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Abstract Recently total variation (TV) regularization has been proven very successful in
image restoration and segmentation. In image restoration, TV based models offer a good
edge preservation property. In image segmentation, TV (or vectorial TV) helps to obtain
convex formulations of the problems and thus provides global minimizations. Due to these
advantages, TV based models have been extended to image restoration and data segmen-
tation on manifolds. However, TV based restoration and segmentation models are difficult
to solve, due to the nonlinearity and non-differentiability of the TV term. Inspired by the
success of operator splitting and the augmented Lagrangian method (ALM) in 2D planar
image processing, we extend the method to TV and vectorial TV based image restoration
and segmentation on triangulated surfaces, which are widely used in computer graphics
and computer vision. In particular, we will focus on the following problems. First, several
Hilbert spaces will be given to describe TV and vectorial TV based variational models in the
discrete setting. Second, we present ALM applied to TV and vectorial TV image restoration
on mesh surfaces, leading to efficient algorithms for both gray and color image restoration.
Third, we discuss ALM for vectorial TV based multi-region image segmentation, which also
works for both gray and color images. The proposed method benefits from fast solvers for
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sparse linear systems and closed form solutions to subproblems. Experiments on both gray
and color images demonstrate the efficiency of our algorithms.

Keywords Image restoration · Image segmentation · Total variation · Triangulated
surfaces · Operator splitting · Augmented Lagrangian method

1 Introduction

Since the pioneering work of Rudin et al. [1], TV [1] and vectorial TV models [2–5] have
been demonstrated very successful in image restoration. The success of TV and vectorial TV
relies on its good edge preserving property, which suits most images where the edges are
sparse. For years, these restoration models are usually solved by gradient descent method,
which is quite slow due to the non-smoothness of the objective functionals. Recently, various
convex optimization techniques have been proposed to efficiently solve these models [6–20],
some of which are closely related to iterative shrinkage-thresholding algorithms [21–24].

In addition to image restoration, TV, or vectorial TV, plays an important role in convex-
ifying variational image segmentation models. Although classical variational segmentation
models and their gradient descent minimization methods have had a great success, such as
snakes [25], geodesic active contours [26, 27], the Chan-Vese method [28] and level set
[29] or piecewise constant level set [30] approximation and implementations [31–33] of
the Mumford-Shah model [34], they suffer from the local minima problem due to the non-
convexity of the energy functionals. Very recently, various convexification techniques have
been proposed to reformulate non-convex segmentation models to convex ones [35–47] and
even more general extensions [48, 49], yielding fast and global minimization algorithms.
These convex reformulations and extensions are all based on TV or vectorial TV regulariz-
ers.

Due to these successes, TV based restoration and segmentation models have been ex-
tended to data processing on triangulated manifolds [50–52] via gradient descent method.
When this paper was nearly finished, we got to know the technical report [53] released,
which is, to the best of our knowledge, the only paper discussing fast convex optimization
techniques for these problems. The authors proposed to use split Bregman iteration for TV
denoising of gray images and Chan-Vese segmentation (which is a single-phase model). The
split Bregman iteration was first introduced in [14] and then was found to be equivalent to
the augmented Lagrangian method; see, e.g., [13, 15, 17] and references therein. In this pa-
per, we would like to present this approach for vectorial TV based image restoration and
segmentation problems on triangular mesh surfaces by using the language of augmented
Lagrangian method. For the sakes of completeness and readability, we will include the de-
tails of both TV and vectorial TV based restorations and segmentations applied to gray and
color images, although the former has been discussed in [53] in term of split Bregman itera-
tion. In particular, we will first give several Hilbert spaces to describe TV and vectorial TV
based variational models in the discrete setting. Second, ALM applied to TV and vectorial
TV image restoration on mesh surfaces will be presented, leading to efficient algorithms
for both gray and color image restoration. Third, we discuss ALM for vectorial TV based
multi-region (multi-phase) image segmentation, which also works for both gray and color
images. For each problem, our algorithms benefit from fast solvers for sparse linear systems
and closed form solutions to subproblems.

