
On Forgetting Postulates in Answer Set Programming

Jianmin Ji
University of Science and

Technology of China, Hefei, China
jianmin@ustc.edu.cn

Jia-Huai You
University of Alberta
Edmonton, Canada
you@cs.ualberta.ca

Yisong Wang∗

Guizhou University
Guiyang, China

csc.yswang@gzu.edu.cn

Abstract
Forgetting is an important mechanism for logic-
based agent systems. A recent interest has been in
the desirable properties of forgetting in answer set
programming (ASP) and their impact on the design
of forgetting operators. It is known that some sub-
sets of these properties are incompatible, i.e., they
cannot be satisfied at the same time. In this paper,
we are interested in the question on the largest set ∆
of pairs (Π, V), where Π is a logic program and V
is a set of atoms, such that a forgetting operator ex-
ists that satisfies all the desirable properties for each
(Π, V) in ∆. We answer this question positively by
discovering the precise condition under which the
knowledge forgetting, a well-established approach
to forgetting in ASP, satisfies the property of strong
persistence, which leads to a sufficient and neces-
sary condition for a forgetting operator to satisfy all
the desirable properties proposed in the literature.
We explore computational complexities on check-
ing the condition and present a syntactic character-
ization which can serve as the basis of computing
knowledge forgetting in ASP.

Introduction
It has been well argued that for cognitive robotics the ability
of eliminating or hiding irrelevant symbols in a knowledge
base, known as (variable) forgetting, plays an important role
in logic-based agent systems [Lin and Reiter, 1994]. In sim-
ple words, forgetting is a process on a logical formula that
replaces some logic symbols by true on the one hand and by
false on the other, to produce a formula that no longer con-
tains these symbols. Forgetting has found several interesting
applications in Artificial Intelligence, such as regression and
progression in databases and planning [Lin and Reiter, 1997;
Liu and Wen, 2011; Rajaratnam et al., 2014], abduction and
diagnosis [Lin, 2001], conflict resolution [Lang and Marquis,
2010], and abstracting and comparing ontologies [Wang et
al., 2010; Konev et al., 2012].

Logic programming under stable model (or answer set) se-
mantics [Gelfond and Lifschitz, 1988; Ferraris, 2005], com-

∗Corresponding Author.

monly referred to as Answer Set Programming (ASP), is a
paradigm for declarative problem solving [Baral, 2003]. In
ASP, various notions of equivalence have been proposed:
(standard) equivalence, strong equivalence [Lifschitz et al.,
2001], uniform equivalence [Eiter et al., 2007], and modular
equivalence [Janhunen et al., 2009]. Among these, the first
two are most relevant in this paper. Informally, given two
logic program Π and Π′, they are equivalent if they have the
same answer sets; they are strongly equivalent if Π ∪ Σ and
Π′ ∪Σ have the same answer sets for every logic program Σ.
The latter allows for “equivalent replacement” in ASP, and
can thus be used to simplify logic programs [Lifschitz et al.,
2001]. The notion of strong equivalence can be characterized
in the logic here-and-there (HT) [Pearce, 1996]. Since HT is
a monotonic logic, ASP admits a monotonic entailment re-
lation, written |=HT, between logic programs by regarding a
logic program as a logical formula.

Recently, researchers have shown a focused interest in for-
getting in ASP [Delgrande and Wang, 2015], with a number
of varying notions of forgetting proposed, such as the strong
and weak forgetting [Zhang and Foo, 2006], the semantic
forgetting [Eiter and Wang, 2008], forgetting operators FW

and FS [Wong, 2009], the knowledge forgetting [Wang et
al., 2012; 2014], the SM-forgetting [Wang et al., 2013], and
the strong AS-forgetting [Knorr and Alferes, 2014]. Forget-
ting is also investigated for some nonmonotonic logical sys-
tems [Wang et al., 2015]. In the above literature, several de-
sirable properties have been formulated, which we briefly in-
troduce below.

Let L be an ASP language on a signatureA, Π a logic pro-
gram in L, V ⊆ A, and f(Π, V) the result of forgetting about
V in Π. Let AS(Π) denote the set of all answer sets of Π.
The desirable properties about f can be described informally
as follows:

(E) Existence: f(Π, V) is expressible in L.

(IR) Irrelevance: f(Π, V) is irrelevant to V in terms of strong
equivalence.

(W) Weakening: Π |=HT f(Π, V).

(PP) Positive Persistence: if Π |=HT Π′ and Π′ is irrelevant to
V then f(Π, V) |=HT Π′.

(NP) Negative Persistence: if Π 6|=HT Π′ and Π′ is irrelevant
to V then f(Π, V) 6|=HT Π′.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3076

(SE) Strong Equivalence: If Π and Π′ are strongly equivalent,
then f(Π, V) and f(Π′, V) are strongly equivalent.

(CP) Consequence Persistence: AS(f(Π, V)) = {M \ V |
M ∈ AS(Π)}.

(SP) Strong Persistence: AS(f(Π, V)∪Π′) = {M \V |M ∈
AS(Π ∪Π′)} for all programs Π′ over signature A \ V .

The intended meanings of the first seven properties are easy
to understand. For instance, the property (IR) requires that the
forgetting result f(Π, V) is strongly equivalent to a logic pro-
gram containing no variable from V . The property (SP) says
that the result of forgetting should preserve all the semantic
dependencies contained in the original program, for all but the
atom(s) to be forgotten [Knorr and Alferes, 2014]. It is evi-
dent that (CP) is a special case of (SP). It has been shown that
these properties together are inconsistent, in the sense that if
f satisfies (IR), (E) and (CP) then it violates (W) [Wang et
al., 2013].

The first four properties, i.e., (W), (PP), (NP) and (IR),
were proposed by Zhang and Zhou (2009) for knowledge
forgetting in modal logic S5. The property (CP) was orig-
inally proposed by Eiter and Wang (2008) for a semantical
notion of forgetting in ASP, which satisfies (E) and (IR), but
none of (W), (PP), (NP), (SE), and (SP). Wang et al. (2012)
adapted (W), (PP), (NP), and (IR) for knowledge forgetting
in ASP, which satisfies both (E) and (SE), but fails for (CP)
and (SP). Later, Wang et al. (2013) proposed SM-forgetting
in ASP, which satisfies (E), (IR), (SE), (CP), and (PP), but
none of (W), (NP), and (SP). Knorr and Alferes (2014) pro-
posed strong AS-forgetting, which satisfies (IR), (SE), (CP),
and (SP), but not (E) in general.

