than NGCF-fn, the variant of NGCF
that removes feature transformation and nonlinear activation. As
NGCF-fn still contains more operations than LightGCN (e.g., self-
connection, the interaction between user embedding and item

5https://github.com/dawenl/vae_cf
6https://github.com/kuandeng/LightGCN
7https://github.com/gusye1234/pytorch-light-gcn

https://github.com/dawenl/vae_cf
https://github.com/kuandeng/LightGCN
https://github.com/gusye1234/pytorch-light-gcn

Table 3: Performance comparison between NGCF and LightGCN at different layers.
Dataset Gowalla Yelp2018 Amazon-Book

Layer # Method recall ndcg recall ndcg recall ndcg

1 Layer NGCF 0.1556 0.1315 0.0543 0.0442 0.0313 0.0241
LightGCN 0.1755(+12.79%) 0.1492(+13.46%) 0.0631(+16.20%) 0.0515(+16.51%) 0.0384(+22.68%) 0.0298(+23.65%)

2 Layers NGCF 0.1547 0.1307 0.0566 0.0465 0.0330 0.0254
LightGCN 0.1777(+14.84%) 0.1524(+16.60%) 0.0622(+9.89%) 0.0504(+8.38%) 0.0411(+24.54%) 0.0315(+24.02%)

3 Layers NGCF 0.1569 0.1327 0.0579 0.0477 0.0337 0.0261
LightGCN 0.1823(+16.19%) 0.1555(+17.18%) 0.0639(+10.38%) 0.0525(+10.06%) 0.0410(+21.66%) 0.0318(+21.84%)

4 Layers NGCF 0.1570 0.1327 0.0566 0.0461 0.0344 0.0263
LightGCN 0.1830(+16.56%) 0.1550(+16.80%) 0.0649(+14.58%) 0.530(+15.02%) 0.0406(+17.92%) 0.0313(+18.92%)

*The scores of NGCF on Gowalla and Amazon-Book are directly copied from Table 3 of the NGCF paper (https://arxiv.org/abs/1905.08108)

0 200 400 600 800

Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

T
ra
in
in
g
-L
o
s
s

Gowalla

0 200 400 600 800

Epoch

0.08

0.10

0.12

0.14

0.16

0.18

re
c
a
ll
@
2
0

Gowalla

0 100 200 300 400 500

Epoch

0.00

0.01

0.02

0.03

0.04

0.05

T
ra
in
in
g
-L
o
s
s

Amazon-Book

0 100 200 300 400 500

Epoch

0.010

0.015

0.020

0.025

0.030

0.035

0.040

re
c
a
ll
@
2
0

Amazon-Book

Figure 3: Training curves of LightGCN and NGCF, which are evaluated by training loss and testing recall per 20 epochs on
Gowalla and Amazon-Book (results on Yelp2018 show exactly the same trend which are omitted for space).

embedding in graph convolution, and dropout), this suggests that
these operations might also be useless for NGCF-fn.

• Increasing the number of layers can improve the performance, but
the benefits diminish. The general observation is that increasing
the layer number from 0 (i.e., the matrix factorization model,
results see [39]) to 1 leads to the largest performance gain, and
using a layer number of 3 leads to satisfactory performance in
most cases. This observation is consistent with NGCF’s finding.

• Along the training process, LightGCN consistently obtains
lower training loss, which indicates that LightGCN fits the
training data better than NGCF. Moreover, the lower training
loss successfully transfers to better testing accuracy, indicating
the strong generalization power of LightGCN. In contrast, the
higher training loss and lower testing accuracy of NGCF reflect
the practical difficulty to train such a heavy model it well. Note
that in the figures we show the training process under the optimal
hyper-parameter setting for both methods. Although increasing
the learning rate of NGCF can decrease its training loss (even
lower than that of LightGCN), the testing recall could not be
improved, as lowering training loss in this way only finds trivial
solution for NGCF.