The paper is organized as follows. In Sect. 2, we introduce some notation. In Sect. 3,
we first define several Hilbert spaces with differential mappings, and then present the TV
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and vectorial TV based restoration and segmentation models on triangular mesh surfaces.
ALM for TV restoration of gray images, vectorial TV restoration of color images, and multi-
region segmentation will be discussed in Sects. 4, 5, 6, respectively. In Sect. 7, we give some
numerical experiments. The paper is concluded in Sect. 8.

2 Notation

Assume M is a triangulated surface of arbitrary topology in R
3 with no degenerate triangles.

The set of vertices, the set of edges, and the set of face triangles of M are denoted as {vi :
i = 0,1, . . . ,Nv −1}, {ei : i = 0,1, . . . ,Ne −1}, and {τi : i = 0,1, . . . ,Nτ −1}, respectively,
where Nv , Ne , and Nτ are the numbers of vertices, edges, and triangles. We explicitly denote
an edge e whose endpoints are vi, vj as [vi, vj ]. Similarly a triangle τ whose vertices are
vi, vj , vk is denoted as [vi, vj , vk]. If v is an endpoint of an edge e, then we denote it as
v ≺ e. Similarly, e is an edge of a triangle τ is denoted as e ≺ τ ; v is a vertex of a triangle τ

is denoted as v ≺ τ (see [54]). We denote the barycenters of triangle τ , edge e, and vertex v

by BC(τ ), BC(e), and BC(v), respectively. Let N1(i) be the 1-neighborhood of vertex vi . It
is the set of indices of vertices that are connected to vi . Let D1(i) be the 1-disk of the vertex
vi . D1(i) is the set of triangles with vi being one of their vertices. It should be pointed out
that the 1-disk of a boundary vertex is topologically just a half disk.

For each vertex vi , we define a piecewise linear basis φi such that φi(vj ) = δij , i, j =
0,1, . . . ,Nv − 1, where δij is the Kronecker delta. {φi : i = 0,1, . . . ,Nv − 1} has the follow-
ing properties:

1. local support: suppφi = D1(i);
2. nonnegativity: φi ≥ 0, i = 0,1, . . . ,Nv − 1;
3. partition of unity:

∑
0≤i≤Nv−1 φi ≡ 1.

Most data on M are given by assigning values at the vertices of M . We can use {φi : i =
0,1, . . . ,Nv − 1} to build piecewise linear functions on M for these data. Suppose u reaches
value ui at vertex vi , i = 0,1, . . . ,Nv − 1. Then u(x) = ∑

0≤i≤Nv−1 uiφi(x) for any x ∈ M .
Similarly, piecewise linear vector-valued functions (u1(x), u2(x), . . . , uM(x)) on M can be
defined. In some applications, we also have piecewise constant function (vector) over M ,
that is, a single value (vector) is assigned to each triangle of M . See [51] and the references
therein.

3 TV Based Restoration and Segmentation Models on Triangulated Surfaces

In this section, we first define two basic Hilbert spaces on triangular mesh surfaces and
differential mappings between them, and then present several TV and vectorial TV based
image restoration and segmentation models.

3.1 Basic Spaces and Differential Mappings

Given a triangular mesh surface M , we now define two Hilbert spaces. The linear space
VM = R

Nv is a set, whose elements are given by values at the vertices of M . For instance,
u = (u0, u1, . . . , uNv−1) ∈ VM means that u takes value ui at vertex vi for all i. By the basis
{φi : i = 0,1, . . . ,Nv − 1}, VM is isomorphic to the space of all piecewise linear functions
on M . We denote, by QM , the set of piecewise constant vector fields on M , i.e., QM =
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∏
τ⊂M T τ , where T τ is the tangent vector space of the triangle τ . Note QM ⊂ R

3×Nτ . For
p ∈ QM , p restricted in τ is a constant 3-dimensional vector lying on the tangent space of τ ;
see [51].

