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Abstract
Numerous lattice Boltzmann (LB) methods have been proposed for solution of
the convection–diffusion equations (CDE). For the 2D problem, D2Q9, D2Q5
or D2Q4 velocity models are usually used. When LB convection–diffusion
models are used to solve a CDE coupled with Navier–Stokes equations,
boundary conditions are found to be critically important for accurately solving
the coupled simulations. Following the idea of a regularized scheme (Latt
et al 2008 Phys. Rev. E 77 056703), a regularized boundary condition for
solving a CDE is proposed. A simple extrapolation scheme is also proposed
for the Neumann boundary condition. Spatial accuracies of three existing and
the proposed boundary conditions are discussed in details. The numerical
evaluations are based on simulations of steady and unsteady natural convection
flows in a cavity and an unsteady Taylor–Couette flow. Our studies show that
the simplest D2Q4 model with terms of O(u) in the equilibrium distribution
function is capable of obtaining results of equal accuracy as D2Q5 or D2Q9
models for the CDE. A slightly revised LB equation for solving a CDE that
is used to cancel some unwanted terms does not seem to be necessary for
incompressible flows. The regularized boundary condition for solving the
CDE has second-order spatial accuracy and it is the best one in terms of the
spatial accuracy. The regularized scheme and non-equilibrium extrapolation
scheme are applicable to handle both the Dirichlet and Neumann boundary
conditions. For the Neumann boundary condition with zero flux, all the five
boundary conditions are applicable to give accurate results and the bounce-back
scheme is the simplest one.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The lattice Boltzmann method (LBM) originated from the lattice gas automata [1] and has been
developed as an alternative numerical scheme for solving the incompressible Navier–Stokes
(NS) equations. In many applications, fluid flow problems are described by the NS equations
coupled with a convection–diffusion equation (CDE). For example, the natural convection
problem is described by the NS equations with a CDE for heat [2, 3]. A multiphase flow
system can also be described by the NS equations and a Chan–Hilliard equation (a CDE) [4].
In a simple solute/solvent flow system, the solvent’s motion is described by the NS equations
and a CDE is used to describe the transport of the moving solute [5]. The NS equations
coupled with two CDEs can be used to describe the temperature-sensitive ferrofluids system
[6] and the melt flow in Czochralski crystal growth [7].

Often, hybrid solution schemes can be used to simulate flows governed by the NS equations
and a CDE [3, 7]. For example, when simulating the natural convection, the fluid flow can be
solved by LBM while the heat transfer governed by a CDE is solved by the finite difference
method [3]. However, the hybrid scheme does not have good numerical stability [7]. Using
LBM to solve both the NS and the CDE is appealing because of the simplicity of a consistent
approach [2, 5, 8–11].

Many studies have applied LBM for solving flows governed by the NS equations and a
CDE [2–6, 12]. Dawson et al [5] studied the solute/solvent flow using the D2Q7 model on
the regular triangular lattice. However, the passive flow of solute described by a CDE is not
coupled with the NS equation. Furthermore, in the study, only a periodic boundary is used
and other boundary conditions are not used or evaluated. Niu et al [6] studied ferrofluids
system and a common D2Q9 model is used for solving the CDE. But the relaxation time τ in
the simulation for the CDE is held at 1 without justification. Recently, it was noted that some
studies investigate LBM for a single CDE using the multiple-relaxation lattice Boltzmann
method [13] or the lattice Bhatnagar–Gross–Krook method [14, 15]. Suga [14] studied the
stability and accuracy of LBM when solving a single CDE but the study is based on a simple
case and the effects of the boundary condition were not considered.

In some of the above studies [2, 5, 6], the terms of O(u2) are retained in the equilibrium
distribution function (EDF). However, because the CDE does not involve second-order velocity
terms, it has been argued that keeping the terms of O(u) in EDF is sufficient [11, 15–17].
In this study we adopt this strategy. Besides the simplification, the common D2Q9 velocity
model can be further simplified to a D2Q5 model in the two-dimensional (2D) case [4, 11, 12,
14, 18, 19].

In some studies [12, 18] using a D2Q5 LB model to solve a CDE, the weighting
factors before the EDF seem random. Recently, Zheng et al [4] suggested a formula for
the weighting factors. Here the theoretical difference between these models [4, 12, 18] would
be analyzed. Through derivation procedures from the LB equation to a CDE, the constraints
for the weighting factors in the EDF for these velocity models can be obtained [19].

Although Zheng et al [4] suggested a formula for the weighting factors, the accuracy of
the scheme employing those factors was not evaluated. Whether the scheme [4] is numerically
better than other D2Q5 and/or D2Q4 models [10, 13] is an open question. Furthermore, the
boundary conditions for a CDE were not studied.

The boundary condition treatment is an important issue in the development of accurate
LBM models. Many boundary conditions have been proposed for the LB method when it
is applied to solve the NS equations [20–24]. However, there is comparatively little study
of the boundary conditions for a CDE when it is coupled with the NS equations [25]. The
equilibrium distribution scheme [22] used for the Dirichlet boundary in [25] looks correct
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but seems to be unable to produce the correct heat flux near the heated wall. Here, based
on the idea of the regularized distribution function [26], a regularized boundary condition for
solving a CDE is proposed. A simple distribution extrapolation scheme is also proposed for
the Neumann boundary condition. The accuracy of five boundary conditions including the
proposed ones for solving a CDE will be evaluated.