4.3 Performance Comparison with
State-of-the-Arts

Table 4 shows the performance comparison with competing
methods. We show the best score we can obtain for each method.
We can see that LightGCN consistently outperforms other methods
on all three datasets, demonstrating its high effectiveness with
simple yet reasonable designs. Note that LightGCN can be further
improved by tuning the αk (see Figure 4 for an evidence), while
here we only use a uniform setting of 1

K+1 to avoid over-tuning it.
Among the baselines, Mult-VAE exhibits the strongest performance,

which is better than GRMF and NGCF. The performance of GRMF is
on a par with NGCF, being better than MF, which admits the utility
of enforcing embedding smoothness with Laplacian regularizer.
By adding normalization into the Laplacian regularizer, GRMF-
norm betters than GRMF on Gowalla, while brings no benefits on
Yelp2018 and Amazon-Book.

Table 4: The comparison of overall performance among
LightGCN and competing methods.

Dataset Gowalla Yelp2018 Amazon-Book
Method recall ndcg recall ndcg recall ndcg
NGCF 0.1570 0.1327 0.0579 0.0477 0.0344 0.0263
Mult-VAE 0.1641 0.1335 0.0584 0.0450 0.0407 0.0315
GRMF 0.1477 0.1205 0.0571 0.0462 0.0354 0.0270
GRMF-norm 0.1557 0.1261 0.0561 0.0454 0.0352 0.0269
LightGCN 0.1830 0.1554 0.0649 0.0530 0.0411 0.0315

4.4 Ablation and Effectiveness Analyses
We perform ablation studies on LightGCN by showing how
layer combination and symmetric sqrt normalization affect its
performance. To justify the rationality of LightGCN as analyzed
in Section 3.2.3, we further investigate the effect of embedding
smoothness — the key reason of LightGCN’s effectiveness.

4.4.1 Impact of Layer Combination. Figure 4 shows the results of
LightGCN and its variant LightGCN-single that does not use layer
combination (i.e., E(K) is used for final prediction for a K-layer
LightGCN). We omit the results on Yelp2018 due to space limitation,
which show similar trend with Amazon-Book. We have three main
observations:
• Focusing on LightGCN-single, we find that its performance first
improves and then drops when the layer number increases from

https://arxiv.org/abs/1905.08108

1 2 3 4

Number of Layers

0.15

0.16

0.17

0.18

0.19

0.20

re
ca

ll@
2

0

Gowalla

1 2 3 4

Number of Layers

0.13

0.14

0.15

0.16

0.17

n
d
c
g
@

2
0

Gowalla

1 2 3 4

Number of Layers

0.030

0.035

0.040

0.045

0.050

0.055

re
ca

ll@
2

0

Amazon-Book

1 2 3 4

Number of Layers

0.020

0.025

0.030

0.035

0.040

0.045

n
d
c
g
@

2
0

Amazon-Book

Figure 4: Results of LightGCN and the variant that does not use layer combination (i.e., LightGCN-single) at different layers
on Gowalla and Amazon-Book (results on Yelp2018 shows the same trend with Amazon-Book which are omitted for space).

Table 5: Performance of the 3-layer LightGCNwith different
choices of normalization schemes in graph convolution.

Dataset Gowalla Yelp2018 Amazon-Book
Method recall ndcg recall ndcg recall ndcg
LightGCN-L1-L 0.1724 0.1414 0.0630 0.0511 0.0419 0.0320
LightGCN-L1-R 0.1578 0.1348 0.0587 0.0477 0.0334 0.0259
LightGCN-L1 0.159 0.1319 0.0573 0.0465 0.0361 0.0275
LightGCN-L 0.1589 0.1317 0.0619 0.0509 0.0383 0.0299
LightGCN-R 0.1420 0.1156 0.0521 0.0401 0.0252 0.0196
LightGCN 0.1830 0.1554 0.0649 0.0530 0.0411 0.0315

Method notation: -L means only the left-side norm is used, -R means only
the right-side norm is used, and -L1 means the L1 norm is used.

1 to 4. The peak point is on layer 2 in most cases, while after that
it drops quickly to the worst point of layer 4. This indicates that
smoothing a node’s embedding with its first-order and second-
order neighbors is very useful for CF, but will suffer from over-
smoothing issues when higher-order neighbors are used.

