Computing Loops with at Most One External
Support Rule for Disjunctive Logic Programs

Xiaoping Chen!, Jianmin Ji', and Fangzhen Lin?

1 School of Computer Science and Technology,
University of Science and Technology of China, P.R. China
xpchen@ustc.edu.cn, jizheng@mail.ustc.edu.cn
2 Department of Computer Science and Engineering
Hong Kong University of Science and Technology
flin@cs.ust.hk

Abstract. We extend to disjunctive logic programs our previous work
on computing loop formulas of loops with at most one external support.
We show that for these logic programs, loop formulas of loops with no
external support can be computed in polynomial time, and if the given
program has no constraints, an iterative procedure based on these for-
mulas, the program completion, and unit propagation computes the least
fixed point of a simplification operator used by DLV. We also relate loops
with no external supports to the unfounded sets and the well-founded
semantics of disjunctive logic programs by Wang and Zhou. However, the
problem of computing loop formulas of loops with at most one external
support rule is NP-hard for disjunctive logic programs. We thus propose
a polynomial algorithm for computing some of these loop formulas, and
show experimentally that this polynomial approximation algorithm can
be effective in practice.

1 Introduction

This paper is about Answer Set Programming (ASP) where the main compu-
tational task is to compute the answer sets of a logic program. In this context,
consequences of a logic program, those that are true in all answer sets, are of
interest as they can be used to simplify the given program and help computing
its answer sets. The best known example is the well-founded model for normal
logic programs, which always exists and can be computed efficiently. All literals
in the well-founded model are consequences, and in all current ASP solvers, a
logic program is first simplified by its well-founded model. A natural question
then is whether there are other consequences of a logic program that can be
computed efficiently and used to simplify the given logic program. Motivated by
this, Chen et al. [1] proposed an iterative procedure of computing consequences
of a non-disjunctive logic program based on unit propagation, the program’s
completion and its loop formulas. They showed that when restricted to loops
with no external support, their procedure basically computes the well-founded
model. They also considered using loops with at most one external support, and

2 Xiaoping Chen, Jianmin Ji, and Fangzhen Lin

showed that the loop formulas of these loops can be computed in polynomial
time.

In this paper, we consider extending this work to disjunctive logic programs.
As expected, loops with no external supports are closely related to well-founded
models and greatest unfounded sets in disjunctive logic programs as well. How-
ever, many other issues are more complicated in disjunctive logic programs. In
particular, the problem of computing the loop formulas of loops with at most
one external support rule is NP-hard.

This paper is organized as follows. We briefly review the basic notions of
logic programming in the next section. We then define loops with at most one
external support rule under a given set of literals, and consider how to compute
their loop formulas. We then consider how to use these loop formulas to derive
consequences of a disjunctive logic program using unit propagation, and discuss
related work, especially the greatest unfounded sets, the pre-processing step in
DLV, and the well-founded semantics for disjunctive logic programs proposed by
Wang and Zhou [2].

2 Preliminaries

In this paper, we consider only fully grounded finite disjunctive logic programs.
A disjunctive logic program is a finite set of (disjunctive) rules of the form

a1V NV A < Qftls- -« Gy NOE Gt 1y - - -, NOE Qs (1)

where n >m > k >0 and aq,...,a, are atoms. If k£ = 0, then this rule is called

a constraint, if k # 0, it is a proper rule, and if k = 1, it is a normal rule. In

particular, a normal logic program is a finite set of constraints and normal rules.
We will also write rule r of form (1) as

head(r) < body(r), (2)

where head(r) is a1 V- -V ag, body(r) = body™ (r) ANbody™ (1), body™ (r) is ag+1 A
A, and body ™ (r) i =apm41 A -+ - A —ay,, and we identify head(r), body™ (1),
body~ (r) with their corresponding sets of atoms, and body(r) the set { ags1,- - -,
Gy g1, - - -, "Gy } Of literals obtained from the body of the rule with “not”
replaced by “=”.

Given a disjunctive logic program P, we denote by Atoms(P) the set of atoms
in it, and Lit(P) the set of literals constructed from Atoms(P):

Lit(P) = Atoms(P)U{—a | a € Atoms(P)}.

Given a literal [, the complement of I, written [below, is ma if lis a and a if |
is —a, where a is an atom. For a set L of literals, we let L= {1 |l € L}.

2.1 Answer sets

The answer sets of a disjunctive logic program is defined as in [3]. Given a
disjunctive logic program P and a set S of atoms, the Gelfond-Lifschitz trans-
formation of P on S, written Pg, is obtained from P by deleting:

Computing Loops with at Most One External Support Rule 3

1. each rule that has a formula not p in its body with p € S, and
2. all formulas of the form not p in the bodies of the remaining rules.

Clearly for any S, Pgs is the set of rules without any negative literals, so that Pg
has a set of minimal models, denoted by I'p(S). Now a set S of atoms is an
answer set of P iff § € I'p(5).

