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Isothermal gas flow in microtubes with a sudden expansion or contraction is studied
numerically by lattice Boltzmann method. An axisymmetric D2Q9 model is used to
simulate gas slip flow in micro-circular pipes. With the boundary condition combined
specular and bounce-back schemes, the computed results are in excellent agreement with
analytical solution for straight microtube. For the gas flow in the expanded or constricted
tubes, we carried out simulations of several Knudsen numbers with inlet/outlet pressure
ratio 3. It is found the pressure drop in each section can be predicted well by the theory
of straight tubes. For smaller Knudsen number, flow separation in the expanded tube
is observed. While for large Knudsen number, there is no vortex at corner and the
streamlines are attached to boundary. In the constricted tube, the vortex at corner is
very weak. These results are consistent with some experimental conclusions.
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1. Introduction

MEMS (Micro-Electro-Mechanical-Systems) devices with dimensions ranging from

100 to 1 microns have found many applications in engineering and scientific re-

searches.1 MEMS are often operated in gaseous environments at standard condi-

tions in which the dynamics associated with MEMS can exhibit rarefied phenomena

and compressibility effects.2 Usually the Knudsen number Kn is used to identify

the effects. Kn is the ratio of the mean free path λ to the characteristic length D.

Generally speaking, the continuum assumption for Navier–Stokes (NS) equations

may break down if Kn > 0.01. For the flow case 0.01 < Kn < 0.1, a slip velocity

would appear in the wall boundary. The value of 0.1 < Kn < 10 are associated

with a transition flow regime.

The rarefied gas slip flow in microchannels or tubes have been investigated ex-

perimentally or analytically.2,3 Numerical simulations can be carried out by solving

NS equation4 or the direct simulation Monte Carlo (DSMC) method.5 Recently,
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Fig. 1. Geometry of microtubes with a sudden expansion/contraction and D2Q9 model.

the lattice Boltzmann method (LBM) is based on meso-scale level and has been

applied to simulate the microflows.6–8,18,19 LBM is more computationally efficient

comparing with the DSMC method because it is only dependent upon the number

of mesh points and the lattice model.6

However, previous LBM study of microflow is only concentrated in microchan-

nel. As we know, circular microtubes have been widely used in many MEMS devices,

such as micropumps, microactuators, microheat exchangers, microsensors, biologi-

cal cell reactors, and selective membranes.3 Fluid flow in micropumps or microac-

tuators is often through channels or tubes with contraction/expansion transitions,

changes in cross-sectional area, bends or branching.9

In order to understand the flow physics or even improve relevant microdevices,

here we focus on the flow in circular microtube with sudden expansion or con-

traction (Fig. 1). First, through inserting the source term into the microevaluation

equation,10 a revised axisymmetric D2Q9 LBM is used to simulate axisymmetric

flows in microtube.19 Then the model was validated by simulation of microflow in

a straight circular tube and making comparison with analytical solutions.9

2. Numerical Methods

Among many different lattice Boltzmann equation (LBE) models, the lattice

Bhatnagar–Gross–Krook (LBGK) model is the simplest one because it only has one

scalar relaxation parameter. Here our axisymmetric LBM is derived from LBGK

D2Q9 model.

We describe our model in pseudo-Cartesian coordinates (x, r), fi(x, r, t) is the

distribution function for particles with velocity ei at position (x, r) and time t. The

basic discrete-velocity Boltzmann kinetic equation is

fi(x + eixδt, r + eirδt, t + δt) − fi(x, r, t)

=
1

τ
[f eq

i (x, r, t) − fi(x, r, t)] + hi , (1)

where τ is the collision relax time constant, and δx and δt are the lattice spacing

and timestep size, respectively. f eq
i (x, r, t) is the equilibrium distribution function
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defined as15

f eq
i (x, r, t) = ωiρ

[

1 +
ei · u

c2
s

+
(ei · u)2

2c4
s

−
u

2

2c2
s

]

i = 0, 1, 2, . . . , 8 ,

where cs = c/
√

3, c = δx/δt, ω0 = 4/9, ωi = 1/9 (i = 1, 2, 3, 4), ωi = 1/36 (i = 5,

6, 7, 8).