• Focusing on LightGCN, we find that its performance gradually
improves with the increasing of layers. Even using 4 layers,
LightGCN’s performance is not degraded. This justifies the
effectiveness of layer combination for addressing over-smoothing,
as we have technically analyzed in Section 3.2.2 (relation with
APPNP).

• Comparing the two methods, we find that LightGCN consistently
outperforms LightGCN-single on Gowalla, but not on Amazon-
Book and Yelp2018 (where the 2-layer LightGCN-single performs
the best). Regarding this phenomenon, two points need to be
noted before we draw conclusion: 1) LightGCN-single is special
case of LightGCN that sets αK to 1 and other αk to 0; 2) we do
not tune the αk and simply set it as 1

K+1 uniformly for LightGCN.
As such, we can see the potential of further enhancing the
performance of LightGCN by tuning αk .

4.4.2 Impact of Symmetric Sqrt Normalization. In LightGCN,
we employ symmetric sqrt normalization 1√

|Nu |
√
|Ni |

on each

neighbor embedding when performing neighborhood aggregation
(cf. Equation (3)). To study its rationality, we explore different
choices here. We test the use of normalization only at the left
side (i.e., the target node’s coefficient) and the right side (i.e., the
neighbor node’s coefficient). We also test L1 normalization, i.e.,
removing the square root. Note that if removing normalization,
the training becomes numerically unstable and suffers from not-
a-value (NAN) issues, so we do not show this setting. Table 5

Table 6: Smoothness loss of the embeddings learned by
LightGCN and MF (the lower the smoother).

Dataset Gowalla Yelp2018 Amazon-book
Smoothness of User Embeddings

MF 15449.3 16258.2 38034.2
LightGCN-single 12872.7 10091.7 32191.1

Smoothness of Item Embeddings
MF 12106.7 16632.1 28307.9
LightGCN-single 5829.0 6459.8 16866.0

shows the results of the 3-layer LightGCN. We have the following
observations:
• The best setting in general is using sqrt normalization at both
sides (i.e., the current design of LightGCN). Removing either side
will drop the performance largely.

• The second best setting is using L1 normalization at the left side
only (i.e., LightGCN-L1-L). This is equivalent to normalize the
adjacency matrix as a stochastic matrix by the in-degree.

• Normalizing symmetrically on two sides is helpful for the
sqrt normalization, but will degrade the performance of L1
normalization.

4.4.3 Analysis of Embedding Smoothness. As we have analyzed
in Section 3.2.3, a 2-layer LightGCN smooths a user’s embedding
based on the users that have overlap on her interacted items, and
the smoothing strength between two users cv→u is measured in
Equation (14). We speculate that such smoothing of embeddings is
the key reason of LightGCN’s effectiveness. To verify this, we first
define the smoothness of user embeddings as:

SU =
M∑
u=1

M∑
v=1

cv→u (
eu

| |eu | |2
−

ev
| |ev | |2

)2, (17)

where the L2 norm on embeddings is used to eliminate the
impact of the embedding’s scale. Similarly we can obtained the
definition for item embeddings. Table 6 shows the smoothness
of two models, matrix factorization (i.e., using the E(0) for model
prediction) and the 2-layer LightGCN-single (i.e., using the E(2) for
prediction). Note that the 2-layer LightGCN-single outperforms
MF in recommendation accuracy by a large margin. As can be
seen, the smoothness loss of LightGCN-single is much lower
than that of MF. This indicates that by conducting light graph
convolution, the embeddings become smoother and more suitable
for recommendation.

0 1e-6 1e-5 1e-4 1e-3 1e-2

Regularization

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

re
c
a
ll
@
2
0

0 1e-6 1e-5 1e-4 1e-3 1e-2

Regularization

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

n
d
c
g
@
2
0

Figure 5: Performance of 2-layer LightGCN w.r.t. different
regularization coefficient λ on Yelp and Amazon-Book.

4.5 Hyper-parameter Studies
When applying LightGCN to a new dataset, besides the standard
hyper-parameter learning rate, themost important hyper-parameter
to tune is the L2 regularization coefficient λ. Here we investigate
the performance change of LightGCN w.r.t. λ.