We can equip the spaces VM and QM with inner products and norms. Motivated by (4.2)
in [51], we define, for u1, u2, u ∈ VM ,

((u1, u2))VM
=

∑

0≤i≤Nv−1

u1
i u

2
i si , ‖u‖VM

= √
((u,u))VM

, (1)

where si = ∑
τ∈D1(i)

1
3 sτ with sτ as the area of the triangle τ . si is actually the area of the

control cell of the vertex vi based on barycentric dual mesh; see [50, 51] and references
therein. For p1,p2,p ∈ QM , we have

((p1,p2))QM
=

∑

τ

(p1
τ ,p

2
τ )sτ , ‖p‖QM

= √
((p,p))QM

, (2)

where (p1
τ ,p

2
τ ) is the conventional inner product in R

3 (with induced norm denoted by |pτ |)
and, sτ is the area of the triangle τ . We mention that, throughout this paper, ((, )) and ‖‖ are
used to denote inner products and norms of data defined on the whole surface, while (, ) and
|| are used for those of data restricted on vertices or triangles.

The gradient operator on M is a mapping ∇M : VM → QM . Given u ∈ VM , which corre-
sponds to a piecewise linear function on M , its gradient is as follows

∇Mu =
∑

0≤i≤Nv−1

ui∇Mφi, (3)

where ∇Mφi is a piecewise constant vector field on M [51].
Using the above inner products in VM and QM , it is easy to derive the adjoint operator of

−∇M , say, the divergence operator div : QM → VM . For p ∈ QM , divp is given by

(divp)vi
= − 1

si

∑

τ,vi≺τ

sτ (pτ , (∇Mφi)τ ), ∀i. (4)

Note this is a special case of the divergence formulae in [51] where X ∈ QM .

3.2 TV Restoration Model (ROF) on Triangulated Surfaces

Assume f ∈ VM is an observed noisy gray (single-valued) image defined on M . The total
variation restoration model (ROF) aims at solving

min
u∈VM

{

Etv(u) = Rtv(∇Mu) + α

2
‖u − f ‖2

VM

}

, (5)

where

Rtv(∇Mu) =
∑

τ

|(∇Mu)τ |sτ ,

is the total variation of u, and α > 0 is a fidelity parameter. Under the assumption of no
degenerate triangles on M , the objective functional in (5) is coercive, proper, continuous,
and strictly convex. Hence, the restoration problem (5) has a unique solution.
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3.3 Vectorial TV Restoration Model on Triangulated Surfaces

The TV model (5) can be extended to vectorial TV model for color (multi-valued) image
restoration. For the convenience of description, we introduce the following notation (see
[17] for similar notation extensions in 2D planar domain):

VM = VM × VM × · · · × VM︸ ︷︷ ︸
M

,

QM = QM × QM × · · · × QM︸ ︷︷ ︸
M

.

Hence an M-channel image u = (u1, u2, . . . , uM) is an element of VM , and its gradient
∇Mu = (∇Mu1,∇Mu2, . . . ,∇MuM) is an element of QM . The inner products and norms in
VM and QM are as follows:

((u1,u2))VM
=

∑

1≤m≤M

((u1
m, u2

m))VM
, ‖u‖VM

= √
((u,u))VM

;

((p1,p2))QM
=

∑

1≤m≤M

((p1
m,p2

m))QM
, ‖p‖QM

= √
((p,p))QM

.

When restricted at a vertex vi (and a triangle τ ), we can also define the following vertex-by-
vertex (and triangle-by-triangle) inner products and norms:

(u1
i ,u2

i ) =
∑

1≤m≤M

(u1
m)i(u

2
m)i , |ui | =

√
(ui ,ui );

(p1
τ ,p2

τ ) =
∑

1≤m≤M

((p1
m)τ , (p

2
m)τ ), |pτ | =

√
(pτ ,pτ ).