2.2 Completions

The completion of a disjunctive logic program P [4], Comp(P), is defined to be
the set of propositional formulas that consists of the implication

body(r) D head(r), (3)

for every rule r in P, and the implication

a>D \/ body(r) A /\ -p |, (4)

reP, achead(r) pehead(r)\{a}

for each atom a € Atoms(P). Note that, if P is a normal logic program without
constraints, Comp(P) is equivalent to the Clark’s completion of P [5].

We will convert the completion into a set of clauses, and use unit propagation
as the inference rule. Since unit propagation is not logically complete, it matters
how we transform the formulas in the completion into clauses. In the following,
let comp(P) be the set of following clauses:

1. for each a € Atoms(P), if there is no rule in P with a in its head, then
add —a;

2. if r is not a constraint, then add head(r) V \/ body(r);

if r is a constraint, then add the clause \/ body(r);

4. ifaisan atom and rq,...,rs, t > 0, are all the rules in P with a in their heads,
then introduce ¢t new variables vy, ..., v, and add the following clauses:

@

—aVuvV---Vau,

vi\/\/m\/ \/ p, for each 1 <17 <,
pEhead(r;)\{a}

—w; V1, for each I € body(r;) U head(r;) \ {a} and 1 <i < t.

2.3 Loops and loop formulas

We now briefly review the notions of loops and loop formulas in disjunctive
logic programs [4]. Given a disjunctive logic program P, the positive dependency
graph of P, written Gp, is the directed graph whose vertices are atoms in P,
and there is an arc from p to ¢ if there is a rule r € P such that p € head(r)
and q € body™ (r). A set L of atoms is said to be a loop of P if for any p and q

4 Xiaoping Chen, Jianmin Ji, and Fangzhen Lin

in L, there is a non-empty path from p to ¢ in Gp such that all the vertices in
the path are in L, i.e. the L-induced subgraph of G p is strongly connected.

Given a loop L, a rule r is an external support of L if head(r) N L # 0 and
LNbody™(r) = 0. In the following, let R~ (L) be the set of external support rules
of L. Then the loop formula of L under P, written LF(L, P), is the following
implication

\/ pD \/ body(r) A /\ —q | . (5)

peEL réR~ (L) q€head(r)\L

2.4 Unfounded sets

The notion of unfounded sets for normal logic programs, which provide the basis
for negative conclusions in the well-founded semantics [6], has been extended to
disjunctive logic programs [7].

Let P be a disjunctive logic program, A be a set of literals. A set of atoms X
is an unfounded set for P w.r.t. A if, for each a € X, for each rule r € P such
that a € head(r), at least one of the following conditions holds:

1. ANbody(r) # 0, that is, the body of r is false w.r.t. A.

2. body™t(r) N X # @, that is, some positive body literal belongs to X.

3. (head(r) \ X) N A # (), that is, an atom in the head of r, distinct from
elements in X, is true w.r.t. A.

Note that if P is a normal logic program, unfounded sets defined here coincide
with the definition given for normal logic programs in [6]. For normal logic
programs, the union of all unfounded sets w.r.t. A is also an unfounded set
w.r.t. A (called the greatest unfounded set). But this is not generally true for
disjunctive logic programs, thus for some disjunctive logic program P and set
of literals A, the union of two unfounded sets is not an unfounded set and the
greatest unfounded set of P w.r.t. A does not exist. From Proposition 3.7 in [7],
the greatest unfounded set exists for any P if A is unfounded-free. Formally, a
set of literals A is unfounded-free for a disjunctive logic program P, if ANX = ()
for each unfounded set X for P w.r.t. A. If A is unfounded-free for P, then the
greatest unfounded set exists. In the following, we use GUSp(A) to denote the
greatest unfounded set for P w.r.t. A.

Loops and unfounded sets are closely related [8,9]. In this paper, we show
that the greatest unfounded sets (if exist) can be computed from loops that have
no external support rules.

2.5 Unit propagation

We use unit propagation as the inference rule for deriving consequences from the
completion and loop formulas of a logic program. Given a set I" of clauses, we
let UP(I") be the set of literals that can be derived from I" by unit propagation.
Formally, it can be defined as follows:

Computing Loops with at Most One External Support Rule 5

Function UP(I)
if (0 € I') then return Lit;
A := unit_clause(I);
if A is inconsistent then return Lit;
if A # () then return AU UP(assign(A,I")) else return 0;

where unit_clause(I") returns the union of all unit clauses in I, and assign(A, I')
is{c| forsomed € I NA=0, ande=c"\A}.