In this paper, with the focus on the knowledge forget-
ting operator in propositional ASP – ForgetHT – which is
known to enjoy the first six properties [Wang et al., 2012;
2014], we investigate possible restrictions for a logic program
and a set of forgotten variables under which ForgetHT also sat-
isfies (SP). This allows us to explore syntactically restricted
subclasses of logic programs for which ForgetHT enjoys all of
the well-recognized properties.

In addition, as knowledge forgetting is defined semanti-
cally [Wang et al., 2012; 2014] and, to our knowledge, there
have been no syntactic characterizations for it, we propose a
syntax-based approach for knowledge forgetting, which can
be used as a syntactic transformation to compute knowledge
forgetting.

The main contributions of the paper are as follows:

• We identify a sufficient and necessary condition for a
logic program Π and a set of atoms V for which ForgetHT

satisfies the property (SP), i.e. AS(ForgetHT(Π, V) ∪
Π′) = {M \V |M ∈ AS(Π∪Π′)} for every logic pro-
gram Π′ containing no atom from V . This implies that
we have found the largest set ∆ of pairs (Π, V) such
that ForgetHT satisfies all the properties under ∆ (see
Definition 2). We also study the complexity on check-
ing whether a logic program and a set of atoms satisfy
the condition.

• We obtain a syntactic counterpart of the (semantics-
based) knowledge forgetting in ASP. It is substantially

different from the syntactic definition for the forgetting
in classical propositional logic.

The rest of the paper is organized as follows. Section
briefly reviews the necessary concepts about ASP, the logic
here-and-there, more details on desirable properties, and
knowledge forgetting for ASP. In Section we show a suffi-
cient and necessary condition for knowledge forgetting that
satisfies the property (SP), and study the computational com-
plexities on checking the condition. Section presents a syn-
tactic approach for knowledge forgetting. Finally, Section
provides concluding remarks along with future directions.

Preliminaries

We assume a propositional language LA over a finite setA of
propositional variables (atoms), called the signature of LA.
The formulas of LA are inductively constructed using con-
nectives ⊥,∧, ∨ and ⊃ as the following:

ϕ ::= ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊃ ϕ (1)

where p ∈ A. The formula ¬ϕ stands for ϕ ⊃ ⊥, while> for
⊥ ⊃ ⊥. We identify an interpretation with the set of atoms
satisfied by it. A set X ⊆ A is a model of a formula ϕ, writ-
ten X |= ϕ, if X satisfies ϕ in the sense of classical propo-
sitional logic. By Mod(ϕ) we denote the set of models of ϕ.
A formula ϕ is irrelevant to V ⊆ A, written IR(ϕ, V), if
there is a formula ψ mentioning no atoms from V such that
Mod(ϕ) = Mod(ψ), i.e., ϕ is equivalent to ψ.

In the following we recall the basic notions about answer
sets of propositional formulas [Ferraris, 2005], the logic of
here-and-there [Heyting, 1930; Pearce et al., 2009], and the
knowledge forgetting (HT-forgetting) for ASP [Wang et al.,
2012; 2014].

Answer sets

Let ϕ,ψ be two formulas and X ⊆ A. The reduct of ϕ rela-
tive to X , written ϕX , is defined recursively as follows:

• if X 6|= ϕ then ϕX = ⊥,

• if X |= p then pX = p, and

• if X |= ϕ⊗ ψ then (ϕ⊗ ψ)X = ϕX ⊗ ψX

where p ∈ A and ⊗ ∈ {∨,∧,⊃}. Intuitively, ϕX stands for
the formula obtained from ϕ by replacing every outermost
subformula not satisfied byX with⊥. The setX is an answer
set of ϕ if it is a subset minimal model of ϕX . By AS(ϕ) we
denote the set of answer sets of ϕ.

Under the answer set semantics, two formulas ϕ1 and ϕ2

are equivalent, denoted by ϕ1 ≡AS ϕ2, if they have the same
answer sets, viz. AS(ϕ1) = AS(ϕ2); ϕ1 and ϕ2 are strongly
equivalent, denoted by ϕ1 ≡s

AS ϕ2, if ϕ1∧ψ and ϕ2∧ψ have
the same answer sets for every formula ψ, viz. AS(ϕ1∧ψ) =
AS(ϕ2∧ψ) for every formula ψ. A formula ϕ is AS-irrelevant
to V ⊆ A, written IRAS(ϕ, V), if there exists a formula ψ
mentioning no atoms from V such that ϕ ≡s

AS ψ.

3077

A formula ψ is in normal form, if it is a conjunction of
formulas (also called rules1) in the following form:∧

(B ∪ ¬C ∪ ¬¬D) ⊃
∨
A (2)

where A, B, C, D are sets of atoms, and we use the notation,
for any S ⊆ A, ¬S = {¬p | p ∈ S} and ¬¬S = {¬¬p | p ∈
S}. Every formula ϕ can be translated to a formula ψ in the
normal form such that ϕ ≡s

AS ψ (cf. Theorem 2 of [Cabalar
and Ferraris, 2007]).

A logic program is a finite set of rules. In the following,
we identify a logic program Π with the formula

∧
Π unless

stated otherwise explicitly.

HT-models
An HT-interpretation is a pair 〈X,Y 〉 such that X ⊆ Y ⊆ A.
That an HT-interpretation 〈X,Y 〉 satisfies a formula ϕ, writ-
ten 〈X,Y 〉 |=HT ϕ, is defined recursively as follows
• for any atom p, 〈X,Y 〉 |=HT p if p ∈ X ,
• 〈X,Y 〉 6|=HT ⊥,
• 〈X,Y 〉 |=HT ϕ∧ψ if 〈X,Y 〉 |=HT ϕ and 〈X,Y 〉 |=HT ψ,
• 〈X,Y 〉 |=HT ϕ ∨ ψ if 〈X,Y 〉 |=HT ϕ or 〈X,Y 〉 |=HT ψ,
• 〈X,Y 〉 |=HT ϕ ⊃ ψ if (i) 〈X,Y 〉 |=HT ϕ implies
〈X,Y 〉 |=HT ψ, and (ii) Y |= ϕ ⊃ ψ.

An HT-interpretation 〈X,Y 〉 is an HT-model of a formulaϕ
if 〈X,Y 〉 |=HT ϕ. Two formulas ϕ and ψ are HT-equivalent,
denoted by ϕ ≡HT ψ, if they have the same HT-models; ϕ
HT-entails ψ, denoted by ϕ |=HT ψ, if every HT-model of
ϕ is also an HT-model of ψ. An HT-model 〈Y, Y 〉 of ϕ is
an equilibrium model of ϕ if there is no X ⊆ A such that
X ⊂ Y and 〈X,Y 〉 |=HT ϕ.