We consider the following vector-valued image restoration problem:

min
u∈VM

{

Evtv(u) = Rvtv(∇Mu) + α

2
‖u − f‖2

VM

}

, (6)

where

Rvtv(∇Mu) = TV(u) =
∑

τ

√ ∑

1≤m≤M

|(∇Mum)τ |2sτ (7)

is the vectorial TV semi-norm (see [2, 37] for the representation in 2D image domains), and
f = (f1, f2, . . . , fM) ∈ VM is an observed noisy image. Similarly, the restoration problem
(6) has a unique minimizer under the assumption of no degenerate triangles on M .

Remark More general forms of the restoration models (5) and (6) can be considered, which
contain a blur kernel K in the fidelity terms, as in the models in 2D planar image restoration.
However, we mention that on general surfaces the blur theory has not been established yet.
In non-flat spaces, a blur operator cannot be described as a simple convolution. Algorithms
for debluring on surfaces may contain many complicated calculations.
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3.4 Multi-Region Segmentation on Triangulated Surfaces

In this sub section, we present the multi-region segmentation model based on vectorial TV
regularization. This model has been proposed in 2D planar image segmentation recently in
[38, 42] and extended to data segmentation on triangulated manifolds in [52].

We suppose that the N-channel (either single or multiple channels) data d on M are to be
partitioned to M segments. Note that here the number of channels N and that of segments
M are totally independent from each other. In most image data, the segments are assumed to
be piecewise constant (for clean data) or approximately piecewise constant (for noisy data).
We denote the mean values of the data on these segments as μ = (μ1, . . . ,μm, . . . ,μM)

(each μm is an N-dimensional vector). In this paper we assume μ is given, since μ can be
estimated in advance in many applications.

In multi-region segmentation, we are to solve

min
u∈C

{Emrs(u) = ((u, s))VM
+ βRmrs(∇Mu)}, (8)

where Rmrs(∇Mu) = TV(u); C = {u = (u1, . . . , um, . . . , uM) ∈ VM : (um)i ≥ 0,∑
1≤m≤M

(um)i = 1,∀i} is the constrained set; s = (s1, . . . , sm, . . . , sM) ∈ VM and (sm)i

indicates the affinity of the data at vertex vi with class m; β is a positive parameter. A nat-
ural expression of (sm)i is the squared error between the data d at vertex vi and the mean
value μm:

(sm)i = (di − μm,di − μm), (9)

which will be considered in this paper. We mention that other affinities with prescribed
probability density functions can be similarly treated.

Since Emrs(u) is continuous and convex and C is convex and closed, the minimization
problem (8) has at least one solution.

Remark The model (8) is a convex relaxation [35–49] of the original multi-region segmen-
tation (labeling) problem. The solution is thus not exactly “binary". A “binarization step" is
needed to convert the solution of (8) to class numbers. In this paper we use the improved
binarization technique proposed in [49].

Remark In the case that the mean values of the segments are unknown and difficult to esti-
mate in advance, we need to solve the following minimization problem:

min
u∈C,μ

{Emrs(u,μ) = ((u, s(μ)))VM
+ βRmrs(∇Mu)}, (10)

where Rmrs(∇Mu),C,β are the same as defined above; and s(μ) is also defined by (9) except
that here μ is unknown and thus written as a variable of s. We mention that the problem (10)
is non-convex and thus has local minima.

4 Augmented Lagrangian Method for TV Restoration on Triangulated Surfaces

Due to the nonlinearity and non-differentiability of the TV model (5), the gradient descent
method implemented in [50] is slow. Recently the augmented Lagrangian method has been
proven to be very efficient for TV restoration in planar image processing [15, 17, 18]. In the
following, we present the method on triangular mesh surfaces.
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We first introduce a new variable p ∈ QM and reformulate the problem (5) to be the
following equality constrained problem

min
u∈VM,p∈QM

{

Gtv(u,p) = Rtv(p) + α

2
‖u − f ‖2

VM

}

s.t. p = ∇Mu.