3 Loops with at Most One External Support

The basic theorem about loop formulas says that a set of atoms is an answer
set of a logic program iff it is a model of the program’s completion and loop
formulas®. This is the case for normal logic programs [10] as well as disjunctive
logic programs [4]. This means that a sentence is a consequence of a logic program
iff it is a logical consequence of the program’s completion and loop formulas.
The problem is that logical entailment in propositional logic is coNP-complete,
and that in the worst case, there may be an infinite number of loops and loop
formulas. In [1], Chen et al. considered using unit propagation as the inference
rule, and some special classes of loops whose loop formulas can be computed
efficiently. In general terms, their procedure is as follows:

Input: a logic program P.

1. Initialize U = @, and convert Comp(P) to a set C of clauses.

2. Based on U, compute a set of loop formulas, and convert them into a set L
of loop formulas.

3. Let K = {p | UUCUL Fp ¢}, where Fp is a sound inference rule in
propositional logic (such as unit propagation).

4. If K\ U =0, then return K, else let U = K and go back to step 2.

They showed that when Fp is unit propagation, and the class of loops under U
is those that have no external support under U, then the above procedure ba-
sically computes the well-founded model for normal logic programs. They also
considered loops with at most one external support and showed that their loop
formulas can be computed efficiently.

Our main objectives are to extend these results to disjunctive logic programs.
We consider first these loops can be computed in disjunctive logic programs.

3.1 Loops with no external support

It is easy to see that if a loop L has no external support rules, i.e. R~ (L) = 0,
then its loop formula (5) is equivalent to /\p€ ., 7, if L has only one external

support rule, i.e. R~ (L) = {r}, then its loop formulas (5) is equivalent to

/\ —p V| body(r) A /\ -q |,

peEL g€head(r)\L

3 Or the program and its loop formulas if singletons are always considered loops.

6 Xiaoping Chen, Jianmin Ji, and Fangzhen Lin

which is equivalent to a set of binary clauses.

More generally, if we already know that A is a set of literals that are true
in all answer sets, then for any loop L that has at most one external support
rule whose body is active under A w.r.t. L, its loop formula is still equivalent
to either a set of literals or a set of binary clauses under A. A rule r is active
under A w.r.t. L if ANbody(r) =0 and AN (head(r) \ L) = 0.

Thus we extend the notion of external support rules, and have it conditioned
on a given set of literals. Let P be a disjunctive logic program, and A a set of
literals. We say that a rule r is an external support rule of L under Aifr € R~ (L)
is active under A w.r.t. L. In the following, we denote by R~ (L, A) the set of
external support rules of L under A. Note that if P is a normal logic program,
R~ (L, A) defined here coincides with the same notion defined in [1].

Now given a disjunctive logic program P and a set A of literals, let

loopo(P,A) = { L | L is a loop of P such that R~(L,A) =01},
floopg(P, A) = {—a | a € L for aloop L € loopy(P, A) }.

Then loopy(P, A) is the set of loops that do not have any external support rules
under A, and floopo(P, A) is equivalent to the set of loop formulas of these loops.
In particular, the set of loop formulas of loops without any external support rules
is equivalent to floopo(P, ().

We now consider how to compute floopy(P, A). For normal logic programs,
Chen et al. showed that floopy(P, A) can be computed in quadratic time. How-
ever, for disjunctive logic programs, the problem is NP-hard in the general case.

Proposition 1. Given a disjunctive logic program P, a set A of literals, and an
atom a, deciding whether —a € floopy(P, A) is NP-complete.

Fortunately, if the set A is unfounded-free*, then floopy(P, A) can be com-
puted in quadratic time. As we shall see, this restriction is enough for computing
consequences of a logic program using the procedure outlined above when Fp is
unit propagation and the class of loops is that of loops without external support.

Our algorithm below for computing floopg(P, A) is similar to the correspond-
ing one in [1], and is through maximal loops.

Let mlo(P, A) be the set of maximal loops that do not have any exter-
nal support rules under A: a loop is in miy(P, A) if it is a loop of P such
that R~(L,A) = 0, and there does not exist any other such loop L’ such
that L C L’. Clearly,

fompa) = | T

Lemlo(P,A)
If P is a normal logic program, loops in mlo(P, A) are pair-wise disjoint [1].
For disjunctive logic programs the property is not true in general, thus the reason

that floopog(P, A) is intractable. However, if A is unfounded-free, then loops
in mly(P, A) are pair-wise disjoint. This follows from the following proposition:

4 Recall that A is unfounded-free if AN X = @ for each unfounded set X of P w.r.t. A.

Computing Loops with at Most One External Support Rule 7

Proposition 2. Let P be a disjunctive logic program, A be a set of literals such
that AN (L1 U Ls) = 0. If Ly and Lo are two loops of P that do not have any
external support rules under A, and Li N Ly # (), then L1 U Ly 4s also a loop
of P that does not have any external support rules under A.

The following example shows that the condition AN(L1UL2) = @) in Proposition 2
is necessary.

Ezxample 1. Consider the following disjunctive logic program P:
aVbVce—. a<—b, c b — a. c <+ a.