As shown in [Lifschitz et al., 2001; Ferraris, 2005; Cabalar
and Ferraris, 2007], the notion of HT-model is closely related
to answer set.
Proposition 1 Let ϕ,ψ be two formulas and X ⊆ Y ⊆ A.

(i) 〈X,Y 〉 |=HT ϕ iff X |= ϕY .

(ii) X is an answer set of ϕ iff 〈X,X〉 is an equilibrium
model of ϕ.

(iii) ϕ ≡s
AS ψ iff ϕ ≡HT ψ.

Postulates for forgetting in ASP
We recall the desirable properties (postulates) for forgetting
in ASP as introduced in [Eiter and Wang, 2008; Wong, 2009;
Wang et al., 2012; 2013; Knorr and Alferes, 2014].

Let ϕ be a formula and V ⊆ A, and f a forgetting operator
in ASP, i.e., a formula ψ = f(ϕ, V) is the result of forgetting
V in ϕ. For S ⊆ 2A, we denote by S‖V the set {S \ V | S ∈
S}. The desirable properties are formally defined as follows:
(E) Existence: ψ is expressible in LA.

(W) Weakening: ϕ |=HT ψ.
(IR) Irrelevance: IRAS(ψ, V).

1A rule of the form (2) is written as
∨

A ←
∧
(B ∪ notC ∪

not notD) in [Lifschitz et al., 1999], where not S = {not p | p ∈
S} and not not S = {not not p | p ∈ S}.

(PP) Positive Persistence: for any formula φ, if IRAS(φ, V)
and ϕ |=HT φ then ψ |=HT φ.

(NP) Negative Persistence: for any formula φ, if IRAS(φ, V)
and ϕ 6|=HT φ then ψ 6|=HT φ.

(CP) Consequence Persistence: AS(ψ) = AS(ϕ)‖V .

(SE) Strong Equivalence: for any formula φ, if ϕ ≡s
AS φ then

f(ϕ, V) ≡s
AS f(φ, V).

(SP) Strong Persistence: for any formula φ, if IRAS(φ, V)
then AS(ψ ∧ φ) = AS(ϕ ∧ φ)‖V .

For every property above, we say that the operator f sat-
isfies the property, if for every formula ϕ and every V ⊆
A, the property holds for f. For instance, if AS(ϕ)‖V =
AS(f(ϕ, V)) for each formula ϕ and V ⊆ A then (CP) holds
for f, viz., f satisfies (CP).

The first seven properties can be understood easily. For ex-
ample, the property (CP) requires that the answer sets of the
forgetting result ψ are exactly the ones of the original for-
mula ϕ by discarding the forgotten atoms V . The property
(SP) says that the result of forgetting should preserve all the
semantic dependencies contained in the original formula, for
all but the atom(s) to be forgotten [Knorr and Alferes, 2014].
The property (CP) is a special case of (SP). Note that if f
satisfies (IR), (E) and (CP), it will violate (W) (see Proposi-
tion 3). Thus, these properties together are inconsistent.

The next two propositions clarify the relationships among
these properties.

Proposition 2 Given a forgetting operator f in ASP:

(i) if it satisfies (SP) then it satisfies (CP);
(ii) if it satisfies (W) then it satisfies (NP);

(iii) if it satisfies both (IR) and (NP) then it satisfies (W);
(iv) if it satisfies both (IR) and (SP) then it satisfies (PP)

and (SE).
Proof sketch: (iv) For any 〈X,Y 〉 |=HT f(ϕ, V) with Y ∩
V = ∅, we can construct formula φ1 =

∧
Y and φ2 =

∧
X∧∧

p,q∈Y \X p ⊃ q. Then Y is the only answer set of f(ϕ, V) ∧
φ1 andX ⊂ Y implies Y is not an answer set of f(ϕ, V)∧φ2.
From (SP), there exists 〈X∗, Y ∗〉 |=HT ϕ with X∗ \ V = X
and Y ∗ \ V = Y . These results imply that (PP) and (SE)
should be satisfied.

Proposition 3 (Proposition 3 in [Wang et al., 2013]) There
is no forgetting operator in ASP that satisfies (W) or (NP)
while it also satisfies (IR), (E) and (CP).

The next two corollaries follow from Propositions 2 and 3.

Corollary 1 Given a forgetting operator f in ASP, if it sat-
isfies (W), (IR), (SP) and (E), then it satisfies the rest of the
properties, i.e., (PP), (NP), (SE), and (CP).

Corollary 2 There is no forgetting operator in ASP that sat-
isfies (W), (IR), (SP), and (E).

This motivates the following definition which allows us to
talk about restrictions on the domain of a forgetting operator.

3078

Definition 1 Let ∆ be a set of pairs (ϕ, V) where ϕ is a for-
mula and V ⊆ A, and f a forgetting operator. The operator f
satisfies a property under ∆ if f(ϕ, V) has the corresponding
property for every (ϕ, V) ∈ ∆.

For instance, we say that f satisfies (SE) under ∆ if
f(ϕ, V) ≡s

AS f(ϕ′, V) for every (ϕ, V) and (ϕ′, V) in ∆
with ϕ′ ≡s

AS ϕ; f satisfies (CP) under ∆ if AS(f(ϕ, V)) =
AS(ϕ)‖V for every (ϕ, V) ∈ ∆; f satisfies (SP) under ∆ if
AS(f(ϕ, V) ∧ ψ) = AS(ϕ ∧ ψ)‖V for every (ϕ, V) ∈ ∆ and
every formula ψ with IRAS(ψ, V).

Note that when we say a forgetting operator f satisfies a
desirable property, we mean that f satisfies the property under
∆∗ = {(ϕ, V) |ϕ is a formula of LA, and V ⊆ A}.

By Proposition 3, there is no forgetting operator in ASP
that can satisfy all the desirable properties under ∆∗. For this
reason, we are interested in identifying the largest subset ∆ of
∆∗ such that there is a forgetting operator f in ASP satisfying
all the desirable properties under ∆. We will show that this
forgetting operator f is the knowledge forgetting one in ASP.

The knowledge forgetting
Let X , X ′, V be sets of atoms and ϕ a formula. We define
X ∼V X ′ if X \ V = X ′ \ V . Given two HT-interpretations
〈X,Y 〉 and 〈X ′, Y ′〉, we define that 〈X,Y 〉 ∼V 〈X ′, Y ′〉 if
X ∼V X ′ and Y ∼V Y ′.