In this paper, firstly the theory of the D2Q9, D2Q5 and D2Q4 models for the CDE is
introduced. Then, to test the numerical accuracy and stability of these models, two typical
flows described by NS equations and a CDE are investigated. In the numerical studies, the
effects of the boundary condition are discussed in detail.

2. LB methods

2.1. Lattice Boltzmann method for NS equations

The NS equations and CDE are solved by two sets of particle distribution functions: fi (x, t)

and gi (x, t), respectively. If there are more CDEs, additional particle distribution functions
would be used. In our study, the incompressible NS equation is solved by maintaining a low
Mach number in a common lattice BGK equation:

fi(x + eiδt , t + δt ) − fi(x, t) = − 1

τf

(
fi − f

eq
i

)
+ Ri(x, t), (1)

where Ri (x, t) is a forcing term added on the right-hand side of the lattice Boltzmann equation
(LBE) to mimic the body force appearing in the NS equations. The relaxation parameter τf

is related to the kinematic viscosity by ν = c2
s (τf − 0.5)δt , where cs = c√

3
and c = δx

δt
is the

ratio of lattice spacing δx and time step δt . In equation (1), eiare the discrete velocities. For
the D2Q9 model we used here, they are given by

[e0, e1, e2, e3, e4, e5, e6, e7, e8]

= c ·
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
.

The equilibrium distribution function (EDF) is defined as

f
eq
i (x, t) = λiρ

[
1 +

eiαuα

c2
s

+
uαuβ

2c2
s

(
eiαeiβ

c2
s

− δαβ

)]
. (2)

For the D2Q9 model, the weighting factors λi = 4/9 (i = 0), λi = 1/9 (i = 1, 2, 3, 4), λi =
1/36 (i = 5, 6, 7, 8). In this paper, the Einstein summation convention is adopted.

The density ρ and velocity uα are calculated from the hydrodynamic moments of the
particle distribution functions [27]:

ρ =
∑

i

fi =
∑

i

f
eq
i , ρuα =

∑
i

eiαfi +
1

2
Fαδt . (3)

To recover the NS equations with a body force Fα , Ri is written in a fixed form:

Ri =
(

1 − 1
2τf

)
Fα(eiα−uα)

RT
f

eq
i [27].

The no-slip boundary conditions can be handled by the momentum exchange scheme
[21], the equilibrium distribution scheme [22], bounce-back or modified bounce-back [23],
or the regularized scheme [26]. Here in our study, the boundary condition for solving the
LB fluid is not our focus. Since the modified bounce-back scheme is of second-order spatial
accuracy [23], it was adopted to handle the no-slip boundary. In that scheme, collision and
forcing still occur at boundary nodes, which is also consistent with the momentum exchange
scheme [21]. For the four corner points in our simulations, the scheme proposed by Zou
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and He [24] was applied. For example, in the left lower corner point x, the unknown
distribution functions f1,f2,f5,f6 and f8 are obtained from f1 = f3, f2 = f4, f5 = f7 and
f6 = f8 = 0.5(ρ(x + e5)− f0 − 2(f3 + f4 + f7)). This is implemented just after the streaming
step and before the collision steps. We do not intend to discuss the no-slip boundary condition
intensively. One of our goals is to evaluate the boundary conditions for solving a CDE in the
following section.

2.2. Lattice Boltzmann methods for CDE

Luo has shown that the LB equation can be derived from the Boltzmann equation [28].
Because the hydrodynamic moments of f

eq
i can be evaluated by the quadrature formula, the

2D velocity space ξ is discretized into several finite velocities ei[28]. Usually to mimic the
2D NS equations, the D2Q9 velocity model with nine velocities is necessary for a Cartesian
coordinate lattice [28]. However, to recover a CDE, the derivation from the LBE to the CDE
shows that fourth-order isotropic lattice tensors are not required (refer to appendix A). Hence,
models with fewer velocities, e.g. D2Q5 and D2Q4 [10, 11, 13–15, 19], can be used.

In our study, a typical CDE is written as

∂tT + ∂β(uβT ) = k∂β(∂βT ) + G, (4)

where T is the macro-variable in the CDE, k is a constant controlling the diffusion and G is a
source term.

In many studies [2, 5, 6, 16, 25], when the LB method is used to solve a CDE, a common
LBE in the form of equation (5) is used:

gi (x + eiδt, t + δt) − gi (x, t) = 1

τg

[
g

eq
i (x, t) − gi (x, t)

]
+ δtSi . (5)

In equation (5), Si is a source term used to recover the source term G in equation (4). The
EDF, g

eq
i , has different forms in the studies referenced above.

The EDF of f
eq
i relevant to NS equations (i.e. equation (2)) involves terms of O(u2). For

solving a CDE, Chopard et al [15] discussed about the presence of the O(u2) terms in the
local equilibrium in detail. A term O(u2) is present as a correction to the diffusion coefficient,
whether or not terms O(u2) are included in the local equilibrium distribution [15]. So the best
way to be sure that the lattice Boltzmann model works fine is to assume usmall enough so that
any O(u2)corrections can be safely ignored [15].

In the EDF of the following models, only terms of O(u) are retained. For
this strategy, through Chapman expansions we can see that there is an unwanted term
δt (τg − 0.5)∂t

[
∂β

(
T uβ

)]
[15]. In our simulations, the flows are incompressible, which means

∂βuβ = 0. Hence, the unwanted term is δt (τg − 0.5)∂t (uβ∂βT ). For the steady incompressible
flow, finally this unwanted term would be zero. For the unsteady incompressible flow,
compared to the diffusion term in equation (4), the unwanted term is of order O

(
u2

c2
s

)
[15].