Let A ={b,c}, L1 = {a,b} and Ly = {a,c}. L1 and Ly are belong to loopy (P, A),
but L1 U Ly = {a, b, c} is a loop of P that has one external support under A.

Now consider the following algorithm:

Function MLy(P, A, S): P a program, A and S sets of literals of P
ML := 0; G := the S induced subgraph of Gp;
For each strongly connected component L of G:
if R~(L,A) =0 then add L to ML
else append MLo(P, A, L\ U, cg- (1, 4y H(r, A)) to ML.
return ML,

where G p is the positive dependency graph of P, and

[head(r) if head(r)NMA=10
Hr, 4) = { head(r) N A if head(r) N A # 0.

Theorem 1. Let P be a disjunctive logic program, A and S sets of literals in P.

1. The function MLo(P, A, S) runs in O(n?), where n is the size of P as a set.
2. MLy(P, A, Atoms(P)) C loopo(P, A).
3. If A is unfounded-free, then MLy(P, A, Atoms(P)) = mly(P, A).

3.2 Loops with at most one external support

Similarly, we can consider the set of loops that have exactly one external support
rule under a set A of literals, and the set of loop formulas of these loops:
loop1(P,A) = {L| L is a loop of P such that R~ (L, A) = {r} },
floop1(P,A) = {—aVli|ae L, €body(r)Uhead(r) \ L, for some loop L and
rule r such that R~ (L, A) = {r} }.
In particular, floop; (P,) is equivalent to the set of loop formulas of the loops

that have exactly one external support rule in P.
Like floopo(P, A), floop1 (P, A) is intractable.

8 Xiaoping Chen, Jianmin Ji, and Fangzhen Lin

Proposition 3. Given a disjunctive logic program P, a set A of literals, an
atom a, and a literal I, deciding whether —a V1 € floopi (P, A) is NP-complete.

While there is a polynomial algorithm for computing floopg(P, A) when A
is unfounded-free, this is not the case for floop;(P, A). Proposition 3 holds even
when we restrict A to be unfounded-free.

Notice that for normal logic programs, the complexity of floop; (P, A) is left
as an open question in [1]. Instead, a polynomial algorithm is proposed for com-
puting floopo(P, A)U floop; (P, A)® which corresponds to the set of loop formulas
of loops with at most one external support [1]. For disjunctive logic programs,
floopo(P, A) U floopy (P, A) is still intractable even when A is unfounded-free®.

Given this negative results about computing loop formulas of loops with at
most one external support in disjunctive logic programs, we turn our atten-
tion to polynomial algorithms that can compute as many loop formulas from
floopy (P, A) U floop; (P, A) as possible. We propose one such approximation al-
gorithm below. It is based on the observation that if a loop has one external
support rule, then it often has no external support when this rule is deleted.
This would reduce the problem of computing loops with one external support
rule to that of loops with no external support, and for the latter we can use the
function MLy (P, A, S) when A is unfounded-free (Theorem 1).

Proposition 4. For any disjunctive logic program P and a set A of literals that
is unfounded-free for P. floopo(P, A) and floop, (P, A) imply the following theory

U {—aVl|a € L,l € body(r)Uhead(r) \ L}.
Anbody(r)=0,L€MLo(P\{r},A,Atoms(P\{r}))

(6)

In the following, we use fLoop;(P, A) to denote (6). According to Proposi-
tion 2 of [1], if P is a normal logic program, then floopy(P, A) U floop, (P, A)
is equivalent to floopg(P, A) U fLoop; (P, A) for any A. However, for disjunctive
logic programs, this two theories are not equivalent, even when A is unfounded-
free, as the following example illustrates.

Ezxample 2. Consider the following logic program P:
aVbVce—d. a+b,ec. b — a. c <+ b.

Let A =0, loopy (P, A) = {{a,b,c},{a,b} }, both loops have one external support
rule: a VbV ¢ « d, thus —a V —¢,—bV —c € floop1 (P, A), but they can not be
computed from fLoopy (P, A).

® Not exactly this set, but floopo(P, A) U fLoop:i (P, A), which is logically equivalent
to floopo(P, A) U floop1 (P, A), and especially UP(floopo(P, A) U fLoop:(P, A)) =
UP(floopo (P, A) U floop: (P, A)).

5 For normal logic programs, we need to compute T(P,A), we show that
floopo(P, A) D (floopi(P, A) = fLoop:(P, A)) and furthermore UP(floopo(P, A) U
floopy (P, A)) = UP(floopo(P, A) U fLoop1(P, A)). For disjunctive logic programs,
deciding whether a literal | € T'(P, A) or even l € UP(floopo(P, A) U floop: (P, A)),
A is unfounded-free, is NP-hard.