As shown in Figure 5, LightGCN is relatively insensitive to λ
— even when λ sets to 0, LightGCN is better than NGCF, which
additionally uses dropout to prevent overfitting8. This shows that
LightGCN is less prone to overfitting — since the only trainable
parameters in LightGCN are ID embeddings of the 0-th layer,
the whole model is easy to train and to regularize. The optimal
value for Yelp2018, Amazon-Book, and Gowalla is 1e−3, 1e−4, and
1e−4, respectively. When λ is larger than 1e−3, the performance
drops quickly, which indicates that too strong regularization will
negatively affect model normal training and is not encouraged.

5 RELATEDWORK
5.1 Collaborative Filtering
Collaborative Filtering (CF) is a prevalent technique in modern
recommender systems [7, 45]. One common paradigm of CF
model is to parameterize users and items as embeddings, and
learn the embedding parameters by reconstructing historical user-
item interactions. For example, earlier CF models like matrix
factorization (MF) [26, 32] project the ID of a user (or an item)
into an embedding vector. The recent neural recommender models
like NCF [19] and LRML [34] use the same embedding component,
while enhance the interaction modeling with neural networks.

Beyondmerely using ID information, another type of CFmethods
considers historical items as the pre-existing features of a user,
towards better user representations. For example, FISM [21] and
SVD++ [25] use the weighted average of the ID embeddings
of historical items as the target user’s embedding. Recently,
researchers realize that historical items have different contributions
to shape personal interest. Towards this end, attention mechanisms
are introduced to capture the varying contributions, such as
ACF [3] and NAIS [18], to automatically learn the importance
of each historical item. When revisiting historical interactions as
a user-item bipartite graph, the performance improvements can
be attributed to the encoding of local neighborhood — one-hop
neighbors — that improves the embedding learning.

8Note that Gowalla shows the same trend with Amazon-Book, so its curves are not
shown to better highlight the trend of Yelp2018 and Amazon-Book.

5.2 Graph Methods for Recommendation
Another relevant research line is exploiting the user-item graph
structure for recommendation. Prior efforts like ItemRank [13],
use the label propagation mechanism to directly propagate user
preference scores over the graph, i.e., encouraging connected nodes
to have similar labels. Recently emerged graph neural networks
(GNNs) shine a light on modeling graph structure, especially high-
hop neighbors, to guide the embedding learning [14, 23]. Early
studies define graph convolution on the spectral domain, such as
Laplacian eigen-decomposition [1] and Chebyshev polynomials [8],
which are computationally expensive. Later on, GraphSage [14] and
GCN [23] re-define graph convolution in the spatial domain, i.e.,
aggregating the embeddings of neighbors to refine the target node’s
embedding. Owing to its interpretability and efficiency, it quickly
becomes a prevalent formulation of GNNs and is being widely
used [11, 29, 47]. Motivated by the strength of graph convolution,
recent efforts like NGCF [39], GC-MC [35], and PinSage [45] adapt
GCN to the user-item interaction graph, capturing CF signals in
high-hop neighbors for recommendation.

It is worth mentioning that several recent efforts provide deep
insights into GNNs [24, 27, 40], which inspire us developing
LightGCN. Particularly, Wu et al. [40] argues the unnecessary
complexity of GCN, developing a simplified GCN (SGCN) model
by removing nonlinearities and collapsing multiple weight
matrices into one. One main difference is that LightGCN and
SGCN are developed for different tasks, thus the rationality of
model simplification is different. Specifically, SGCN is for node
classification, performing simplification for model interpretability
and efficiency. In contrast, LightGCN is on collaborative filtering
(CF), where each node has an ID feature only. Thus, we do
simplification for a stronger reason: nonlinearity and weight
matrices are useless for CF, and even hurt model training. For node
classification accuracy, SGCN is on par with (sometimes weaker
than) GCN. While for CF accuracy, LightGCN outperforms GCN by
a large margin (over 15% improvement over NGCF). Lastly, another
work conducted in the same time [4] also finds that the nonlinearity
is unnecessary in NGCF and develops linear GCN model for CF. In
contrast, our LightGCN makes one step further — we remove all
redundant parameters and retain only the ID embeddings, making
the model as simple as MF.

