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Abstract
In this paper, we propose a transfer learning approach to adapt
a well-trained model obtained with high-resource materials of
one language to another target language using a small amount
of adaptation data for speech enhancement based on deep neu-
ral networks (DNNs). We investigate the performance degra-
dation issues of enhancing noisy Mandarin speech data using
DNN models already trained with only English speech materi-
als, and vice versa. By assuming that the hidden layers of the
well-trained DNN regression model as a cascade of feature ex-
tractors, we hypothesize that the first several layers should be
transferable between languages. Our experimental results in-
dicate that even with only about 1 minute of adaptation data
from the resource-limited language we can achieve a consider-
able performance improvement over the DNN model without
cross-language transfer learning.
Index Terms: speech enhancement, deep neural network, trans-
fer learning, multi-lingual, resource-limited language

1. Introduction
Single channel speech enhancement is still a challenging task
considering that the characteristics of both the speech and noise
signals are very complicated in the real world environments.
The traditional speech enhancement methods, such as spectral
subtraction [1], Wiener filtering [2], minimum mean squared
error (MMSE) estimation [3, 4] and optimally-modified log-
spectral amplitude (OM-LSA) speech estimator (e.g., [5, 6]),
were developed during the past several decades. However, most
of them are ineffective to deal with the highly non-stationary
noise (e.g., Machine Gun noise in [7]) due to the difficulty to
accurately estimate the local noise spectrum [8]. The residual
noise including the musical noise [9], especially at low signal-
to-noise ratios (SNRs), is another problem to limit their appli-
cations in automatic speech recognition (ASR), mobile commu-
nication and hearing aids [10].

Recently, a deep learning (e.g., [11, 12]) based framework
was proposed for speech enhancement and some promising re-
sults were obtained. In (e.g., [9, 13, 14]), DNN-based or s-
tacked de-noising auto-encoder (SDA) based speech enhance-
ment methods were proposed to map the noisy speech to the
clean speech. No musical noise was found in the DNN or the S-
DA enhanced speech and the highly non-stationary noise could
be suppressed. The DNN or SDA trained with a large collection
of noise types could get much better performance than the tra-
ditional method even on unseen noise types [9, 15, 16]. Good
generalization capacity of the DNN was also demonstrated in
[17], where 100 noise types were used to train DNNs to classify

the certain time-frequency unit to be speech-dominant or noise-
dominant. In this paper, more than 100 noise types are also
adopted to improve the robustness to the unseen noise types.

Nonetheless, the generalization capacity of DNN-based
speech enhancement to clean speech data was not explicitly ad-
dressed in previous research. An observation is that the test
performance of DNN trained with clean data of a single lan-
guage is often severely degraded on a new language. Because
of this mismatch, we investigate cross-language DNN-based
speech enhancement in this paper. On one hand, if rich data
of different languages can be collected, the multi-lingual DNN
can be naturally trained with speech data of multiple languages.
It should be noted that the multi-lingual DNNs here are dif-
ferent from the shared-hidden-layer multi-lingual DNNs (SHL-
MDNNs) (e.g., [18, 19, 20]) in robust ASR, where the hidden
layers are shared across many languages while the softmax lay-
ers are language dependent. In speech enhancement, the hidden
layers and the linear reconstruction output layer are all shared
across different languages in the multi-lingual approach. This
also implies that multi-lingual DNNs trained with diversified
speech data might outperform the mono-lingual DNN trained
with only the language-specific data. On the other hand, in cas-
es when a large mount of clean speech data is hard to collect
for a certain language, a transfer learning strategy is proposed
to adapt the well-trained DNN model from a resource-rich lan-
guage to a resource-limited language. This adaptation process
could be conducted by tuning the parameters of the top N layers
to avoid over-fitting. Our experiments on two languages, name-
ly English and Mandarin data, show the effectiveness of our
proposed multi-lingual DNN and transfer learning approaches.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the DNN-based speech enhancement system.
Multi-lingual DNN learning and cross-language transfer learn-
ing are presented in Section 3. In Section 4, we present a series
of experiments to assess the system performance. Finally we
summarize our findings in Section 5.