Definition 2 (Knowledge forgetting) A formula ψ is a re-
sult of HT-forgetting V ⊆ A in a formula ϕ if, 〈X ′, Y ′〉 |=HT

ψ whenever 〈X ′, Y ′〉 ∼V 〈X,Y 〉 for some 〈X,Y 〉 |=HT ϕ.

The result of HT-forgetting always exists and is unique
up to the strong equivalence in ASP. Let us denote it by
ForgetHT(ϕ, V). Namely, ForgetHT is the knowledge forget-
ting operator in ASP. It has been shown in [Wang et al., 2012]
that the ForgetHT operator can be characterized precisely in
terms of the properties (W), (PP), (NP) and (IR).

Proposition 4 (Theorem 3 in [Wang et al., 2012]) Let ϕ be
a formula, V ⊆ A, and f a forgetting operator. Then
f(ϕ, V) ≡s

AS ForgetHT(ϕ, V) iff f satisfies the properties (W),
(PP), (NP), and (IR).

It can be shown that ForgetHT also satisfies (E) and (SE).
They are actually implied by (W), (PP), (NP), and (IR). We
therefore have the following proposition.

Proposition 5 Let ∆ be a set of pairs (ϕ, V) where ϕ is a
formula and V ⊆ A. The following statements (i) and (ii) are
equivalent to each other.

(i) There exists a forgetting operator f in ASP satisfying all
eight properties under ∆.

(ii) AS(ϕ ∧ φ)‖V = AS(ForgetHT(ϕ, V) ∧ φ) for every
(ϕ, V) ∈ ∆ and every formula φ with IRAS(φ, V), i.e.,
ForgetHT satisfies the property (SP) under ∆.

From the above proposition, given a set ∆ ⊆ ∆∗, the prob-
lem of deciding whether there exists a forgetting operator that
satisfies all desirable properties under ∆ is equivalent to the
problem of deciding whether ForgetHT satisfies (SP) under ∆.

A Sufficient and Necessary Condition
As mentioned earlier, there is no forgetting operator in ASP
that satisfies all the eight desirable properties under ∆∗. In
this section, we identify a sufficient and necessary condition
under which the HT-forgetting satisfies the property (SP).

HT-forgetting an atom
In the following, we write a single set {α} as α when
it is clear from its context, for convenience. For example,
we write ForgetHT(ϕ, p) for ForgetHT(ϕ, {p}), IRAS(ϕ, p) for
IRAS(ϕ, {p}), S‖p for S‖{p}, and so on.

Proposition 6 Let ϕ be a formula and p ∈ A. It holds that
AS(ϕ ∧ ψ)‖p ⊆ AS(ForgetHT(ϕ, p) ∧ ψ) for every formula ψ
with IRAS(ψ, p), iff, for any HT-model 〈X,Y 〉 of ϕ with X ⊂
Y , the following conditions hold:

(i) 〈Y \{p}, Y \{p}〉 |=HT ϕ implies 〈X\{p}, Y \{p}〉 |=HT

ϕ, and

(ii) 〈Y ∪{p}, Y ∪{p}〉 |=HT ϕ implies 〈Y, Y ∪{p}〉 |=HT ϕ
or 〈X,Y ∪ {p}〉 |=HT ϕ.

Proof sketch: (⇐) This is easy to verify.
(⇒) If (i) or (ii) is not satisfied then we can construct the

following formula

ψ′ =
∧

(X \ {p}) ∧
∧

q,q′∈Y \(X∪{p})

(q ⊃ q′).

One can verify that AS(ϕ∧ψ′)‖p 6⊆ AS(ForgetHT(ϕ, p)∧ψ′).

The intuition behind (i) and (ii) in the above proposition
is as follows. If an HT-interpretation 〈X,Y 〉 |=HT ϕ then
〈X \ {p}, Y \ {p}〉 |=HT ForgetHT(ϕ, p). Once X \ {p} ⊂
Y \ {p}, then there exists some formula ψ with IRAS(ψ, p)
such that Y \ {p} is not an answer set of ForgetHT(ϕ, p) ∧ ψ.
Thus, the conditions are to ensure that neither Y ∪ {p} nor
Y \ {p} is an answer set of ϕ ∧ ψ.

Proposition 7 Let ϕ be a formula and p ∈ A. It holds that
AS(ForgetHT(ϕ, p) ∧ ψ) ⊆ AS(ϕ ∧ ψ)‖p for every formula ψ
with IRAS(ψ, p), iff, for every Y ⊆ A,

(i) 〈Y \ {p}, Y 〉 |=HT ϕ implies 〈Y \ {p}, Y \ {p}〉 |=HT ϕ.

Proof sketch: (⇐) Easy to show.
(⇒) If the condition (i) is not satisfied then we can con-

struct the following formula

ψ′ =
∧

(Y \ {p}).

One can verify that Y \ {p} ∈ AS(ForgetHT(ϕ, p) ∧ ψ′) and
neither Y \ {p} nor Y ∪ {p} is an answer set of ϕ ∧ ψ′.

Intuitively, the condition (i) in Proposition 7 is to avoid the
case that Y \ {p} is an answer set of ForgetHT(ϕ, p) ∧ ψ. If
〈Y \ {p}, Y 〉 |=HT ϕ ∧ ψ and 〈Y \ {p}, Y \ {p}〉 6|=HT ϕ ∧ ψ
then neither Y \ {p} nor Y ∪ {p} is an answer set of ϕ ∧ ψ.

From Propositions 6 and 7, when forgetting just one atom,
we could identify a necessary and sufficient condition under
which the HT-forgetting satisfies all of the desirable proper-
ties as indicated by the next theorem.

3079

Theorem 3 Let ϕ be a formula and p ∈ A. The following
statements (i) and (ii) are equivalent to each other.

(i) AS(ForgetHT(ϕ, p) ∧ ψ) = AS(ϕ ∧ ψ)‖p for every for-
mula ψ with IRAS(ψ, p).

(ii) for any HT-model 〈X,Y 〉 of ϕ with X ⊂ Y ,

(a) 〈Y \ {p}, Y \ {p}〉 |=HT ϕ implies
〈X \ {p}, Y \ {p}〉 |=HT ϕ, and

(b) 〈Y ∪ {p}, Y ∪ {p}〉 |=HT ϕ implies
〈Y, Y ∪ {p}〉 |=HT ϕ or 〈X,Y ∪ {p}〉 |=HT ϕ,

(c) 〈Y \ {p}, Y 〉 |=HT ϕ implies
〈Y \ {p}, Y \ {p}〉 |=HT ϕ.

The following theorem shows that it is intractable to check
whether the property (SP) holds for HT-forgetting when just
one atom is forgotten.