(11)

Problems (5) and (11) are clearly equivalent to each other.
To solve (11), we define the augmented Lagrangian functional

Ltv(u,p;λ) = Rtv(p) + α

2
‖u − f ‖2

VM
+ ((λ,p − ∇Mu))QM

+ r

2
‖p − ∇Mu‖2

QM
, (12)

with Lagrange multiplier λ ∈ QM and positive constant r , and then consider the following
saddle-point problem:

Find (u∗,p∗;λ∗) ∈ VM × QM × QM,

s.t. Ltv(u
∗,p∗;λ) ≤ Ltv(u

∗,p∗;λ∗) ≤ Ltv(u,p;λ∗), ∀(u,p;λ) ∈ VM × QM × QM.

(13)
Similarly to [17] and references therein, it can be shown that the saddle-point problem

(13) has at least one solution and all the saddle-points (u∗,p∗;λ∗)’s have the same u∗, which
is the unique solution of the original problem (5).

Algorithm 1 Augmented Lagrangian method for the TV restoration model

1. Initialization: λ0 = 0, u−1 = 0,p−1 = 0;
2. For k = 0,1,2, . . .: compute (uk,pk) as an (approximate) minimizer of the augmented

Lagrangian functional with the Lagrange multiplier λk , i.e.,

(uk,pk) ≈ arg min
(u,p)∈VM×QM

Ltv(u,p;λk), (14)

where Ltv(u,p;λk) is as defined in (12); and update

λk+1 = λk + r(pk − ∇Muk). (15)

We now present an iterative algorithm to solve the saddle-point problem. See Algo-
rithm 1. We are now left with the minimization problem (14) to address. Since u,p are
coupled together, it is in general difficult to compute the minimizers uk and pk simultane-
ously. Instead one usually separates the variables u and p and then applies an alternative
minimization procedure [10, 14, 15, 17], through which one can only obtain the minimizer
approximately in practice (as an inner iteration of the whole algorithm, this alternative min-
imization procedure cannot run to infinite steps). See the symbol ≈ in (14). Fortunately, we
do not need an exact solution to (14) to get the solution to the saddle-point problem.

We separate (14) into the following two subproblems:

– The u-sub problem: for a given p,

min
u∈VM

α

2
‖u − f ‖2

VM
− ((λk,∇Mu))QM

+ r

2
‖p − ∇Mu‖2

QM
; (16)
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– The p-sub problem: for a given u,

min
p∈QM

Rtv(p) + ((λk,p))QM
+ r

2
‖p − ∇Mu‖2

QM
. (17)

These two subproblems can be efficiently solved.

4.1 Solving the u-sub Problem

The u-sub problem (16) is a quadratic programming, whose optimality condition is as fol-
lows

α(u − f ) + divM λk + r divM p − r divM ∇Mu = 0, (18)

which is a sparse linear system and can be solved by various well-developed numerical
packages.

4.2 Solving the p-sub Problem

The p-sub problem is decomposable and thus can be solved triangle-by-triangle. For each
triangle τ , we need to solve

min
pτ

|pτ | + (λk
τ ,pτ ) + r

2
|pτ − (∇Mu)τ |2. (19)

By a similar geometric argumentation as in [18], (19) has the following closed form solution

pτ =
{

(1 − 1
r

1
|wτ | )wτ , |wτ | > 1

r
,

0, |wτ | ≤ 1
r
,

(20)

where

w = ∇Mu − λk

r
. (21)

It can be seen that pτ obtained via (20) is in the tangent vector space T τ and thus p ∈ QM ,
as long as λk

τ ∈ T τ,∀τ , which is a natural consequence from the viewpoint of Hilbert spaces
defined previously.

After knowing how to solve the subproblems, we apply an alternative minimization to
solve the problem (14). See Algorithm 2. It iteratively and alternatively computes the u and
p variables according to (18) and (20). Here L can be chosen using some convergence test
techniques. As observed in [14, 15, 17] and also our numerical experiments, L = 1 is a good
choice and thus applied in this paper.