2. System Overview
A block diagram of the DNN-based speech enhancement is il-
lustrated in Fig. 1. It consists of the off-line DNN training stage
and the on-line enhancement stage. In the training stage, more
than 100 noise types are used to construct abundant sample pairs
of the clean speech and the noisy speech. The log-power spec-
tra features are extracted to map the noisy speech to the clean
speech. The DNN training includes two steps, namely unsuper-
vised pre-training and supervised fine-tuning. The Restricted
Boltzmann Machine (RBM) based unsupervised pre-training al-
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Figure 1: A block diagram of the proposed DNN-based speech
enhancement system.

gorithm was proposed by Hinton to avoid the local optimum in
the subsequent fine-tuning, especially for the DNN with many
hidden layers [11]. And the conventional back-propagation al-
gorithm is adopted to fine-tune the well initialized deep mod-
el. The MMSE criterion is designed as the object function [9].
The stochastic gradient descent is adopted for optimization in
mini-batches with multiple epochs to improve learning conver-
gence. In the enhancement stage, the noisy speech features are
processed by the well-trained DNN model to predict the clean
speech features. After we obtain the estimated log-power spec-
tral features of clean speech X̂ l, the reconstructed spectrum X̂ f

could be obtained using inverse discrete Fourier transformation
with the phase of input noisy speech. Finally an overlap-add
method is used to synthesize the waveform of the estimated
clean speech [21].

3. Cross-language DNN-based Speech
Enhancement

3.1. The language mismatch problem

In [9], the cross-language performance of mandarin utterances
was evaluated with an English DNN model at a specified noisy
type and noise level, and it gave a preliminary cue that the lan-
guage mismatch problem existed in the DNN-based speech en-
hancement. In this paper, we extensively investigate this prob-
lem at different SNRs under general noise environments. An
English utterance example corrupted by the unseen Exhibition
noise at SNR = 5dB was shown in the upper spectrograms in
Fig. 2. Compared with the English-DNN enhanced (match test-
ing) spectrogram shown in the upper left panel, a severe over-
smoothing phenomenon was observed in the Mandarin-DNN
enhanced (cross-testing) spectrogram shown in the upper mid-
dle panel. Furthermore, Fig. 2 also presents the spectrograms
of a Mandarin utterance example (bottom). Compared with the
Mandarin-DNN enhanced (match testing) spectrogram shown
in the bottom left panel, More residue noises are left in the
English-DNN enhanced (cross-testing) spectrogram shown in
the bottom middle panel. These observations indicate that the
language mismatch can lead to severe performance degradation.
Noted that the experimental setup of the Mandarin DNN and the
English DNN will be illustrated in Section 4.

To give a better understanding of those observations in
Fig. 2. Fig. 3 shows the histograms of 200000 frames of the
dimension-independent log-power spectra features of the clean
Mandarin data and the clean English data. Obviously, the En-
glish distribution is quite different from the Mandarin distribu-
tion. Specifically, the different mean values of two distributions
indicates the energy mismatch of our selected data sets.

Figure 2: Spectrograms of an English (upper) and a Mandarin
(bottom) utterance example with English-DNN enhanced (up-
per left, PESQ=2.18), Mandarin-DNN enhanced (upper mid-
dle, PESQ=1.58), noisy (upper right, PESQ=1.58), Mandarin-
DNN enhanced (bottom left, PESQ=1.70), English-DNN en-
hanced (bottom middle, PESQ=1.38) and noisy (bottom right,
PESQ=0.96). Test on the unseen Exhibition noise at SNR =
5dB.

Figure 3: Histograms of dimension-independent log-power
spectra features of the clean Mandarin data and the clean En-
glish data.

3.2. Multi-lingual DNN

Unlike the multi-lingual DNN with a language-specific soft-
max output layer in the ASR task (e.g., [18, 19]), all layers of
the multi-lingual DNN for speech enhancement could be easily
shared by different data sets without modifying the DNN struc-
ture. The key to the successful learning of the multi-lingual
DNN is to train the model for all the languages simultaneously
[18]. The first several hidden layers suppress the noise compo-
nents by sigmoid non-linearities, while preserving the speech
region [23]. After the de-noising process, the linear output lay-
er could reconstruct the reserved speech spectrum. With the
sufficient training data from each language, the performance
of multi-lingual DNN could be even better than that of mono-
lingual DNN.

3.3. Transfer learning for resource-scarce languages

Transfer learning [22] is one of the most important research top-
ics in machine learning. It defines the ability of a system to
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Figure 4: Architecture of the transfer learning from the
resource-rich language for the resource-scarce language.

recognize and apply knowledge and skills learned in previous
tasks to novel applications or new domains, which share some
commonality. Here, to address the language mismatch issue
for a resource-scarce language, the transfer learning scheme is
proposed. The left DNN in Fig. 4 can be well-trained using a
collection of sufficient samples of the resource-rich language,
which is taken as the initialization model for the resource-
limited language with a small amount of clean speech data. It
should be noted that the limited clean data was fully corrupted
with all noise types at various SNRs to build a multi-condition
training set. With the well-initialized DNN, it can reduce the
possibility to fall into the local optimum, especially when the
adaptation set of the resource-scarce language is small. As the
sigmoid layers play the important role to reduce noise [23], the
linear output layer contains the main language-specific charac-
teristics when reconstructing the speech spectrum, which lead-
s to the language mismatch problem in Section 3.1. Hence,
the de-noising sigmoid layers could be mostly regarded as the
shared hidden layers by different languages. Only the parame-
ters of the top layer or the top 2 layers are updated for transfer
learning while keeping the other layers fixed.