Computing Loops with at Most One External Support Rule 9

So to summarize, while we can not efficiently compute floopy (P, A)U floop, (P, A),
we can compute floopy(P, A) U fLoopi(P, A) which is still helpful for comput-
ing consequences of a logic program. To compute floopg(P, A) U fLoop; (P, A),
we first call MLo(P, A, Atoms(P)), and then for each proper rule r € P such
that AN body(r) = 0, we call MLo(P \ {r}, A, Atoms(P \ {r})). The worse case
complexity of this procedure is O(n?), where n is the size of P.

4 Computing Consequences of a Program

Let’s now return to the iterative procedure given in the beginning of last section.
When Fp is unit propagation UP, and the loop formulas are those from ML
(maximal loops with no external support), it becomes the following one:

Function Ty(P) - P is a disjunctive logic program;
X :=0; Y := comp(P) U {loop formulas of loops in MLy (P,, Atoms(P))};
while X # UP(Y) do

X :=UP(Y); Y := YU{loop formulas of loops in MLy(P, X, Atoms(P))};
return X N Lit(P).

Clearly Tp(P) runs in polynomial time and returns a set of consequences
of P. It is also easy to see that at each iteration, the set X computed by the
procedure is also a set of consequences of P. Thus by the following proposition
and Theorem 1, if P has at least one answer set, then at each iteration, the set
of literals added to Y, {loop formulas of loops in ML (P, X, Atoms(P))}, equals
to floopy(P, X), the set of loop formulas with no external support under X.

Proposition 5. Let P be a disjunctive logic program that has an answer set. If
A is a set of literals that are consequences of P, then A is unfounded-free for P.

Similarly, using floopy(P, A) U floopi (P, A), we get the following procedure:

Function T'(P) - P is a disjunctive logic program;
Y := comp(P) U floopo(P,0) U floopy (P,0); X := 0;
while X # UP(Y) do

X :=UP(Y); Y :=Y U floopy(P, X) U floop, (P, X);
return X N Lit(P).

Again it is easy to see that at each iteration, X is a set of consequences
of P, and in particular, T*(P) returns a set of consequences of P. As we have
shown in the last section, even for unfounded-free A, computing floopg (P, X) U
floop1 (P, X) is intractable. Thus we cannot show that the above procedure is
polynomial. However, this still leaves open the question of whether T (P) can
be computed by some other methods that hopefully can be shown to run in
polynomial time. Unfortunately, this does not seem to be likely as we can show
that computing T (P) is also intractable.

Proposition 6. For any disjunctive logic program P, deciding whether a literal
is in T*(P) is NP-hard.

10 Xiaoping Chen, Jianmin Ji, and Fangzhen Lin

In the last section, we propose to use fLoop; (P, A) as a polynomial approx-
imation of floop; (P, A). We can thus make use of this operator:

Function T3 (P) - P is a disjunctive logic program;
Y := comp(P) U floopo(P,0) U fLoop1 (P,0); X :=0;
while X # UP(Y) do

X =UP(Y); Y =Y U floopy(P, X) U fLoop, (P, X);
return X N Lit(P).

This is the function that we have implemented and used in our experiments.
See Section 6 for details.

5 Related Work

Here we relate our work to the preprocessing procedure in DLV [11] and the
well-founded semantics of disjunctive programs proposed by Wang and Zhou [2].

5.1 DLV preprocessing operator

We now show that Ty (P) coincides with the least fixed point of the operator Wp
used in DLV for preprocessing a given disjunctive logic program. First, we show
that the greatest unfounded set of a disjunctive logic program (if exists) can be
computed from loop formulas of loops that have no external support rules.

Given a disjunctive logic program P and A a set of literals. The func-
tion M (P, A), the least fixed point of the operator M7 defined as follows:

loop{! (P, X) = {a | there is a loop L of Ps.t.a € L and R~ (L,AUX) =0},

FMP,X) = {a | a € Atoms(P) and for all r € P, if a € head(r) then
ANbody(r) # 0, X Nbody(r) # 0, or (head(r)\ {a})NA# 0},

MA(X) = X Uloopi (P, X) U F{A(P, X).

Theorem 2. For any disjunctive logic program P and any A C Lit(P) such
that the greatest unfounded set of P w.r.t. A exists. M(P, A) = GUSp(A).

From the above theorem, we can compute GUSp(A) by M (P, A). We do not
yet know any efficient way of computing loopg (P, A) for any possible A, but if A is
restricted to be unfounded-free, then GUSp(A) always exists, and loopg (P, X) =
ULeMLO(P,AUY,Atoms(P)) L, which can be computed in polynomial time. Further-

more, F5'(P, X) can be computed in linear time. So, if A is unfounded-free, we
have proposed a loop-oriented approach for computing GUSp(A) in polynomial
time. Note that, different from other current approaches, GUSp(A) is computed
directly here, avoiding the computation of the complement of it.

Now we introduce the Wp operator proposed in [7].