Algorithm 2 Augmented Lagrangian method for the TV restoration model—solve the min-
imization problem (14)

– Initialization: uk,0 = uk−1,pk,0 = pk−1;
– For l = 0,1,2, . . . ,L−1: compute uk,l+1 from (18) for p = pk,l ; and then compute pk,l+1

from (20) for u = uk,l+1;
– uk = uk,L,pk = pk,L.

By the zero initialization of Algorithm 1 and induction, it is guaranteed that uk ∈
VM,pk ∈ QM,∀k.
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5 Augmented Lagrangian Method for Vectorial TV Restoration on Triangulated
Surfaces

The vectorial TV model (6) is also non-differentiable and therefore hard to solve. In this
section we present the augmented Lagrangian method for this model, which is extended
from the previous section.

By introducing a new variable p ∈ QM , we reformulate the problem (6) to be the follow-
ing equality constrained problem

min
u∈VM,p∈QM

{

Gvtv(u,p) = Rvtv(p) + α

2
‖u − f‖2

VM

}

s.t. p = ∇Mu.

(22)

We then define, for (22), the following augmented Lagrangian functional

Lvtv(u,p;λ) = Rvtv(p) + α

2
‖u − f‖2

VM
+ ((λ,p − ∇Mu))QM

+ r

2
‖p − ∇Mu‖2

QM
, (23)

with Lagrange multiplier λ ∈ QM and positive constant r , and consider the saddle-point
problem:

Find (u∗,p∗;λ∗) ∈ VM × QM × QM,

s.t. Lvtv(u∗,p∗;λ) ≤ Lvtv(u∗,p∗;λ∗) ≤ Lvtv(u,p;λ∗), ∀(u,p;λ) ∈ VM × QM × QM.

(24)
It can be shown that the saddle-point problem (24) has at least one solution and all the

saddle-points (u∗,p∗;λ∗)’s have the same u∗, which is the unique solution of the original
problem (6).

Algorithm 3 Augmented Lagrangian method for the vectorial TV model

1. Initialization: λ0 = 0,u−1 = 0,p−1 = 0;
2. For k = 0,1,2, . . .: compute (uk,pk) as an (approximate) minimizer of the augmented

Lagrangian functional with the Lagrange multiplier λk , i.e.,

(uk,pk) ≈ arg min
(u,p)∈VM×QM

Lvtv(u,p;λk), (25)

where Lvtv(u,p;λk) is as defined in (23); and update

λk+1 = λk + r(pk − ∇Muk). (26)

We use Algorithm 3 to solve the saddle-point problem, where the minimization problem
(25) is left to address. Since u,p are coupled together in (25), we separate the variables u
and p and then apply an alternative minimization procedure, as in the method for the TV
model (5).

In particular, (25) is separated into the following two subproblems:

– The u-sub problem: for a given p,

min
u∈VM

α

2
‖u − f‖2

VM
− ((λk,∇Mu))QM

+ r

2
‖p − ∇Mu‖2

QM
; (27)
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– The p-sub problem: for a given u,

min
p∈QM

Rvtv(p) + ((λk,p))QM
+ r

2
‖p − ∇Mu‖2

QM
. (28)

5.1 Solving the u-sub Problem

The u-sub problem (27) is a quadratic programming, whose optimality condition is as fol-
lows

α(u − f) + divM λk + r divM p − r divM ∇Mu = 0, (29)

which is, in channel wise, as follows:

α(um − fm) + divM λk
m + r divM pm − r divM ∇Mum = 0, 1 ≤ m ≤ M. (30)

Therefore one need only to solve M sparse linear systems with the same coefficient matrix.
Some well-developed numerical packages can be applied.

5.2 Solving the p-sub Problem

The p-sub problem is decomposable and can be solved triangle-by-triangle. For each triangle
τ , we need to solve

min
pτ

|pτ | + (λk
τ ,pτ ) + r

2
|pτ − (∇Mu)τ |2, (31)

which has the following closed form solution

pτ =
{

(1 − 1
r

1
|wτ | )wτ , |wτ | > 1

r
,

0, |wτ | ≤ 1
r
,

(32)

where

w = ∇Mu − λk

r
. (33)

It is seen that pτ obtained via (32) is in the tangent vector space T τ and thus p ∈ QM , as
long as λk

τ ∈ T τ,∀τ . This is also a natural consequence from the definition of QM .
We then apply an alternative minimization to solve the problem (25). See Algorithm 4,

which iteratively and alternatively computes the u and p variables according to (29) and (32).
Here L can be chosen using some convergence test techniques. In this paper we simply set
L = 1.