Theorem 4 Let ϕ be a formula and p ∈ A. Each of the fol-
lowing decision problems is co-NP-complete.

(i) Deciding whether AS(ϕ ∧ ψ)‖p ⊆ AS(ForgetHT(ϕ, p) ∧
ψ) for every formula ψ with IRAS(ψ, p).

(ii) Deciding whether AS(ForgetHT(ϕ, p) ∧ ψ) ⊆ AS(ϕ ∧
ψ)‖p for every formula ψ with IRAS(ψ, p).

(iii) Deciding whether AS(ϕ ∧ ψ)‖p = AS(ForgetHT(ϕ, p) ∧
ψ) for every formula ψ with IRAS(ψ, p).

Proof sketch: The memberships are easy. For hardness,
let φ be a formula, p ∈ A but not occurring in φ, and
ϕ1 = (¬φ∨¬¬p∨q)∧((¬q ⊃ ¬φ)∨¬¬p), ϕ2 = ¬φ∨¬¬p,
and ϕ3 = ϕ1 ∧ ϕ2. We can show that, for every formula
ψ with IRAS(ψ, p), φ is unsatisfiable iff AS(ϕ1 ∧ ψ)‖p ⊆
AS(ForgetHT(ϕ1, p) ∧ ψ) iff AS(ForgetHT(ϕ2, p) ∧ ψ) ⊆
AS(ϕ2∧ψ)‖p iff AS(ϕ3∧ψ)‖p = AS(ForgetHT(ϕ3, p)∧ψ).

HT-forgetting a set of atoms
We are now in the position to identify a sufficient and nec-
essary condition under which the HT-forgetting satisfies the
property (SP) in general.

Proposition 8 Let ϕ be a formula and V ⊆ A. It holds
that, for every formula ψ with IRAS(ψ, V), AS(ϕ ∧ ψ)‖V ⊆
AS(ForgetHT(ϕ, V) ∧ ψ), iff, for each HT-model 〈X,Y 〉 of
ϕ with X \ V ⊂ Y \ V , if there exists a set Y ′ with
Y \ V ⊆ Y ′ ⊆ Y ∪ V and 〈Y ′, Y ′〉 |=HT ϕ, then

(i) there exists a set Y ′′ with Y \ V ⊆ Y ′′ ⊂ Y ′ such that
〈Y ′′, Y ′〉 |=HT ϕ, or

(ii) there exists a set X ′ with X ′ ⊆ Y ′ and X ′ \V = X \V
such that 〈X ′, Y ′〉 |=HT ϕ.

Proof sketch: (⇐) Easy.
(⇒) If both conditions (i) and (ii) are not satisfied then we

can construct the formula

ψ′ =
∧

(X \ V) ∧
∧

q,q′∈Y \(X∪V)

(q ⊃ q′).

One can verify that AS(ϕ∧ψ′)‖V 6⊆ AS(ForgetHT(ϕ,V)∧ψ′).

Intuitively, if 〈Y ′, Y ′〉 |=HT ϕ then either (i) or (ii) in the
above proposition should be satisfied, which ensures that Y ′
cannot be an answer set of ϕ ∧ ψ for some formula ψ with
IRAS(ψ, V).
Proposition 9 Let ϕ be a formula and V ⊆ A. It holds that,
for every formula ψ with IRAS(ψ, V), AS(ForgetHT(ϕ, V) ∧
ψ) ⊆ AS(ϕ ∧ ψ)‖V , iff, for each Y ⊆ A, if there exists a set
Y ′ with Y \ V ⊆ Y ′ ⊂ Y and 〈Y ′, Y 〉 |=HT ϕ, then

(i) there exists a set Y ′′ with Y \ V ⊆ Y ′′ ⊆ Y ∪ V such
that 〈Y ′′, Y ′′〉 |=HT ϕ and there does not exist a set Y ′′′
with Y \ V ⊆ Y ′′′ ⊂ Y ′′ and 〈Y ′′′, Y ′′〉 |=HT ϕ.

Proof sketch: (⇐) Easy.
(⇒) If the condition (i) is not satisfied then we can con-

struct the formula
ψ′ =

∧
(Y \ V).

It is not difficult to verify that Y \V ∈ AS(ForgetHT(ϕ, V)∧
ψ′) and there does not exist a set Y ′ with Y ′ ∼V Y such that
Y ′ ∈ AS(ϕ ∧ ψ′).

Intuitively, the condition (i) in Proposition 9 is to avoid the
case that Y \ V is an answer set of ForgetHT(ϕ, V)∧ψ while
there does not exist a set Y ′ with Y ′ ∼V Y and Y ′ is an
answer set of ϕ ∧ ψ.

The next theorem follows from Propositions 8 and 9.
Theorem 5 (Main theorem) Let ϕ be a formula and V ⊆
A. The statements (i) and (ii) are equivalent to each other.

(i) AS(ForgetHT(ϕ, V) ∧ ψ) = AS(ϕ ∧ ψ)‖V for every for-
mula ψ with IRAS(ψ, V).

(ii) The following conditions (a) and (b) hold:
(a) for each HT-model 〈X,Y 〉 of ϕ with X \ V ⊂ Y \

V , if there exists a set Y ′ with Y \V ⊆ Y ′ ⊆ Y ∪V
and 〈Y ′, Y ′〉 |=HT ϕ, then
• there exists a set Y ′′ with Y \ V ⊆ Y ′′ ⊂ Y ′

such that 〈Y ′′, Y ′〉 |=HT ϕ, or
• there exists a setX ′ withX ′ ⊆ Y ′ andX ′\V =
X \ V such that 〈X ′, Y ′〉 |=HT ϕ;

(b) for each Y ⊆ A, if there exists a set Y ′ with Y \
V ⊆ Y ′ ⊂ Y and 〈Y ′, Y 〉 |=HT ϕ, then
• there exists a set Y ′′ with Y \V ⊆ Y ′′ ⊆ Y ∪V

such that 〈Y ′′, Y ′′〉 |=HT ϕ and there does not
exist a set Y ′′′ with Y \ V ⊆ Y ′′′ ⊂ Y ′′ and
〈Y ′′′, Y ′′〉 |=HT ϕ.

From Proposition 5, the condition (ii) in Theorem 5 speci-
fies the largest set ∆ of (ϕ, V) such that there exists a forget-
ting operator in ASP satisfying all eight properties under ∆.
In the following, we use ∆◦ to denote the largest set.