6 CONCLUSION AND FUTUREWORK
In this work, we argued the unnecessarily complicated design of
GCNs for collaborative filtering, and performed empirical studies
to justify this argument. We proposed LightGCN which consists
of two essential components — light graph convolution and
layer combination. In light graph convolution, we discard feature
transformation and nonlinear activation — two standard operations
in GCNs but inevitably increase the training difficulty. In layer
combination, we construct a node’s final embedding as the weighted
sum of its embeddings on all layers, which is proved to subsume the
effect of self-connections and is helpful to control oversmoothing.
We conduct experiments to demonstrate the strengths of LightGCN
in being simple: easier to be trained, better generalization ability,
and more effective.

We believe the insights of LightGCN are inspirational to future
developments of recommender models. With the prevalence of
linked graph data in real applications, graph-based models are
becoming increasingly important in recommendation; by explicitly
exploiting the relations among entities in the predictive model, they
are advantageous to traditional supervised learning scheme like
factorization machines [17, 33] that model the relations implicitly.
For example, a recent trend is to exploit auxiliary information such
as item knowledge graph [38], social network [41] and multimedia
content [44] for recommendation, where GCNs have set up the
new state-of-the-art. However, these models may also suffer from
the similar issues of NGCF since the user-item interaction graph is
also modeled by same neural operations that may be unnecessary.
We plan to explore the idea of LightGCN in these models. Another
future direction is to personalize the layer combination weights αk ,
so as to enable adaptive-order smoothing for different users (e.g.,
sparse users may require more signal from higher-order neighbors
while active users require less). Lastly, we will explore further the
strengths of LightGCN’s simplicity, studying whether fast solution
exists for non-sampling regression loss [20] and streaming it for
online industrial scenarios.
Acknowledgement. The authors thank Bin Wu, Jianbai Ye,
and Yingxin Wu for contributing to the implementation and
improvement of LightGCN. This work is supported by the
National Natural Science Foundation of China (61972372, U19A2079,
61725203).

REFERENCES
[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

Networks and Locally Connected Networks on Graphs. In ICLR.
[2] Chih-Ming Chen, Chuan-Ju Wang, Ming-Feng Tsai, and Yi-Hsuan Yang. 2019.

Collaborative Similarity Embedding for Recommender Systems. In WWW. 2637–
2643.

[3] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive Collaborative Filtering: Multimedia Recommendation
with Item- and Component-Level Attention. In SIGIR. 335–344.

[4] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting
Graph based Collaborative Filtering: A Linear Residual Graph Convolutional
Network Approach. In AAAI.

[5] Yihong Chen, Bei Chen, Xiangnan He, Chen Gao, Yong Li, Jian-Guang Lou, and
Yue Wang. 2019. λOpt: Learn to Regularize Recommender Models in Finer Levels.
In KDD. 978–986.

[6] Zhiyong Cheng, Ying Ding, Lei Zhu, and Mohan S. Kankanhalli. 2018. Aspect-
Aware Latent Factor Model: Rating Prediction with Ratings and Reviews. In
WWW. 639–648.

[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for
YouTube Recommendations. In RecSys. 191–198.

[8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016.
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.
In NeurIPS. 3837–3845.

[9] Jingtao Ding, Yuhan Quan, Xiangnan He, Yong Li, and Depeng Jin. 2019.
Reinforced Negative Sampling for Recommendation with Exposure Data. In
IJCAI. 2230–2236.

[10] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for
Recommendation Systems. In SIGIR. 515–524.

[11] Fuli Feng, Xiangnan He, Xiang Wang, Cheng Luo, Yiqun Liu, and Tat-Seng Chua.
2019. Temporal Relational Ranking for Stock Prediction. TOIS 37, 2 (2019),
27:1–27:30.

[12] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS. 249–256.

[13] Marco Gori and Augusto Pucci. 2007. ItemRank: A Random-Walk Based Scoring
Algorithm for Recommender Engines. In IJCAI. 2766–2771.

[14] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive
Representation Learning on Large Graphs. In NeurIPS. 1025–1035.