Because in the simulations of incompressible flows, usually u
cs

< 0.1, the unwanted term is a
higher order term and can be neglected.

In the study of Huber et al [18], g
eq
i = WiT

[
1 + ei ·u

c2
s

]
, where e0 = (0, 0), ei =

(cos(i−1)π/2, sin(i−1)π/2)·c, i = 1, 2, 3, 4. The weighting factor W0 = 1/3 and Wi = 1/6,
i = 1, 2, 3, 4. Hence, the formula of the EDF can be written as g

eq
i = WiT + T

2 (ei · u) due to
e0 = (0, 0). In the study of Chen et al [12], the EDF g

eq
i = T

5 + T
2 (ei · u), i = 0, 1, 2, 3, 4.

However, in appendix A, we show that the general formula for the EDF is

g
(0)
i = HiT +

T eiαuα

2
(6)
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with H0 = 1 − 2η, Hi = 1
2η, i = 1, 2, 3, 4, where η ∈ (0, 0.5] is a free, positive parameter.

We noted that when η = 0.5, equation (6) becomes a D2Q4 model formula [10, 13]. The
diffusion coefficient k = η(τg − 0.5)δt .

Later, Zheng et al applied a slightly revised LBE to solve a CDE which is Galilean
invariant [4], which means the unwanted term can be canceled. The LBE reads

gi(x + eiδt, t + δt) − gi(x, t) = (1 − q)[gi(x + eiδt, δt) − gi(x, t)] +
1

τg

[
g

eq
i (x, t) − gi(x, t)

]
,

(7)

where q ∈ (0, 1] is a parameter related to the relaxation time τg . When q = 1,
equation (7) is identical as the common LBE. Appendix A shows that the unwanted term
δt (τg − 0.5)∂t [∂β(T uβ)] can be canceled if using this LBE. However, in the above analysis,
it has been shown that this unwanted term is of higher order and can be neglected in
incompressible flows. Hence, this revised LBE might not be necessary. Through Chapman–
Enskog expansions (appendix A), one can find that the EDF formula for equation (7) involves
the parameter q and is slightly different from the above EDF (equation (6)). It is

g
(0)
i = HiT + CiT eiαuα, (8)

with Ci = 1
2q

, H0 = 1 − 2η, Hi = 1
2η (i �= 0)for the D2Q5 or D2Q4 (η = 0.5) model.

η ∈ (0, 0.5] is a free, positive parameter. The diffusion coefficient k = η
(
τgq

2 − q

2

)
δt , where

q = 1
τg+0.5 .

2.3. Boundary conditions for the CDE

The boundary conditions for the CDE are important. For solving the LB fluid (NS equations),
there are several types of boundary conditions available in literatures [20, 23, 26]. Whether
they are applicable for solving a CDE and how they affect the accuracy is not clear. One of
our goals in this paper is to evaluate the effects of the boundary condition. The five boundary
conditions labeled from (i) to (v) are introduced in what follows.

(i) Regularized scheme (BC1). Here a regularized boundary condition for solving a CDE
is proposed following the idea of the regularized scheme [26]. First let us suppose
the streaming step is implemented, i.e. gi(x + eiδt, t + δt) = g+

i (x, t), where g+
i is

the post-collision value. The basic idea of the scheme is that gi = g
eq
i + g

neq
i is

replaced by ḡi = g
eq
i + g

(1)
i and hereg(1)

i is reconstructed as g
(1)
i = Bαeiα

/
2, where

Bα = ∑
i eiαgi − T uα for the D2Q4 or D2Q5 model with the common LBE. Then

the collision is implemented as g+
i = g

eq
i +

(
1 − 1

τg

)
g

(1)
i . Obviously, this construction

ensures that g
(1)
i = −g

(1)

opp(i), where opp(i) means the opposite direction of ei . This
is slightly different from the regularized scheme [26] for solving NS equations, which
requires f

(1)
i = f

(1)

opp(i). That is because the second-order moments of the non-equilibrium
distribution function are not required in Chapman–Enskog expansions from the LBE to
CDE.

As we know, when the CDE is coupled with the NS equations, variable T uα

is not evaluated as
∑

i eiαgi in the LBM code, because usually ρuα is evaluated as∑
i fieiα . Hence, usually

∑
i eig

(1)
i �= 0. From appendix A with q = 1, we know that∑

i eiαg
(1)
i = −τg [∂t (T uα) + ∂α (ηT )]. Hence Bα = ∑

i eiαgi − T uα possess unsteady
information and knowledge of gradients of T .

5
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For a boundary node, the macro-variables T , can be specified but there is one (D2Q5
or D2Q4 velocity models) or more unknown distribution functions after the streaming
step. Hence, Bα = ∑

i

eiαgi − T uα is unknown because some gi are unknown.