In our D2Q9 model, the nine discrete velocities of our model (refer to Fig. 1) are

defined as following, e0 = 0, ei = (cos[(i−1)π/2], sin[(i−1)π/2])c, i = 1, 2, 3, 4 and

ei =
√

2(cos[(i−5)π/2+π/4], sin[(i−5)π/2+π/4])c, i = 5, 6, 7, 8. The characteristic

speed c can be related to the reference temperature by c =
√

3RT . The macroscopic

density ρ and momentum ρu are defined as ρ =
∑8

i=0 fi, ρuα =
∑8

i=0 fieiα, and

p = ρc2
s. In Eq. (1), the “source” terms can be written as

hi = δth
(1)
i + δ2

t h
(2)
i , (2)

where h
(1)
i and h

(2)
i are the terms added into the LBE, which can be calculated

through below Eqs. (3) and (4), respectively.

h
(1)
i = −

ωiρur

r
, (3)

h
(2)
i =

ωi

2r

(

∂r

ρ

3
+ ∂xρuxur + ∂rρurur

)

+
3ωiρν

r
(eix∂rux + eir∂rur)

−
3ωiρν

r2
ureir − 3ωiρ

(uxur

r
eix +

urur

r
eir

)

− (1 − τ)ωi

(

1

r
∂xρureix −

ρur

r2
eir +

∂rρur

r
eir

)

. (4)

Through the Chapman–Enskog Expansion as Refs. 10 and 12, the continuity

equation and momentum equations in Ref. 3 for a compressible fluid in the pseudo-

Cartesian coordinates (x, r) can be recovered from our axisymmetric D2Q9 model.19

Comparing with our model, the model of Halliday et al.
10 missed some terms.

That would lead to a large error for simulating the flows in constricted pipes. The

present model is found more accurate and stable than previous models.12–14 The

detailed comparisons between different axisymmetric models13,14 can be found in

Ref. 12. For the velocity derivatives in Eq. (4), most velocity gradient terms can be

obtained from high-order momentum of distribution function, which is consistent

with the philosophy of the LBM.11

In the above equations, the relax time constant τ and the fluid kinetic viscosity

ν satisfies equation ν = c2
s(τ − 0.5δt). To simulate the microflow, the parameter τ

and Kn are correlated as,7 τ/δt = KnND/
√

π/6 + 0.5, where ND is the lattice

number in the tube diameter, Kn is local Knudsen number. The local Kn can be

calculated by Kn = Knopo/p(x, r), where Kno and po are the Kn and the pressure

at the outlet.

For wall boundary condition, bounce-back scheme is usually used to realize

nonslip boundary condition when simulation continuum flow. On the other hand,
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specular reflection scheme6 can be applied to free-slip boundary condition where no

momentum is to be exchanged with the wall along the tangential component. For

real gas flow in microtubes, a combination of the two schemes is considered here.

To describe boundary condition treatment, a wall ∂Ω is completely specified. For

a point x(x ∈ ∂Ω), n is the inward unit normal vector of the wall. After streaming

step is implemented, the unknown distribution functions of fi(x, t), ei ·n > 0 (i.e. f4,

f7, f8 in up wall of tube in Fig. 1) can be evaluated by7,16

fi(x, t) = bfj(x, t) + (1 − b)fk(x, t) , (5)

where fj(x, t) is the distribution function in ej direction, where ei − ej = 2ei, and

fk(x, t) is the distribution function in ek direction, where ei − ek = 2n. b is the

bounce-back probability chosen 0.7 as Ref. 7.

For the inlet/outlet boundary conditions, the pressure was specified and the

nonequilibrium extrapolation method17 is applied.

3. Results and Discussion

Firstly, simulation in a straight circular tube is performed. The diameter is rep-

resented by 41 lattice nodes (40 δx) and the length of the tube is 20 times of the

height. Here, we take the streamwise momentum accommodation coefficient σ = 1

as almost all engineering calculations.3 The pressure distribution along the micro-

tube predicted from the first slip boundary condition is3

p̃(x̃) = −8Kno +
√

(8Kno)2 + (1 + 16Kno)x̃ + (Pr2 + 16KnoPr)(1 − x̃) , (6)

where p̃ = p(x, r)/po, x̃ = x/L, L is the tube length. Pr is the ratio of the inlet

and outlet pressure.

The pressure drop along the tube which deviate from linear pressure drop for

Pr = 2 with different outlet Knudsen number Kno are shown in Fig. 2. Comparing

with the analytical solution Eq. (6), good results were obtained by LBM simula-

tion. Figure 2 demonstrated that the larger Kno is, the smaller the deviation from

the linear pressure distribution. It is also observed the rarefaction effect and the

compressibility effect on the pressure distribution are contradictory.

In Fig. 3, the variation of slip velocity along the microtube wall is presented.

The streamwise velocity profile (first-order slip-flow model) given by Weng et al.
3

can also be written as

U(x, r) = −
D2

16µ

dp

dx

(

1 − 4
( r

D

)2

+
4Kno

p̃

)

. (7)

Hence, the analytical solution for slip velocity on the wall normalized by the central

velocity at outlet Uoc is

Uslip(x)

Uoc
=

dp̃/dx̃

(dp̃/dx̃)o

Kn

(0.25 + Kno)
, (8)

where dp̃/dx̃ is the nondimensional pressure gradient and the (dp̃/dx̃)o means the

pressure gradient at exit, which can be calculated by Eq. (6).
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Fig. 2. Pressure distribution along the tube for different Kno (Pr = 2).