Tp(X) = {a € Atoms(P) | there is a rule r € P such that a € head(r),
head(r) \ {a} C X, and body(r) C X },
W’/:(X) = Tp(X) @] GUSP(X)

Computing Loops with at Most One External Support Rule 11

From Proposition 5.6 in 7], Wp has a least fixed point, denoted W(0), is
the consequence of the program. W (0)) can also be computed efficiently, thus it
is considered as a good start point to compute answer sets and is implemented
in DLV.

In the following, a disjunctive logic program P is said to be simplified if for
any 7 € P, head(r)N(body™ (r)Ubody~ (r)) = 0. Notice that any disjunctive logic
program is strongly equivalent to a simplified program: if head(r)Nbody™ () # 0,
then {r} is strongly equivalent to the empty set, thus can be safely deleted from
any logic program, and if head(r)Nbody ™~ (r) # 0, then {r} is strongly equivalent
to {7’} such that head(r’) = head(r)\ body~ (r) and body(r') = body(r) (cf. [12]).

The following theorem relates To(P) and W (0).

Theorem 3. For any disjunctive logic program P, W$(0) C Ty(P). If P is
simplified and without constraints, then W (0) = Ty(P).

Note that, [7] proved that, if P does not contain constraints, W () coincides
with the well-founded model of a normal logic program P’ obtained by “shifting”
some head atoms to the bodies of the rules. Thus, if P is simplified, then Ty(P)
coincides with the well-founded model of P’ as well.

Given a disjunctive logic program P, we denote by sh(P) the normal program
obtained from P by substituting every rule of form (1) by the k rules

Qi < Qft1y- -y Ay MO Qi1 - . ., ROt A, MOt A1, ..., Ot Qj—1, N0t it 1, . . ., RO Q.

(1<i<k)

It is worth to note that, fLoop;(sh(P),A) may be not a consequence of a
disjunctive logic program, even when A is unfounded-free for P or sh(P).

Ezxample 3. Consider the following logic program P:

d < note. e < notd. aVce<«—d. aVb—e.

a < b. b«— a. «— nota. «— notb.

Clearly, {a,b,d} and {a,b,e} are the only two answer sets of P, {a,b,d} is the
only answer set of sh(P). Let A = {a,b}, A is unfounded-free for P and sh(P).
—a VvV d € fLoopy(sh(P),A) which is false for {a,b,e}, thus not a consequence
of P.

A disjunctive logic program P is head-cycle free, if there does not exist a
loop L and a rule r, s.t. a,b € L and a,b € head(r). If P is head-cycle free, then
a set of atoms is an answer of P iff it is an answer set of sh(P).

Proposition 7. For any head-cycle free disjunctive logic program P and a set A
of literals:

floopy (P, A) = MLy(P, A, Atoms(P)) = MLy(sh(P), A, Atoms(P)),

fLoop1(P, A) = U {-aVi|aclL,
Anbody(r)=0,LEMLo(sh(P\{r}),A,Atoms(P))

1 € body(r) U head(r) \ L},
and floopo(P, A) implies that floopi (P, A) is equivalent to fLoopi(P, A).

12 Xiaoping Chen, Jianmin Ji, and Fangzhen Lin

5.2 Wang and Zhou’s well-founded semantics for disjunctive logic
programs

It is proved in [1] that Ty computes the well-founded model when the given
normal logic program is simplified and has no constraints. However, there have
been several competing proposals for extending the well-founded semantics to
disjunctive logic programs [7,13,2]. It is interesting that with a slight change of
unit propagation, the procedure computes the same results as the well-founded
semantics proposed in [2]. We now make this precise, first, we give one of the
definitions of the well-founded semantics proposed by Wang and Zhou.

Given a disjunctive logic program P, a positive (negative) disjunction is a dis-
junction of atoms (negative literals) of P. A pure disjunction is either a positive
one or a negative one. If A and B = AV A’ are two disjunctions, then we say A
is a subdisjunction of B, denoted A C B. Let S be a set of pure disjunctions,
we say body(r) of r € P is true w.r.t. S, denoted S |= body(r), if body(r) C S;
body(r) is false w.r.t. S, denoted S |= —body(r) if either (1) the complement of a
literal in body(r) is in S or (2) there is a disjunction aq V - - - V a,, € S such that
{notay,...,nota, } C body(r).

Now we extend the notion of unfounded set to under a set of pure disjunc-
tions. Let S be a set of pure disjunctions of a disjunctive logic program P, a set
of atoms X is an unfounded set for P w.r.t. S if, for each @ € X, r € P such
that a € head(r), at least one of the following conditions holds:

1. the body of r is false w.r.t. .S;

2. there is x € X such that = € body™ (r);

3. if S |= body(r), then S |= (head(r)—X). Here (head(r)—X) is the disjunction
obtained from head(r) by removing all atoms in X, S |= (head(r)—X) means
there is a subdisjunction A’ C (head(r) — X)) such that A’ € S.