In [26], the unknowns are obtained by ‘bounce back of off-equilibrium parts’ [24]
because in their construction f

(1)
i = f

(1)

opp(i) is required. However, in our construction

for a CDE, g
(1)
i = −g

(1)

opp(i) is required. Here we proposed an idea of ‘bounce
back of opposite value of off-equilibrium parts’, i.e. the unknowns are obtained from
gi = g

eq
i (T , u) − (

gopp(i) − g
eq
opp(i)

)
. Then the reconstruction and collision steps at

boundary nodes can be implemented.
(ii) Simple extrapolation scheme (BC2). Besides the regularized scheme, a simple

extrapolation scheme for the Neumann boundary with the zero flux is also proposed
as follows. The unknowns g4 at boundary nodes (i, jmax) on the upper wall are obtained
through

g+
4 (i, jmax) = (

4g+
4 (i, jmax − 1) − g+

4 (i, jmax − 2)
)
/3, (9)

where (i, j) is the horizontal and vertical index of the node in the computational domain.
(iii) Non-equilibrium extrapolation scheme (BC3). The non-equilibrium extrapolation scheme

means that the collision process on the boundary node is still implemented with the
non-equilibrium distribution function obtained through extrapolation from the nearest-
neighbor fluid nodes [20]. For example, the unknowns g+

4 (i, jmax) at boundary nodes on
the upper wall is evaluated as

g+
4 (i, jmax) = g

eq
4 (i, jmax) + (1 − 1/τg)(g4(i, jmax − 1) − g

eq
4 (i, jmax − 1)). (10)

(iv) Simple bounce-back scheme (BC4). The simple bounce back used here means the standard
collision process does not occur on the boundary [23]. For example, the unknowns
g+

4 (i, jmax) at boundary nodes on the upper wall is evaluated as

g+
4 (i, jmax) = g2 (i, jmax) . (11)

The boundary condition usually used to mimic the non-slip boundary condition when
solving NS equations. Here the scheme may be valid for a Neumann boundary condition
with zero flux.

(v) Equilibrium scheme (BC5). For a Dirichlet boundary condition, an available practice
is to assign the equilibrium distribution to the distribution functions at a boundary node
[22]. For a Neumann boundary condition, after the macro-variable T is extrapolated, the
equilibrium distribution can be assigned to the distribution functions at a boundary node.

3. Numerical study

In this section we make a comparison between D2Q9, D2Q5 and D2Q4 models for a CDE
when it is coupled with the NS equations. Two typical flows are investigated. One is the
steady and unsteady natural convection in a square cavity and the other is a swirling flow, the
Taylor–Couette flow. The accuracy and stability of these models are evaluated.

3.1. Steady and unsteady natural convection in a square cavity

The momentum and thermal boundary conditions for a natural convection are illustrated in
figure 1. The temperatures on the left and right walls are T1 and T2, respectively, where
T1 > T2. The temperature difference induces natural convection in the cavity. The upper and
lower walls are adiabatic. The Boussinesq approximation is applied to the buoyancy force term.

6
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T=T

u=0

v=0

u=0 v=0

u=0
v=0

u=0 v=0∂T/∂y=0

∂ ∂T/ y=0

T=T1 2

Figure 1. Momentum and thermal boundary conditions for natural convection in a square cavity.

The thermal expansion coefficient β and kinematic viscosity ν are considered as constants,
and the buoyancy term is assumed to depend linearly on the temperature, Fy = ρβg (T − T0),
where g is the acceleration due to gravity and T0 = (T1 + T2)

/
2 is the average temperature

which is also used as the initial condition. The external body force in the y direction appears
in the NS equations.

The dynamical similarity depends on two dimensionless parameters: the Prandtl number
Pr and the Rayleigh number Ra defined as

Pr = ν/k, (12)

Ra = βg (T1 − T2) L3/νk, (13)

where k is the thermal diffusivity. In our simulations, Pr = 7. A characteristic velocity
was defined as Uc = √

βg (T1 − T2) L, where L is the length of the cavity. Two relaxation
times τf and τg are determined by νand k, respectively. For example, when τf is determined,
then for the D2Q4 CDE model, the τg = k/(ηδt ) + 0.5 = 2c2

s

(
τf − 0.5

)
/(Pr) + 0.5 (refer to

appendix A with q = 1 and η = 0.5). A grid-resolution study shows that a computational
domain with 101 × 101 lattice nodes is sufficient to get accurate results. Hence in this section,
the grid size used is 101 × 101. For the steady-flow simulation the convergence criterion is∑
i,j

‖u(t+500)−u(t)‖2

∑
i,j

‖u(t)‖2 < 10−8, where the summation is over the entire system. In the following

section, the D2Q4 with different boundary conditions will be evaluated.
In this section, we would focus on the effect of the boundary condition for the CDE. The

existing and proposed boundary conditions would be applied and evaluated.
LBM simulation results using different boundary conditions are compared with the

benchmark solution [29] for Ra = 105 and Pr = 0.71. Here the D2Q4 velocity model
[10, 13] is used to solve the CDE. In table 1, the first and second rows (labeled ‘BC’) indicate
the boundary conditions used for the left/right and the upper/lower boundaries, respectively.
In the table, umax is the maximum horizontal velocity on the vertical mid-plane of the cavity
and vmax is the maximum vertical velocity on the horizontal mid-plane of the cavity. |ψmid|
and |ψmax| are absolute values of the stream function at the mid-point of the cavity and the
maximum stream function, respectively. The stream function is normalized by the thermal

7
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Table 1. Comparison between LBM results using different boundary conditions and the benchmark
solution [29] for Ra = 105, Pr = 0.71.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Davis [29]

BC BC5 BC1 BC1 BC1 BC1 BC1 BC3 BC3 –
BC4 BC1 BC2 BC3 BC4 BC5 BC2 BC4

τf 0.7398 0.5799 0.5799 0.5799 0.5799 0.5799 0.5799 0.5799 –
|ψmid| 9.171 9.096 9.094 9.097 9.091 9.097 9.099 9.095 9.111
|ψmax| 9.706 9.619 9.616 9.625 9.607 9.625 9.626 9.611 9.612
umax 35.92 34.94 34.91 34.99 34.75 34.95 34.98 34.76 34.73
vmax 69.78 68.52 68.50 68.54 68.46 68.57 68.61 68.52 68.59