Fig. 3. Slip velocity in wall along the tube for different Kno (Pr = 2).

From Fig. 3, we can see that the slip velocity on the wall would increase with

x. For cases of Kno = 0.025, 0.05, 0.1, the slip velocity on wall obtained by LBM

agrees well with the analytical solution.

For the cases of microtube with sudden expansion or contraction, the geometry

is illustrated in Fig. 1. In our simulations Li = Lo and the ratio of diameter of

wide part and narrow part is 2. To simulate the axisymmetric flow, uniform lattices
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Fig. 4. Pressure distribution in converging and diverging tubes obtained by analysis and LBM.

are used. The narrow and wide parts are represented by 21 and 41 lattice nodes

with diameter 20δx and 40δx, respectively. In the streamwise direction, 401 lattices

represent Li and Lo.

For the two segments of the tubes, if the pressure at junction Pj is known,

applying the Eq. (6) twice, we can obtain the pressure distribution along the whole

microtube. Pj can be easily obtained through mass conservation in the two part of

tube.3,9 Here we did not consider the additional pressure loss term as Lee et al.
9

who attributed the measured pressure drop near junction to a loss during transition.

In Fig. 4, the pressure distributions at the axis for Pr = 3 in the converging

and diverging tubes are shown. The pressure variation is nonlinear and there is a

discontinuity in slope at the junction which may be due to change of cross-sectional

area and compressibility effect. Very small discrepancy between analytical and LBM

solutions can be observed. It seems the gas flow in these tubes is still affected by

the junction.

The distributions of slip wall velocity Us in converging and diverging tubes

obtained by analysis and LBM are illustrated in Fig. 5. Our numerical solutions

agree well with the analytical results except the small discrepancy in the small

region near the junction and the segment after the junction in diverging tube. It

seems the gas slip flow is affected by the junction. In Fig. 5, we can see that there is

a jump around the junction and Us shows a negative value just before (converging

case) or behind (diverging case) the junction. The negative value means there is a

vortex in the corner. That would also be demonstrated clearly in Figs. 6 and 7.

Figure 6 gives out the streamlines for several cases with different Kno in diverg-

ing tubes. In Figs. 6 and 7, the dash-dot line represents the axis of microtubes. For

the case Kno = 0.01, at the corner a big vortex appears. Lee et al.
9 had conjectured
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Fig. 5. Wall slip velocity distribution in converging and diverging tubes obtained by analysis and
LBM, Us is normalized by the central outlet velocity of each segment.

Kn =0.06
o

Kn =0.05
o

Kn =0.01
o

Fig. 6. Streamlines in microtubes with sudden expansion.

that there are secondary flows, such as vortices in the corner based on their exper-

iments about constricted microchannel. Our numerical results confirmed that in

cases of lower Kno. However, for the case of Kno = 0.05, the vortex strength at

the corner would decrease and the vortex disappears in the case of Kno = 0.06. For

cases of high Kno (i.e. Kno > 0.06), the flow in microtube with sudden expansion
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Kn =0.02
o

Kn =0.1
o

Fig. 7. Streamlines in microtubes with sudden contraction.

does not separate at the corners and the streamlines are attached to boundary. As

we know, the formation of vortex is usually due to two factors: viscosity and suf-

ficient velocity gradient. Existent of relatively large slip velocity at the wall would

greatly reduce the velocity gradient. As a result, the vortex disappears in sudden

expanded microtube when Kno is high.

Figure 7 gives out the streamlines for two cases with different Kno in converging

tubes. For both cases, at the corner a very small vortex appears, which is consistent

with deduction of Lee et al.
9 based on experiments. In the above cases, there is no

vena contracta or the vena contracta is too small to detect.

4. Conclusions

In summary, with an axisymmetric lattice Boltzmann D2Q9 model, the gas slip

flows in microtubes with a sudden expansion or contraction with 0.01 < Kno <

0.1 are simulated. With the boundary condition combined specular and bounce-

back schemes, the pressure and the slip velocity distributions along the microtube

all agree well with the analytical results. A jump of slip velocity at wall near to

the junction and vortex at corner all demonstrate the effect of the junction. For

microflows of lower Kno (i.e. Kno = 0.01) in the sudden expanded tube, a vortex

appears at the corner behind the junction. With higher Kno, the strength of the

vortex would decrease or disappear (i.e. Kno = 0.06). For microflows in the sudden

constricted tube, a very weak vortex appears at the corner just before the junction.

The results are consistent with some experiment conclusions.
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