Note that, if S is just a set of literals, then the above definition is equivalent
to the definition in Preparation. If P has the greatest unfounded set w.r.t. S, we
denote it by Up(S). However, Up(S) may be unfounded for some S.

Now we are ready to define the well-founded operator W, for any disjunctive
logic program P and set of pure disjunctions S:

T,(S) = { A apure disjunction | thereis arule r € P: AVayV---Vay < body(r),
such that S = body(r) and notas,...,nota; € S},
Whp(S) = TH(S) UUp(S).

Note that 75(S) is a set of positive disjunctions rather than a set of atoms.

From [2], the operator W}, always has the least fixed point, denoted by I fp(W5),
and the well-founded semantics U-WF'S is defined as U-WFS(P) = [ft(Wp).

Now we extend Ty to treat about pure disjunctions. First, we extend the
notion floopy(P, A) to under a set of pure disjunctions S.

A rule r is active under S w.r.t. a loop L, if S & —body(r) and S £~ (head(r)\
L). A rule r is an external support rule of L under S, if r € R™(L) is active
under S w.r.t. L. We use R~ (L, S) to denote the set of external support rules
of L under S.

Computing Loops with at Most One External Support Rule 13

Given a disjunctive logic program P and a set S of pure disjunctions, let
floopg(P,S) ={—a|a€ L for aloop L of P such that R™(L,S)=0}.

Then floopy(P,S) is equivalent to the set of loop formulas of the loops that do
not have any external support rules under S. Clearly, if S is just a set of literals,
the above definition of floopy is equivalent to the definition in Section 3.

Now we extend unit propagation to return positive disjunctions. Given a
set I" of clauses, we use UP* to denote the set of positive disjunctions returned
by the extended unit propagation:

Function UP*(I")
if (0 € I') then return Lit;
S := positive_clause(I);
if S is inconsistent then return Lit;
if S # () then return S U UP*(assign(S, ")) else return (;

where positve_clause(I") returns the union of all positive clauses (disjunctions)
in I', let A is the union of all unit clauses in S, then assign(S,I") is {c |
for some ¢ € I'd NA =10, and c=¢"\ A}.

We use the new unit propagation in Ty, formally, the procedure computes
the least fixed point of the following operator:

T3 (P, S) = UP*(comp(P) U S U floopy(P, S)) N DB(P),

where DB(P) denotes the set of pure disjunctions formed by the literals in Lit(P).
We use T (P) to denote such least fixed point.
The following theorem relates U-W FS(P) and T (P).

Theorem 4. For any disjunctive logic program P, U-WFS(P) C T5(P). If P
is simplified and without constraints, then U-W FS(P) =T (P).

6 Some Experimental Results

We have implemented a program that for any given disjunctive logic program P,
it first computes 7% (P), and then adds {« [|l € T1(P)} to P.

We tried our program on a number of benchmarks. First, for the disjunc-
tive logic programs at the First Answer Set Programming System Competition,
T (P) does not return anything beyond the well-founded model of P. Next we
tried the disjunctive encoding of the Hamiltonian Circuit (HC) problem,” and
consider graphs with the same structure proposed in [1]. Specifically, we create
some copies of a complete graph, and then randomly add some arcs to con-
nect these copies into a strongly connected graph such that any HC for this
graph must go through these special arcs. None of these “must in” arcs can be
computed using the Wp operator, except one of them, others can be computed

" From the website of DLV, http://www.dbai.tuwien.ac.at/proj/dlv/examples/hamcycle.

14 Xiaoping Chen, Jianmin Ji, and Fangzhen Lin

from Tj(P), thus adding the corresponding constraints to P should help ASP
solvers in computing the answer sets.

Table 1 contains the running times for these programs.® In this table, MxN.K
stands for a graph with M copies of the complete graph with N nodes: C1, ..., Cyy,
and with exactly one arc from C; to C;41 and exactly one arc from C;; to Cj,
for each 1 < ¢ < M (Cpr41 is defined to be Cp). The extension K stands
for a specific way of adding these arcs. The numbers under “cmodelsy,” and
“DLV7p,” refer to the run times (in seconds) of cmodels (version 3.77 [14]) and
DLV (Oct 11 2007 [11]) when the results from T3 (P) are added to the original
program as constraints, and those under “I7” are the run times of our program
for computing 77 (P). As can be seen, information from 77 (P) makes cmodels
and DLV run much faster when looking for an answer set. In addition to cmodels,
we also tried claspD [15], which is very fast on these programs, on average it
returned a solution in a few seconds.

Table 1. Run-time Data for cmodels and DLV.