Nu 4.612 4.505 4.504 4.498 4.506 4.508 4.510 4.514 4.519
Nu1/2 4.629 4.497 4.496 4.487 4.497 4.503 4.502 4.505 4.519
Nu0 3.383 4.549 4.549 4.560 4.532 4.553 4.562 4.540 4.509

BC1: regularized scheme.
BC2: simple extrapolation.
BC3: non-equilibrium extrapolation [20].
BC4: simple bounce-back [23].
BC5: equilibrium scheme [22].

diffusivity k. The Nusselt numbers at the heated end Nu0 and at the centerline of the cavity
Nu1/2 were also evaluated. The Nusselt number is defined as

Nu = 1

k (T1 − T2)

∫ L

0

(
uT − k

∂T

∂x

)
dy. (14)

The average Nusselt number in the whole flow domain Nu is also listed. For the temperature
gradient in equation (14), it is evaluated by a central difference except for nodes on the
left/right boundary. For the nodes on the boundary the gradient was evaluated by a biased
difference. For example, on the left wall, ∂T

∂x
= T (imin + 1, j) − T (imin, j).

From table 1 we see that in case 1, the equilibrium scheme (BC5) [22] gi = g
eq
i is

applied on left/right boundaries. The scheme seems to be able to correctly capture the overall
characteristics of the flow, the average Nu, the maximum absolute value of the stream function
|ψmax|, etc. [25]. However, the heat flux near the heated wall is considerably different from
the benchmark solution. On the other hand, other cases except case 1 show that the BC1, BC3
for the Dirichlet boundary (left/right boundaries) is free of that problem and accurate results
can be obtained.

For the upper/lower Neumann boundary condition with zero flux, all five boundary
conditions are applicable. The BC2 and BC4 can be implemented straightforward but BC1,
BC2 and BC5 require the macro-variable T value at boundary nodes which can be extrapolated
from inner fluid nodes. From table 1, it is found that all five schemes are able to give accurate
results.

The spatial accuracy is also evaluated in figure 2. It shows the numerical errors as a
function of the grid resolution. In all simulations, all parameters are fixed except τf ,τgwhich
change with the grid resolution. The error is defined as the absolute value of the difference
between the final steady value of Nu for the result of 400 × 400 and that of each resolution.
The slopes of the fitted lines are also labeled. They demonstrate that the LBM has around
second-order spatial accuracy. The regularized boundary condition for solving the CDE is the
best one in terms of the spatial accuracy. The combination of boundary conditions BC3+BC2

8
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Figure 2. Error of Nu as a function of grid resolution using different combinations of boundary
conditions. The first and second boundary condition types in labels denote the boundary conditions
applied to the left/right and upper/lower boundary, respectively. A line of slope −2 is drawn to
guide the eye. m is the slope of a line.

is also evaluated but the spatial accuracy is about 1.573 that means the BC2 is not so good and
it slightly decreases the second-order spatial accuracy of the LBM.

For the stability of these boundary conditions, we did not find a significant difference
between them. For example, when the grid resolution is fixed as 100 × 100, the Pr = 0.71,
T1 − T2 = 1 and Uc = 0.1, for all these combinations of boundary conditions the maximum
Ra that can be reached before numerical instabilities appear is about 4 × 106.

It is also worth mentioning that when the relaxation time τg in the simulation for the CDE
is taken to be unity [6], the equilibrium scheme (BC5) is identical to the non-equilibrium
extrapolation scheme (BC3) [20]. That is why the equilibrium distribution scheme can also
give accurate results when τg = 1. For case 1 in table 1, if τg is taken to be unity, the result
would be better.

For numerical efficiency, our numerical study shows that when solving a single CDE, for
a same case, the CPU time using D2Q9, D2Q5 and D2Q4 are 137 s, 96 s and 83 s, respectively.
Noted the D2Q9 also omitted the terms of O(u2) in EDF. Hence, for solving a single CDE, the
D2Q4 model saves about 13.5% CPU time compared with the D2Q5 model. Our simulations
suggested for solving the NS-CDE coupled system, such as a case in table 1; the CDE solution
takes about 21.9% of the total CPU time. Hence, using the D2Q4 model for the CDE saves
about 21.9% × 13.5% = 3.0% of the total CPU time compared with that using the D2Q5
model. Our simulation do confirmed the estimation.

In the above, the D2Q4 model with different boundary conditions is evaluated. To
evaluate the D2Q9 and D2Q5 models more accurately, an unsteady natural convection with
Ra = 280 000 and Pr = 7 is investigated. To make a comparison, a finite volume method
(FVM), i.e. SIMPLE algorithm, is used to obtain a benchmark solution. A fine mesh 200 ×
200 is used and the non-dimensional time step is t∗ = tk/h2 = 0.0001. At each time step,
the residuals of the momentum equation and energy equation are all assured to be converged
to 10−6.

9
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Table 2. Comparison between LBM results and FVM results for natural convection with Ra =
280 000 and Pr = 7.

Case Model η τf τg Error

1 D2Q9 – 0.7121 0.5301 0.0084
2 D2Q5 0.4 0.7121 0.5253 0.0065
3 D2Q4 0.5 0.7121 0.5202 0.0060
4 D2Q5 0.3333 0.7121 0.5300 0.0068
5 D2Q5 [4] 0.0834 0.7121 1.2000 0.0092
6 D2Q5 [4] 0.3338 0.7121 0.5692 0.0086
7 D2Q5 [4] 0.4454 0.7121 0.5500 0.0080

In the LBM simulations, BC1 and BC4 are applied to the left/right and upper/lower
boundary, respectively. The grid resolution is 100 × 100. As an example, the streamlines
and isotherms obtained from case 6 in table 2 are illustrated in figure 3. The stream function
obtained from LBM agrees well with that obtained from the FVM at t∗ = 0.009, 0.015,
0.09. Initially, there is no flow in the cavity. The isotherms are also highly consistent with
those obtained from FVM except for some very small differences near the upper and lower
boundaries. Similar results are obtained for all of the cases in table 2.