The next example shows a possibility of (ϕ, V) /∈ ∆◦ even
if V contains all atoms occurring in the formula ϕ.
Example 1 Let A = {p, q}, ϕ = ¬p ⊃ p, V = {p}
and ψ = q. One can check that ϕ ∧ ψ has no answer set
and ForgetHT(ϕ, V) = >. Thus, ForgetHT(ϕ, V) ∧ ψ has
a unique answer set {q}. It follows that AS(ϕ ∧ ψ)‖V 6=
AS(ForgetHT(ϕ, V) ∧ ψ).

Actually, one can further verify that 〈{p}, {p, q}〉 |=HT ϕ
and 〈{q}, {p, q}〉 |=HT ϕ, but 〈{q}, {q}〉 6|=HT ϕ, i.e., the con-
dition (c) in Theorem 3 does not hold.

3080

Proposition 10 Let ∆ be a set of pairs (ϕ, V) where ϕ is a
formula and V ⊆ A. The statements (i) and (ii) are equiva-
lent to each other.

(i) There exists a forgetting operator f in ASP satisfying all
either properties under ∆.

(ii) For each pair (ϕ, V) ∈ ∆, ϕ and V satisfy the condi-
tion (ii) in Theorem 5.

The following theorem indicates that it is difficult to check
whether ForgetHT satisfies (SP) in general.
Theorem 6 Let ϕ be a formula and V ⊆ A. Each of the
following decision problems is ΠP

2 -complete.
(i) Deciding whether AS(ϕ∧ψ)‖V ⊆ AS(ForgetHT(ϕ, V)∧

ψ) for every formula ψ with IRAS(ψ, V).
(ii) Deciding whether AS(ForgetHT(ϕ, V) ∧ ψ) ⊆ AS(ϕ ∧

ψ)‖V for every formula ψ with IRAS(ψ, V).

(iii) Deciding whether AS(ϕ∧ψ)‖V = AS(ForgetHT(ϕ, V)∧
ψ) for every formula ψ with IRAS(ψ, V).

Proof sketch: The memberships are easy. The hardness fol-
lows from the following fact: Given two formulas ψ′ and ϕ′,
the problem of deciding whether ψ′ |=HT ForgetHT(ϕ′, V) is
ΠP

2 -complete (cf. Theorem 14 in [Wang et al., 2014]).

Though it is in general difficult to verify if (ϕ, V) ∈ ∆◦

for a formula ϕ and V ⊆ A, there exist some trivial syntactic
conditions as shown in the next proposition.
Proposition 11 Let ϕ be a formula and V ⊆ A. If ϕ =∧

(A∪¬B) then (ϕ, V) ∈ ∆◦, where A,B are sets of atoms.
Proof sketch: Let A′ = A \ V and B′ = B′ \ V and ψ
a formula with IRAS(ψ, V). Note that ForgetHT(ϕ, V) ≡HT∧

(A′ ∪ ¬B′). We can show that AS(
∧

(A ∪ ¬B) ∧ ψ) =
AS(

∧
(A ∪ ¬B) ∧ (ψ|A→>)|B→⊥) = AS(

∧
(A ∪ ¬B) ∧

(ψ|A′→>)|B′→⊥) due to IRAS(ψ, V). Please see the next sec-
tion for the definition of ψ|V→? for ? ∈ {>,⊥}.

As mentioned in Introduction, knowledge forgetting based
on the operator ForgetHT is defined semanticaly and no syn-
tactic characterizations are known. As it is ΠP

2 -complete to
check whether ψ ≡HT ForgetHT(ϕ, V) holds for two given
formulas ϕ and ψ and a set V ⊆ A [Wang et al., 2014], it is
intractable to compute the results of knowledge forgetting. In
the next section, we present a syntactic approach for knowl-
edge forgetting. Similar to the syntactic definition of forget-
ting in classical propositional logic, it may inevitably result
in exponential explosion.

A Syntactic Approach
In this section, we provide a syntactic characterization of
HT-forgetting and a corresponding algorithm for computing
knowledge forgetting, for formulas in normal form.

First, we introduce some notations. Let ϕ be a formula and
p ∈ A. By ϕ|p→? we mean the formula obtained from ϕ by
replacing every occurrence of the atom p by ?, where ? ∈
{>,⊥}. Let V = {p1, . . . , pn} ⊆ A. By ϕ|V→? we denote
the formula (· · · (ϕ|p1→?) · · ·)|pn→?. Please note that the for-
getting in propositional logic can be syntactically defined as
Forget(ϕ, p) = ϕ|p→> ∨ ϕ|p→⊥ and Forget(ϕ, V ∪ {p}) =
Forget(Forget(ϕ, p), V) [Lang et al., 2003].

Definition 3 Let ϕ be a formula in normal form and X ⊆
A. The semi-reduct of ϕ w.r.t. X , written ϕX , is the formula
obtained from ϕ by replacing every occurrence of an atom
p ∈ X in the range of ¬ with >.

Please note that, ϕX is slightly different from the GL-
reduction [Lifschitz et al., 1999] in that the GL-reduction also
handles the negative occurrence of the atoms not in X .

Example 2 Consider the formula ϕ:

(¬p ⊃ p) ∧ (¬¬p ⊃ p) ∧ (¬p ⊃ r) ∧ (¬q ⊃ r) ∧ (¬q ⊃ p).

Let X = {p}. Then ϕX is the formula:

(¬> ⊃ p) ∧ (¬¬> ⊃ p) ∧ (¬> ⊃ r) ∧ (¬q ⊃ r) ∧ (¬q ⊃ p)

which is strongly equivalent to

p ∧ (¬q ⊃ r) ∧ (¬q ⊃ p).

It has a unique answer set {p, r}. One should note here that
the GL-reduct ofϕw.r.t.X isϕX = p∧r whose unique answer
set is {p, r}. It is not difficult to verify that ϕX |=HT ϕX , but
not vice versa.

The next theorem identifies an alternative sufficient and
necessary condition under which ForgetHT satisfies (SP)
when forgetting one atom.

Theorem 7 Let ϕ be a formula in normal form and p an
atom. Then, AS(ForgetHT(ϕ, p)∧ψ) = AS(ϕ∧ψ)‖p for every
formula ψ with IRAS(ψ, p), iff the following conditions hold:

(a) ϕ ∧ ¬¬ϕ|p→⊥ |=HT ϕ|p→⊥,

(b) ϕ∧¬¬ϕ|p→> |=HT ϕ{p}|p→⊥∨¬¬(ϕ|p→>∧ϕ{p}|p→⊥),
and

(c) ϕ|p→> ∧ ϕ{p}|p→⊥ |= ϕ|p→⊥.