Problem |cmodels|cmodelst, [DLV [DLV7, | T: ||Problem|cmodels|cmodelst, | DLV |DLVy, | Ty

10x10.1 | 58.29 22.01 |43.96| 1.04 [25.65|| 9x11.1 | >1h 24.05 |384.83| 1.32 |25.71
10x10.2 | 227.52 22.86 (43.90| 1.04 |24.63| 9x11.2 | >1h 24.04 |385.07| 1.32 (26.34
10x10.3 | 361.62 21.77 |43.09| 1.03 |24.46|| 9x11.3 | 959.18 24.51 |389.44| 1.34 |27.05
10x10.4 | 447.36 | 28.98 |44.16| 1.05 |24.50| 9x11.4 | 797.76 | 23.29 (385.89| 1.33 |26.07
10x10.5 | 66.62 21.19 1.28 | 1.05 |21.63]| 9x11.5 |1276.01| 21.64 |391.15| 1.33 |26.00
10x10.6 | 344.12 | 21.20 |43.97| 1.03 |24.92|| 9x11.6 |1339.06| 27.19 1.79 | 1.34 |22.76
10x10.7 | 289.98 | 21.32 |43.78| 1.03 |24.80|| 9x11.7 | 206.85 | 23.58 |386.94| 1.31 |25.83
10x10.8 | 508.95 | 21.63 |43.42| 1.04 |25.45| 9x11.8 |2803.17| 22.89 |(389.94| 1.34 |25.85
10x10.9 | 246.04 20.86 |44.11| 1.03 |24.87|| 9x11.9 [1837.58| 20.70 1.79 | 1.29 |26.16
10x10.10{1481.17| 20.78 |44.24| 1.05 [25.45||9x11.10| >1h 21.76 |385.01| 1.34 |27.01

7 Conclusion

We have extended the work of Chen et al. [1] on computing loops with at most
one external support from normal logic programs to disjunctive logic programs.
Our main results are that the set of loop formulas of loops that do not have
any external support under an unfounded-free set of literals can be computed
in polynomial time, and an iterative procedure using these loop formulas, pro-
gram completion and unit propagation outputs the same set of consequences as
computed by the preprocessing step of DLV, and is basically the same as Wang
and Zhou’s well-founded model semantics of disjunctive logic programs. How-
ever, the problem of computing loop formulas of loops with at most one external
support is intractable. As a result, we consider a polynomial time algorithm for
computing some of these loop formulas, and our experimental results show that
this algorithm is sometimes useful for simplifying a disjunctive logic program
beyond that can be done by the preprocessing step of DLV.

8 Our experiments were done on an AMD Athlon(tm) 64 X2 Dual Core Processor
3600+ and 1GB RAM. The reported times are in CPU seconds as reported by

Linux “/usr/bin/time” command.

Computing Loops with at Most One External Support Rule 15

For future work, we plan to conduct more experiments with our algorithms

and to consider more effective ways of using consequences of a logic program.

Acknowledgments. This work has been supported in part by the Natural
Science Foundations of China under grants 60745002, 60573009, and 60703095,
the National High-Tech Project under grant 2008AA01Z150, and by the Hong
Kong RGC CERG 616806. We thank Yisong Wang for useful discussions related
to the topic of this paper.

References

1.

10.

11.

12.

13.

14.

15.

Chen, X., Ji, J., Lin, F.: Computing loops with at most one external support rule.
In: Proceedings of the 11th International Conference on Principles of Knowledge
Representation and Reasoning. (2008) 401-410

Wang, K., Zhou, L.: Comparisons and computation of well-founded semantics for
disjunctive logic programs. ACM Trans. Comput. Logic 6(2) (2005) 295-327
Lifschitz, V., Tang, L., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25(3) (1999) 369-389

Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Proceedings
of the 19th International Conference on Logic Programming. (2003) 451-465
Clark, K.L.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and
Databases. Plenum Press, New York (1978) 293-322

Van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Pro-
ceedings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, New York, NY, USA, ACM (1989) 1-10

Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fix-
point Semantics, and Computation. Information and Computation 135(2) (1997)
69-112

Lee, J.: A model-theoretic counterpart of loop formulas. In: Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence. (2005) 503—
508

Anger, C., Gebser, M., Schaub, T.: Approaching the core of unfounded sets.
In: Proceedings of the International Workshop on Nonmonotonic Reasoning
(NMR’06). (2006) 5866

Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Artificial Intelligence 157(1-2) (2004) 115-137

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7(3) (2006) 499-562

Lin, F., Chen, Y.: Discovering Classes of Strongly Equivalent Logic Programs.
Journal of Artificial Intelligence Research 28 (2007) 431-451

Brass, S., Dix, J.: Semantics of (disjunctive) logic programs based on partial
evaluation. The Journal of Logic Programming 40(1) (1999) 1-46

Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propo-
sitional satisfiability. J. Autom. Reasoning 36(4) (2006) 345-377

Drescher, C., Gebser, M., Grote, T., Kaufmann, B., Konig, A., Ostrowski, M.,
Schaub, T.: Conflict-driven disjunctive answer set solving. In: Proceedings of
the 11th International Conference on Principles of Knowledge Representation and
Reasoning. (2008) 422-432