Figure 4 shows the Nusselt numbers for case 6 at the heated end, Nu0, and at the centerline
of the cavity, Nu1/2, as functions of time. The LBM result agrees well with that of FVM.
It demonstrates that a strong internal wave motion survived for several periods of O(0.01),
which is highly consistent with the results in [30].

To further check the accuracy of the D2Q4, D2Q5 and D2Q9 models, the error of the
Nusselt number Nu1/2 between LBM and the benchmark FVM solution was evaluated. The
error is defined as

Error =
∑
t∗i

∣∣(Nu1/2(t
∗
i )

)
LBM − (

Nu1/2(t
∗
i )

)
FVM

∣∣/∑
t∗i

(
Nu1/2(t

∗
i )

)
FVM, (15)

where
(
Nu1/2(t

∗
i )

)
LBM,

(
Nu1/2(t

∗
i )

)
FVM means Nu1/2 obtained from LBM and FVM,

respectively, at the non-dimensional time t∗i . The summation is taken over 40 temporal
points from ti = 0.001 to ti = 0.04 with an interval of 0.001. Table 2 shows the error of
different LBM models. It can be seen from table 2 that the errors of different LBM models
are of the same order. No one model seems significantly better than any other.

Regarding numerical stability, the simulations are found to be still stable when the
minimum relaxation time τf = 0.5106 and the corresponding relaxation times in LBE for
solving the CDE are τg = 0.501 01, τg = 0.501 26 and τg = 0.501 52 for D2Q4, D2Q5 [12]
and D2Q5 [18] models, respectively.

3.2. Unsteady Taylor–Couette flow

In this section, we consider the problems of the laminar axisymmetric swirling flow of an
incompressible liquid with an axis in the x direction. The continuity equation (16) and
Navier–Stokes momentum equations (17) in the pseudo-Cartesian coordinates (x,r) are used
to describe the flow in the axial and radial directions [31]:

∂βuβ = −ur

r
(16)

∂tuα + ∂β(uβuα) +
1

ρ0
∂αp − ν∂2

βuα = −uαur

r
+

ν

r

(
∂ruα − ur

r
δαr

)
+

u2
θ

r
δαr . (17)
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Figure 3. Numerical results for unsteady natural convection with Ra = 280 000 and Pr = 7. Solid
lines and dashed lines are results obtained from FVM and LBM, respectively. (a), (b) Streamlines
and isotherms at t∗ = 0.009; (c), (d) streamlines and isotherms at t∗ = 0.015; (e), (f ) streamlines
and isotherms at t∗ = 0.09. The stream function here is normalized by the kinematic viscosityν.
Temperature is normalized as T ∗ = 2(T − T0)/(T1 − T2), it changes from +1 on the left wall to
−1 on the right wall. The contour interval in (a), (c) and (e), and (b), (d) and (f ) are −0.5, −0.2
and −0.1, respectively.
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Figure 4. The Nusselt number Nu1/2 and Nu0 for case 6 as a function of non-dimensional time
t∗.

In the above equations, uα , uβ (α,β represent x or r) are the axial or radial component of
velocity.

For the axisymmetric swirling flow, there are no circumferential gradients but there may
still be the non-zero swirl velocity uz. The momentum equation of azimuthal velocity is

∂tuθ + ∂α (uαuθ ) = ν∂β(∂βuθ ) +
ν

r

(
∂ruθ − uθ

r

)
− 2uruθ

r
. (18)

Obviously, it is a CDE with a source term G = ν
r

(
∂uθ

∂r
− uθ

r

) − 2uruθ

r
. The flows studied here

are incompressible, and hence the ux and ur usually should satisfy the constraints ux

/
cs � 0.1

and ur

/
cs � 0.1.

Figure 5 illustrates the geometry and boundary conditions for the Taylor–Couette flow.
The radius ratio of the inner cylinder to the outer cylinder is set as 0.5 and the aspect ratio is
set as 3.8. The computational domain is in the x − r plane and the governing equations for
the flow are equations (16)–(18). The Reynolds number is defined as Re = WD/ν, where W

is the azimuthal or swirling velocity of the inner cylinder, D is the gap of the annulus, and ν

is the kinematic viscosity. In this section, Re = 100 is investigated. Our simulations were
initialized with zero velocities everywhere.

To mimic the additional axisymmetric contributions in the 2D Navier–Stokes equations
(i.e. equations (16) and (17)) in cylindrical coordinates, the source term Ri in the LB equation
(i.e. equation (1)) can be chosen as Ri = δtR

(1)
i + δ2

t R
(2)
i , where R

(1)
i and R

(2)
i are

R
(1)
i = −ωiρur

r
and R

(2)
i = ωi

c2
s

eiβ

[−ρuβur

r
+

ρν

r

(
∂ruβ − ur

r
δβr

)]
+

ρu2
θ

r
δαr , (19)

respectively [32, 33]. The velocity is evaluated through ρuα = ∑
i

eiαfi [33].