4. Experimental Results and Analysis
To improve the generalization capacity of DNNs to unseen
noise types, 104 noise types were used to construct the stere-
o data, including the four noise types, namely AWGN, Babble,
Restaurant and Street, from the Aurora2 database [24], and an-
other 100 environmental noises [25]1. The clean English speech
data was derived from the TIMIT database [26]. All 4620 ut-
terances from the training set of the TIMIT database were cor-
rupted with the abovementioned 104 noise types at six levels of
SNR, i.e., 20dB, 15dB, 10dB, 5dB, 0dB, and -5dB, to build an
English multi-condition training set, consisting of pairs of clean
and noisy speech utterances. The clean Mandarin speech data
is derived from our in-house corpus. The training set consists

1The another 100 noise types are N1-N17: Crowd noise; N18-N29:
Machine noise; N30-N43: Alarm and siren; N44-N46: Traffic and car
noise; N47-N55: Animal sound; N56-N69: Water sound; N70-N78:
Wind; N79-N82: Bell; N83-N85: Cough; N86: Clap; N87: Snore; N88:
Click; N88-N90: Laugh; N91-N92: Yawn; N93: Cry; N94: Shower;
N95: Tooth brushing; N96-N97: Footsteps; N98: Door moving; N99-
N100: Phone dialing.

of 5400 utterances, and the length of each utterance is 3.6 sec-
onds on average. They were used to build the corresponding
Mandarin multi-condition training set. Finally 100-hour multi-
condition training sets are designed for both English and Man-
darin. Another 200 randomly selected utterances from the TIM-
IT test set and the Mandarin test set, respectively, were used to
construct the test set for each combination of noise types and S-
NR levels. We conducted the evaluation with 3 unseen noise
types2, from the Aurora2 database [24] and the NOISEX-92
corpus [7]. An improved version of OM-LSA [5, 6], denoted
as LogMMSE, was used for performance comparison.

All the clean speech and noise waveforms were down-
sampled to 8KHz. Three objective quality measures, segmental
SNR (SSNR in dB), log-spectral distortion (LSD in dB) and
perceptual evaluation of speech quality (PESQ) [27], were used
for evaluating the quality of the enhanced speech. Due to space
limitation, we only gave selective results of those three objec-
tive measures below.

Mean and variance normalization was applied to the input
and target feature vectors of the DNN. All DNN configurations
were fixed at L = 3 hidden layers, 2048 units at each hidden
layer, and 11-frame input. The number of epoch for each layer
of RBM pre-training was 20. Learning rate of pre-training was
0.0005. As for the fine-tuning, learning rate was set at 0.1 for
the first 10 epochs, then decreased by 10% after every epoch.
Total number of epoch was 50. The mini-batch size was set to
N = 128.

4.1. Evaluations of multi-lingual DNN

In Table 1, we compare the average PESQ results among noisy,
LogMMSE, Mandarin DNN, English DNN and Multi-lingual
DNN on the Mandarin or the English test set across all SNRs
of the three unseen noise environments, namely Exhibition, De-
stroyer engine and HF channel. The mono-lingual DNNs are
both trained on respective 100 hours data, while the multi-
lingual DNN is trained on 200 hours data by combining the
Mandarin data and the English data. Comparing the results of
the Mandarin DNN with the English DNN on the Mandarin test
set, the latter gets the worse PESQ performance degrading from
2.20 to 1.97 on average, due to the language mismatch. The
mismatch problem was more observable using Mandarin DNN
for cross-testing on the English test set with PESQ from 2.60 to
2.11. The average PESQ of multi-lingual DNN can be slightly
better than that of corresponding mono-lingual DNNs. Further-
more, the well configured DNN-based method is superior to the
LogMMSE method. Here the abundant noise types in the train-
ing set are crucial to achieve better generalization capacity to
unseen noises.

4.2. Evaluations of transfer learning

In Fig. 5, transfer learning with top N layers updated is evaluat-
ed supposed that the English was the resource-limited language.
It presents the average SSNR comparison on the English test set
across all SNRs of the three unseen noise environments using
only 72 seconds clean English data to update different param-
eters of DNNs with various initialization schemes. Comparing
the English retrained DNN (E-DNN-retrain) with the English
DNN updating all parameters initialized using the Mandarin
DNN model (M-DNN-Top4), the latter gets better performance

2The 3 unseen environment noises for evaluation are Exhibition, De-
stroyer engine and HF channel. The first one noise is from the Aurora2
database and the others are collected from the NOISEX-92 corpus.