Proof sketch: It is not difficult to verify that the condition
(a) (resp. (b) and (c)) in the theorem is equivalent to the con-
dition (a) (resp. (b) and (c)) in Theorem 3.

Proposition 12 Let ϕ be a formula in normal form, p ∈ A,
and 〈X,Y 〉 an HT-interpretation with p /∈ Y . The following
hold:

(i) 〈X,Y 〉 |=HT ϕ iff 〈X,Y 〉 |=HT ϕ|p→⊥;

(ii) 〈X ∪ {p}, Y ∪ {p}〉 |=HT ϕ iff 〈X,Y 〉 |=HT ϕ|p→>;

(iii) 〈X,Y ∪ {p}〉 |=HT ϕ or 〈X ∪ {p}, Y ∪ {p}〉 |=HT ϕ iff
〈X,Y 〉 |=HT (ϕ{p}|p→⊥ ∨ ϕ{p}|p→>) ∧ ¬¬ϕ|p→>.

Proof sketch: (i) and (ii) follows from the definition of HT-
satisfiability. (iii) follows from the following properties

• 〈X,Y 〉 |=HT ¬¬ϕ|p→> iff Y ∪ {p} |= ϕ;

• 〈X,Y ∪ {p}〉 |=HT ϕ implies 〈X,Y 〉 |=HT ϕ{p}|p→⊥ ∨
ϕ{p}|p→>;

• 〈X,Y 〉 |=HT ϕ{p}|p→⊥ ∨ ϕ{p}|p→> and Y ∪ {p} |= ϕ
implies 〈X,Y ∪{p}〉 |=HT ϕ or 〈X∪{p}, Y ∪{p}〉 |=HT

ϕ.

3081

Algorithm 1: HT-forgetting

input : A formula ϕ and V ⊆ A
output: A result of HT-forgetting V in ϕ

ϕ′ ← the normal form of ϕ;
foreach p ∈ V do

ϕ′ ← ϕ|p→> ∨ ϕ|p→⊥
∨(ϕ{p}|p→⊥ ∨ ϕ{p}|p→>) ∧ ¬¬ϕ|p→>;

ϕ′ ← the normal form of ϕ′;
end
return ϕ′;

Theorem 8 Let ϕ be a formula in normal form and p ∈ A. It
holds that

ForgetHT(ϕ, p) ≡s
AS

ϕ|p→>∨ϕ|p→⊥∨((ϕ{p}|p→⊥∨ϕ{p}|p→>)∧¬¬ϕ|p→>).

Proof sketch: Let 〈X,Y 〉 be an HT-interpretation with
p /∈ Y . Then 〈X,Y 〉 |=HT ForgetHT(ϕ, p) iff 〈X,Y 〉 |=HT ϕ,
〈X,Y ∪ {p}〉 |=HT ϕ, or 〈X ∪ {p}, Y ∪ {p}〉 |=HT ϕ. Thus
the claim follows from Proposition 12.

Recall that, for any formula ϕ, atom p, and V ⊆ A,
ForgetHT(ϕ, V ∪ {p}) ≡s

AS ForgetHT(ForgetHT(ϕ, p), V) (cf.
Corollary 7 of [Wang et al., 2014]). Moreover, every formula
ϕ can be translated to a formula ψ in normal form such that
ϕ ≡s

AS ψ. Therefore the above theorem implies a syntactic
approach to computing the result of HT-forgetting for a for-
mula ϕ and V ⊆ A. The details are given in Algorithm 1.

Corollary 9 Algorithm 1 outputs ForgetHT(ϕ, V).

Let NF(ϕ) be a formula in normal form strongly equiva-
lent to the formula ϕ. The syntactic knowledge forgetting is
formally defined below.
Definition 4 (Syntactic knowledge forgetting) Let ϕ be a
formula. We define:

• ForgetHT(ϕ, p) = NF(ϕ)|p→> ∨ NF(ϕ)|p→⊥∨
((NF(ϕ){p}|p→⊥ ∨NF(ϕ){p}|p→>)∧¬¬NF(ϕ)|p→>),

• ForgetHT(ϕ, {p} ∪ V) = ForgetHT(ForgetHT(ϕ, p), V)

where p ∈ A and V ⊆ A.

Example 3 (Continued from Example 2) Note that,

ϕ|p→> ≡s
AS ¬q ⊃ r,

ϕ|p→⊥ ≡s
AS ⊥,

ϕ{p}|p→> ≡s
AS ¬q ⊃ r,

ϕ{p}|p→⊥ ≡s
AS ⊥.

Then, ForgetHT(ϕ, p) is strongly equivalent to ¬q ⊃ r. Its
unique answer set is {r}.

Concluding Remarks
Lately, the literature on forgetting has shown extensive inter-
est in the desirable properties of forgetting operators in ASP.

In this paper, we have identified a precise condition for a for-
mula ϕ and V ⊆ A under which ForgetHT(ϕ, V) satisfies the
property (SP). This leads to the largest set ∆◦ of pairs (ϕ, V)
where ϕ ∈ LA and V ⊆ A such that ForgetHT enjoys all the
eight properties under ∆◦. This condition provides a guide-
line to explore subclasses of logic programs for which the
HT-forgetting enjoys all of the desirable properties. Though
a trivial subclass of logic programs occurring in ∆◦ is iden-
tified, cf. Proposition 11, it is still worthy to identify more
interesting subclasses of logic programs for which the HT-
forgetting enjoys (SP). It is also interesting to investigate the
property (SP) for forgetting in other nonmonotonic logical
systems, such as in circumscription [Wang et al., 2015].

Secondly, we have proposed a syntactic approach to com-
puting HT-forgetting results. Using this approach to compute
the result of HT-forgetting a set V ⊆ A from a formula ϕ,
one needs to compute the normal form of ϕ. This can be time
consuming as an exponential explosion in the worst case is
inevitable. To extend the syntactic approach for arbitrary for-
mulas is a challenging future task.

Acknowledgement
We thank reviewers for their helpful comments. We are grate-
ful to Fangzhen Lin for many helpful and informative discus-
sions. We would also like to thank Xiaoping Chen and his
research group for their useful discussions. Jianmin Ji’s re-
search was partially supported by the National Natural Sci-
ence Foundation of China under grand 61175057, the Na-
tional Natural Science Foundation for the Youth of China
under grand 61403359, as well as the USTC Key Direc-
tion Project and the USTC 985 Project. Yisong Wang was
partially supported by the National Natural Science Founda-
tion of China under grand 61370161, the Stadholder Foun-
dation of Guizhou Province under grant (2012)62 and the
Natural Science Foundation of Guizhou Province under grant
[2014]7640.