Adding a source term Si into the LB equation (5), we can take the effect of the term
‘G’ in the azimuthal velocity-governing equation, i.e. equation (18). From appendix A, we
obtained the two constraints G = ∑

i Si and
∑

i eiβSi = 0 on Si . For simplicity, here G is
evenly distributed in all velocity models, i.e. the source term Si = 0.2G, i = 0,1, 2, 3, 4, for
the D2Q5 model and Si = 0.25G, i = 1, 2, 3, 4, for the D2Q4 model.

12
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Figure 5. Boundary conditions for the Taylor–Couette flow.

Table 3. Results of the Taylor–Couette flow with different LBM models.

Case LBM model η τf τg Error

1 D2Q9 – 0.62 0.62 0.013 10
2 D2Q5 0.4 0.62 0.6 0.005 99
3 D2Q4 0.5 0.62 0.58 0.003 48
4 D2Q5 0.3333 0.62 0.62 0.007 68
5 D2Q5 [4] 0.4507 0.62 0.8 0.004 31
6 D2Q5 [4] 0.32 0.62 1.5 0.004 04

Here we also used a FVM solution as a benchmark solution which is obtained from a fine
mesh (50×190) and a small time step �t∗ = 0.001. In this case, time is non-dimensionalized
as t∗ = tν/D2.

In the LBM simulations, a 40 × 152 uniform grid is used and non-equilibrium
extrapolation (BC3) is applied for solving the CDE. The other parameters adopted are listed
in table 3. The comparison between LBM and FVM for the stream function and swirling
velocity for case 5 are illustrated in figure 6. From figure 6, we can see the evolution of the
vortex and the final four-cell secondary mode. The LBM results obtained for case 5 agree
well with the FVM solution.

To further check the accuracy of the D2Q4, D2Q5 and D2Q9 models, the error of
the stream function ψmax between LBM and the benchmark FVM solution in figure 7 was
evaluated. The error is defined as

Error =
∑
t∗i

∣∣(ψmax(t
∗
i )

)
LBM − (

ψmax(t
∗
i )

)
FVM

∣∣/∑
t∗i

(
ψmax(t

∗
i )

)
FVM, (20)

where
(
ψmax(t

∗
i )

)
LBM,

(
ψmax(t

∗
i )

)
FVM mean the stream functions obtained from LBM and

FVM, respectively, at the non-dimensional time t∗i . The summation is taken over 40 temporal
points from t∗i = 0.02 to t∗i = 0.80 with an interval of 0.02. Table 3 shows the error of
different LBM models. It shows that the errors of different LBM models are of the same
order: no one model seems significantly better than any other.
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Figure 6. (a), (b) Streamlines and swirling velocity at non-dimensional time t∗ = 0.04; (c), (d)
streamlines and swirling velocity at t∗ = 0.8. Solid lines and dashed lines are results obtained
from FVM and LBM, respectively. Contour interval in (a)–(d) is −0.001, 0.1, −0.01 and 0.1,
respectively. Swirling velocity uθ is normalized by the characteristic velocity W . x axis in the
horizontal direction.

Figure 7. The maximum stream function in the flow field as a function of t∗.

4. Conclusion

Numerical simulations were carried out to evaluate the LB D2Q4 model and D2Q5 models with
different weighting factors and the D2Q9 model. The simulations show that the performances
of different models for solving a CDE in terms of accuracy and numerical stability are similar.
The slightly revised LBE is not found to be better than the common LBE in terms of accuracy
or numerical stability for these incompressible flow simulations. The D2Q4 model with terms
of O (u) in the EDF is the simplest scheme able to solve a CDE accurately.

Boundary conditions for the LBM CDE solution were also evaluated intensively. The
spatial accuracy of the proposed regularized scheme is found to be closest to second order.
When solving the CDE, the regularized scheme and non-equilibrium extrapolation scheme are
applicable to handle both the Dirichlet and Neumann boundary conditions. For the Neumann
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boundary condition with zero flux, all the five boundary conditions are applicable to give
accurate results and the bounce-back scheme is the simplest one.
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Appendix

In this section, we will show how a CDE can be recovered from a LB equation with D2Q9,
D2Q5 or D2Q4 models. As a starting point, the following Taylor expansion and Chapman–
Enskog expansions are adopted.

The Taylor expansion is gi(x + eiδt, t + δt) =
∞∑

n=0

εn

n!
Dngi(x, t) (A.1)

and the Chapman–Enskog expansion is

{
gi = g

(0)
i + εg

(1)
i + ε2g

(2)
i + · · ·

∂t = ∂t0 + ε∂t1 + · · · , (A.2)

where ε = δt and D ≡ (∂t + eβ · ∂β), β = x,y.
When using second-order strategy to integrate the Boltzmann equation, the forcing term

Si

(
x + ei δt

2 , t + δt

2

)
can be written as Si + δt

2

(
∂t + eiβ∂β

)
Si . Note that here the Taylor expansion

is used. Hence, the LBE (i.e. equation (7)) is

gi (x + eiδt, t + δt)− gi (x, t)

=(1− q)[gi (x + eiδt, t) − gi (x, t)]+ 1
τg

[
g

eq
i (x, t) − gi (x, t)

]
+ δt · Si + (δt)2

2

(
∂t + eiβ∂β

)
Si.