[15] Taher H Haveliwala. 2002. Topic-sensitive pagerank. In WWW. 517–526.
[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In CVPR. 770–778.

[17] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for Sparse
Predictive Analytics. In SIGIR. 355–364.

[18] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang,
and Tat-Seng Chua. 2018. NAIS: Neural Attentive Item Similarity Model for
Recommendation. TKDE 30, 12 (2018), 2354–2366.

[19] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW. 173–182.

[20] Xiangnan He, Jinhui Tang, Xiaoyu Du, Richang Hong, Tongwei Ren, and Tat-Seng
Chua. 2019. Fast Matrix Factorization with Nonuniform Weights on Missing
Data. TNNLS (2019).

[21] Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM: factored item
similarity models for top-N recommender systems. In KDD. 659–667.

[22] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In ICLR.

[23] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[24] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019.
Predict then propagate: Graph neural networks meet personalized pagerank.
In ICLR.

[25] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In KDD. 426–434.

[26] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. IEEE Computer 42, 8 (2009), 30–37.

[27] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper Insights Into Graph
Convolutional Networks for Semi-Supervised Learning. In AAAI. 3538–3545.

[28] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In WWW. 689–698.

[29] Jiezhong Qiu, Jian Tang, HaoMa, Yuxiao Dong, KuansanWang, and Jie Tang. 2018.
DeepInf: Social Influence Prediction with Deep Learning. In KDD. 2110–2119.

[30] Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. 2015.
Collaborative filtering with graph information: Consistency and scalable methods.
In NIPS. 2107–2115.

[31] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning
for item recommendation from implicit feedback. In WSDM. 273–282.

[32] Steffen Rendle, Christoph Freudenthaler, ZenoGantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI. 452–
461.

[33] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme.
2011. Fast context-aware recommendations with factorization machines. In SIGIR.
635–644.

[34] Yi Tay, LuuAnh Tuan, and Siu CheungHui. 2018. Latent relational metric learning
via memory-based attention for collaborative ranking. In WWW. 729–739.

[35] Rianne van den Berg, Thomas N. Kipf, and Max Welling. 2018. Graph
Convolutional Matrix Completion. In KDD Workshop on Deep Learning Day.

[36] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[37] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. 2006. Unifying User-based
and Item-based Collaborative Filtering Approaches by Similarity Fusion. In SIGIR.
501–508.

[38] XiangWang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. In KDD. 950–958.

[39] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[40] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In ICML.
6861–6871.

[41] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang.
2019. A Neural Influence Diffusion Model for Social Recommendation. In SIGIR.
235–244.

[42] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks?. In ICLR.

[43] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.
HOP-rec: high-order proximity for implicit recommendation. In RecSys. 140–144.

[44] Yinwei Yin, Xiang Wang, Liqiang Nie, Xiangnan He, Richang Hong, and Tat-Seng
Chua. 2019. MMGCN: Multimodal Graph Convolution Network for Personalized
Recommendation of Micro-video. In MM.

[45] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In KDD (Data Science track). 974–983.

[46] Fajie Yuan, Xiangnan He, Alexandros Karatzoglou, and Liguang Zhang. 2020.
Parameter-Efficient Transfer from Sequential Behaviors for User Modeling and
Recommendation. In SIGIR.

[47] Cheng Zhao, Chenliang Li, and Cong Fu. 2019. Cross-Domain Recommendation
via Preference Propagation GraphNet. In CIKM. 2165–2168.

[48] Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng,
and Yongdong Zhang. 2020. Bilinear Graph Neural Network with Neighbor
Interactions. In IJCAI.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 NGCF Brief
	2.2 Empirical Explorations on NGCF

	3 Method
	3.1 LightGCN
	3.2 Model Analysis
	3.3 Model Training

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison with NGCF
	4.3 Performance Comparison with State-of-the-Arts
	4.4 Ablation and Effectiveness Analyses
	4.5 Hyper-parameter Studies

	5 Related Work
	5.1 Collaborative Filtering
	5.2 Graph Methods for Recommendation

	6 Conclusion and Future Work
	References