References
[Baral, 2003] Chitta Baral. Knowledge representation, rea-

soning and declarative problem solving. Cambridge uni-
versity press, 2003.

[Bonet and Koenig, 2015] Blai Bonet and Sven Koenig, edi-
tors. Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA. AAAI Press, 2015.

[Cabalar and Ferraris, 2007] Pedro Cabalar and Paolo Fer-
raris. Propositional theories are strongly equivalent to
logic programs. Theory and Practice of Logic Program-
ming, 7(6):745–759, 2007.

[Delgrande and Wang, 2015] James P. Delgrande and Kewen
Wang. A syntax-independent approach to forgetting in
disjunctive logic programs. In Bonet and Koenig [2015],
pages 1482–1488.

[Eiter and Wang, 2008] Thomas Eiter and Kewen Wang. Se-
mantic forgetting in answer set programming. Artificial
Intelligence, 172(14):1644–1672, 2008.

3082

[Eiter et al., 2007] Thomas Eiter, Michael Fink, and Stefan
Woltran. Semantical characterizations and complexity of
equivalences in answer set programming. ACM Transac-
tion of Computional Logic, 8(3), 2007.

[Ferraris, 2005] Paolo Ferraris. Answer sets for proposi-
tional theories. In Proceedings of the 8th International
Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-05), Diamante, Italy, September 5-8,
2005, pages 119–131, 2005.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of the Fifth Interna-
tional Conference and Symposium on Logic Programming,
pages 1070–1080, Seattle, Washington, 1988. MIT Press.

[Heyting, 1930] Arend Heyting. Die formalen regeln
der intuitionistischen logik. Deütsche Akademie
der Wissenschaften zu Berlin, Mathematisch-
Naturwissenschaftliche Klasse, pages 42–56, 1930.

[Janhunen et al., 2009] Tomi Janhunen, Emilia Oikarinen,
Hans Tompits, and Stefan Woltran. Modularity aspects of
disjunctive stable models. Journal of Artificial Intelligence
Research, 35:813–857, 2009.

[Knorr and Alferes, 2014] Matthias Knorr and José Júlio
Alferes. Preserving strong equivalence while forgetting.
In Proceedings of the 14th European Conference on Log-
ics in Artificial Intelligence (JELIA-14), pages 412–425,
2014.

[Konev et al., 2012] Boris Konev, Michel Ludwig, Dirk
Walther, and Frank Wolter. The logical difference for the
lightweight description logic EL. Journal of Artificial In-
telligence Research, 44:633–708, 2012.

[Lang and Marquis, 2010] Jérôme Lang and Pierre Marquis.
Reasoning under inconsistency: A forgetting-based ap-
proach. Artificial Intelligence, 174(12):799–823, 2010.

[Lang et al., 2003] Jérôme Lang, Paolo Liberatore, and
Pierre Marquis. Propositional independence. Journal of
Artificial Intelligence Research, 18:391–443, 2003.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang,
and Hudson Turner. Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence, 25(3-
4):369–389, 1999.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce,
and Agustı́n Valverde. Strongly equivalent logic pro-
grams. ACM Transactions on Computational Logic
(TOCL), 2(4):526–541, 2001.

[Lin and Reiter, 1994] Fangzhen Lin and Ray Reiter. Forget
it. In Working Notes of AAAI Fall Symposium on Rele-
vance, pages 154–159, 1994.

[Lin and Reiter, 1997] Fangzhen Lin and Ray Reiter. How
to progress a database. Artificial Intelligence, 92(1):131–
167, 1997.

[Lin, 2001] Fangzhen Lin. On strongest necessary and
weakest sufficient conditions. Artificial Intelligence,
128(1):143–159, 2001.

[Liu and Wen, 2011] Yongmei Liu and Ximing Wen. On
the progression of knowledge in the situation calculus.
In IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pages 976–
982, Barcelona, Catalonia, Spain, 2011. IJCAI/AAAI.

[Pearce et al., 2009] David Pearce, Hans Tompits, and Ste-
fan Woltran. Characterising equilibrium logic and nested
logic programs: Reductions and complexity. Theory and
Practice of Logic Programming, 9(5):565–616, 2009.

[Pearce, 1996] David Pearce. A new logical characterisation
of stable models and answer sets. In Non-Monotonic Ex-
tensions of Logic Programming, NMELP’96, volume 1216
of Lecture Notes in Computer Science, pages 57–70, Bad
Honnef, Germany, 1996. Springer.

[Rajaratnam et al., 2014] David Rajaratnam, Hector J.
Levesque, Maurice Pagnucco, and Michael Thielscher.
Forgetting in action. In Chitta Baral, Giuseppe De
Giacomo, and Thomas Eiter, editors, KR. AAAI Press,
2014.

[Wang et al., 2010] Zhe Wang, Kewen Wang, Rodney W.
Topor, and Jeff Z. Pan. Forgetting for knowledge bases in
dl-lite. Annuals of Mathematics and Artificial Intelligence,
58(1-2):117–151, 2010.

[Wang et al., 2012] Yisong Wang, Yan Zhang, Yi Zhou, and
Mingyi Zhang. Forgetting in logic programs under strong
equivalence. In Proceedings of the 13th International Con-
ference on Principles of Knowledge Representation and
Reasoning (KR-12), pages 643–647, 2012.

[Wang et al., 2013] Yisong Wang, Kewen Wang, and Mingyi
Zhang. Forgetting for answer set programs revisited. In
Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI-13), Beijing, China, August
3-9, 2013, pages 1162–1168, 2013.

[Wang et al., 2014] Yisong Wang, Yan Zhang, Yi Zhou, and
Mingyi Zhang. Knowledge forgetting in answer set pro-
gramming. Journal of Artificial Intelligence Research,
50:31–70, 2014.

[Wang et al., 2015] Yisong Wang, Kewen Wang, Zhe Wang,
and Zhiqiang Zhuang. Knowledge forgetting in circum-
scription: A preliminary report. In Bonet and Koenig
[2015], pages 1649–1655.

[Wong, 2009] Ka-Shu Wong. Forgetting in Logic Programs.
PhD thesis, The University of New South Wales, 2009.

[Zhang and Foo, 2006] Yan Zhang and Norman Y Foo.
Solving logic program conflict through strong and weak
forgettings. Artificial Intelligence, 170(8):739–778, 2006.

[Zhang and Zhou, 2009] Yan Zhang and Yi Zhou. Knowl-
edge forgetting: Properties and applications. Artificial In-
telligence, 173(16):1525–1537, 2009.

3083