(A.3)

When q = 1, equation (A.3) is a common LBE with a source term. The equilibrium distribution
function g

(0)
i is constrained by the following relationships:∑

i

g
(0)
i =T ,

∑
i

g
(0)
i eiα = T

q
uα,

∑
i

g
(0)
i eiαeiβ = Eαβ. (A.4)

From the definition of the macro-variable T = ∑
i

gi , we can see that
∑

i g
(m)
i = 0 for m >

0. However, when the CDE is coupled with the NS equations, variable T
q
uα is not evaluated

as
∑

i eiαgi in the LBM code (because usually ρuα is evaluated as
∑

i fieiα). Hence, usually∑
i eig

(m)
i �= 0 for m > 0.

Retaining terms up to O(ε2) in equations (A.1) and (A.2) and substituting into the LBE
equation (A.3) results in the following equations:

O(ε0) :
(
g

(0)
i − g

eq
i

)/
τg = 0, (A.5)

O (ε) :
(
∂t0 + qeiβ∂β

)
g

(0)
i = 1

τg

(−g
(1)
i

)
+ Si, (A.6)

O(ε2) : ∂t1g
(0)
i + (∂t0 + qeiβ∂β)g

(1)
i + 1

2

[
∂2
t0 + 2∂t0

(
eiβ∂β

)
+ qeiα∂αeiβ∂β

]
g

(0)
i

= 1

τg

(−g
(2)
i

)
+

1

2

(
∂t0 + eiβ∂β

)
Si. (A.7)
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Summing on i in equation (A.6), we obtain at O(ε)

∂t0T + ∂β

(
T uβ

) =
∑

i

Si . (A.8)

Then we proceed to O(ε2). Using equation (A.6) and substituting the (∂t0 + qeiβ∂β)g
(0)
i with

1
τg

(−g
(1)
i

)
+ Si , through simple algebra, the left-hand side of equation (A.7) can be written as

(∂t0 + qeiβ∂β)g
(1)
i +

1

2

[
∂2
t0 + 2∂t0

(
eiβ∂β

)
+ qeiα∂αeiβ∂β

]
g

(0)
i

=
(

1 − 1

2τg

) (
∂t0 + qeiβ∂β

)
g

(1)
i +

1

2

(
∂t0 + qeiβ∂β

)
Si + (1 − q)∂t0∂β

(
eiβg

(0)
i

)
+

q(1 − q)

2
∂α∂β

(
eiαeiβg

(0)
i

)
. (A.9)

Using equation (A.9) and summing on i in equation (A.7), we obtain at O
(
ε2

)
∂t1T +

(
1 − 1

2τg

) ∑
i

(
∂t0 + qeiβ∂β

)
g

(1)
i +

(1 − q)

q
∂t0∂β

(
T uβ

)
+

q(1 − q)

2
∂α∂β

(
Eαβδαβ

)

=
(

1 − q

2

)
∂β

(∑
i

eiβSi

)
. (A.10)

Note that using equation (A.6) and the definition of macro-variables, we can obtain

∑
i

(
∂t0 + qeiβ∂β

)
g

(1)
i = −τg∂t0∂β

(
T uβ

) − τgq
2∂β∂γ (Eβγ ) + τgq∂β

(∑
i

eiβSi

)
. (A.11)

Hence, equation (A.10) becomes

∂t1T +

(
1

2
− τg +

1 − q

q

)
∂t0∂β

(
T uβ

)
+

(q

2
− τgq

2
)

∂α∂β

(
Eαβ

)

= (
0.5 − τgq

)
∂β

(∑
i

eiβSi

)
. (A.12)

Combining equations (A.8) and (A.12) leads to the following equation:

∂tT + ∂α(T uα) −
∑

i

Siδt

{[
2 − q

2q
− τg

]
∂t [∂β

(
T uβ

)
] +

(q

2
− τgq

2
)

∂α∂β(Eαβ)

−(0.5 − τgq)∂β

(∑
i

eiβSi

)}
+ O(δt2) = 0. (A.13)

Eαβ in equation (A.4) is defined as Eαβ = ηT δαβ , where η is a constant to be determined later.
To make equation (A.13) fully recover the convection–diffusion equation

∂tT + ∂α (T uα) − k∂2
β (T ) + G + O(δt2) = 0, (A.14)

the coefficient before the term ∂t

[
∂β

(
T uβ

)]
in equation (A.13) should satisfy a constraint

2−q

2q
− τg = 0. It gives q = 1

τg+0.5 .

In the meantime, the thermal diffusivity should be defined as k = (
τgq

2 − q

2

)
ηδt . Here

η = k
/

[0.5q (1 − q) δt ], τg > 0.5, 0 < q < 1. When q = 1, η = k
/[(

τg − 0.5
)
δt

]
.

The source term is required to satisfy two constraints G = ∑
i Si and

∑
i eiβSi = 0.
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On the other hand, through the constraints in equation (A.4), we obtained the coefficients
in the EDF g

(0)
i = BiT + CiT eiαuα as

Ci = 1

2q
, B0 = 1 − 2η, Bi = 1

2
η (i �= 0). (A.15)

It is noted that for the common D2Q9 model [28] with terms of O(u2) in the EDF,
there is an extra term (τg − 0.5)δt · ∂γ

(
∂β

(
T uβuγ

))
in the CDE because in this case∑

i

g
(eq)

i eiβeiγ = c2
s T δβγ + T uβuγ . That term is a higher order term and can be neglected.

There is an extra term
(
0.5 − τg

)
∂t

[
∂β

(
T uβ

)]
in the CDE (i.e. equation (A.14)) for D2Q5

models in [12, 18] due to q = 1. However, this term is of higher order than the convection
or diffusion term in the CDE. We can neglect this term. Basically the D2Q5 model [4] would
have the same accuracy as the common D2Q5 models [12, 18] with different weighting factors.
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