Table 1: Average PESQ comparison on the Mandarin and En-
glish test set across all SNRs of the three unseen noise environ-
ments, among: Noisy, LogMMSE, Mandarin DNN (M-DNN),
English DNN (E-DNN) and Multi-lingual DNN (ML-DNN).

Noisy LogMMSE E-DNN M-DNN ML-DNN
Mandarin 1.63 2.10 1.97 2.20 2.22
English 2.09 2.46 2.60 2.11 2.61
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Figure 5: Average SSNR comparison on the English test set
across all SNRs of the three unseen noise environments using
only 72s clean English utterances to retrain the DNN with the
RBM pre-training (E-DNN-retrain) and the parameters of all
or top 3/2/1 layers with the Mandarin DNN as the initialization
model (denoted as M-DNN-Top4, M-DNN-Top3, M-DNN-Top2
and M-DNN-Top1, respectively.).

because the information from parameters of Mandarin DNN can
also be shared for the English language and the well initialized
model can avoid over-fitting with little adaptation data. The s-
trategy that updating the parameters of top 2 layers obtains the
best performance with about 1 minute clean English data. It
still can achieve a good SSNR score with only updating the pa-
rameters of the top 1 layer, indicating that the diversity between
languages mostly embodied in the top layers. Furthermore, the
training efficiency could also be improved with less parameters
to be updated. As in Fig. 6, M-DNN-Top2 can converge fast
starting from a better initialization point, but E-DNN-retrain
and M-DNN-Top4 easily get stuck in over-fitting. Similar re-
sults could be found in the evaluation on the Mandarin test set.
Hence, the scheme to only update the parameters of top 2 layers
is adopted in the following experiments.

Table 2 presents the average LSD and PESQ comparison
across all SNRs of the three unseen noise environments among
transfer learning to update the top 2 layers with different clean
data size of the adaptation set (0/18/72 seconds and the whole
clean data in training set), transfer learning to update all layers
with all clean data (denoted as All-Top4) and using all clean da-

Table 2: Average LSD and PESQ comparison on the Mandarin
and English test set across all SNRs of the three unseen noise
environments, among transfer learning to update top 2 layers
with different clean data size of the adaptation set (0/18/72 sec-
onds and the whole clean data), transfer learning to update all
layers with all clean data (denoted as All-Top4) and using all
clean data to retrain (denoted as All-retrain).

0s 18s 72s All All-Top4 All-retrain
LSD

Mandarin 6.90 5.95 5.81 5.79 5.77 5.83
English 7.93 6.06 5.73 5.68 5.63 5.73

PESQ
Mandarin 1.97 2.09 2.18 2.20 2.21 2.20
English 2.11 2.33 2.54 2.58 2.60 2.60
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Figure 6: Squared errors on the English test set using only 72s
clean English utterances for transfer learning, among E-DNN-
retrain, M-DNN-Top4 and M-DNN-Top2.

ta to retrain (denoted as All-retrain). In the evaluation for Man-
darin, the well trained English DNN was taken as the initializa-
tion model and the transfer learning with only updating the pa-
rameters of the top 2 layers was then conducted using different
clean Mandarin data. After adapted with only 18s clean Man-
darin data, the mismatch problem was alleviated largely with
LSD from 6.90 to 5.95, and with PESQ from 1.97 to 2.09. Af-
ter increasing the clean data to 72s, the LSD performance even
surpassed that of All-retrain system and the PESQ performance
was also comparable. With the whole clean data, transfer learn-
ing to update the parameters of all layers is just slightly better
than that to update the parameters of top 2 layers, which indi-
cates that the language-specific information mainly lies in the
top layers. As for the evaluation for English, similar results
could be obtained, and the final LSD and PESQ were both con-
siderable with that of the English DNN trained on all clean data
in TIMIT training set.

5. Summary
In this paper, the language mismatch problem was analyzed and
addressed for DNN-based speech enhancement. English and
Mandarin databases are used for experimental design. With
sufficient training samples of different languages, the multi-
lingual DNN could be slightly superior to the mono-lingual
DNN. However, with insufficient training samples, especially
for the minority language where the clean data is difficult or
expensive to collect in the real world, transfer learning was pro-
posed to alleviate the language mismatch problem based on the
sharing characteristics of DNNs between languages. We ex-
pect the proposed transfer learning approach to be applicable
to addressing other mismatch conditions caused by channels,
transducers and environments. Future research will be done to
investigate these robustness issues in speech enhancement.
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