Algorithm 4 Augmented Lagrangian method for the vectorial TV model—solve the mini-
mization problem (25)

– Initialization: uk,0 = uk−1,pk,0 = pk−1;
– For l = 0,1,2, . . . ,L− 1: compute uk,l+1 from (29) for p = pk,l ; and then compute pk,l+1

from (32) for u = uk,l+1;
– uk = uk,L,pk = pk,L.

By the zero initialization of Algorithm 3 and induction, it is guaranteed that uk ∈
VM,pk ∈ QM,∀k.
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6 Augmented Lagrangian Method for Multi-Region Segmentation on Triangulated
Surfaces

Due to the involvement of the vectorial TV semi-norm, the multi-region segmentation model
(8) is non-differentiable and thus hard to solve. In this section we present to use the aug-
mented Lagrangian method to solve it.

By defining

χC(u) =
{

0, u ∈ C,

+∞, u /∈ C,

the problem (8) can be verified equivalent to the following minimization problem:

min
u∈VM

{Emrs(u) = ((u, s))VM
+ βRmrs(∇Mu) + χC(u)}, (34)

where the objective functional Emrs(u) is convex, lower semi-continuous, and proper, as
well as coercive over VM , by Cauchy-Schwartz inequality applied to ((u, s))VM

.
The problem (34) can be further reformulated to

min
u∈VM,p∈QM,z∈VM

{
Gmrs(u,p, z) = ((z, s))VM

+ βRmrs(p) + χC(z)
}

s.t. p = ∇Mu, z = u,
(35)

by introducing two auxiliary variables p ∈ QM and z ∈ VM . We remark that the introduction
of z avoids a difficult inequality constrained quadratic programming problem (especially for
large meshes) and will greatly simplify the calculation.

To solve (35), we define the following augmented Lagrangian functional

Lmrs(u,p, z;λp, λz) = ((z, s))VM
+ βRmrs(p) + χC(z) + ((λp,p − ∇Mu))QM

+ ((λz, z − u))VM
+ rp

2
‖p − ∇Mu‖2

QM
+ rz

2
‖z − u‖2

VM
,

(36)

with Lagrange multipliers λp ∈ QM,λz ∈ VM and positive constants rp, rz, and then consider
the following saddle-point problem:

Find (u∗,p∗, z∗;λ∗
p, λ

∗
z) ∈ VM × QM × VM × QM × VM,

s.t. Lmrs(u∗,p∗, z∗;λp, λz) ≤ Lmrs(u∗,p∗, z∗;λ∗
p, λ

∗
z) ≤ Lmrs(u,p, z;λ∗

p, λ
∗
z),

∀(u,p, z;λp, λz) ∈ VM × QM × VM × QM × VM.

(37)

It can be shown that the above saddle-point problem (37) has at least one solution and
each solution (u∗,p∗, z∗;λ∗

p, λ
∗
z) provides a minimizer u∗ of the segmentation problem (8).

We now present Algorithm 5 to solve the saddle-point problem (37), where the minimiza-
tion problem (38) is left to address in later paragraphs. Similarly to those in TV and vectorial
TV models, here we have coupled variables u,p, z. We need to separate the variables u, p,
and z and then apply an alternative minimization procedure to solve (38).

In particular, (38) is separated into the following three subproblems:

– The u-sub problem: for a given p, z,

min
u∈VM

−((λk
p,∇Mu))QM

− ((λk
z,u))VM

+ rp

2
‖p − ∇Mu‖2

QM
+ rz

2
‖z − u‖2

VM
; (40)
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Algorithm 5 Augmented Lagrangian method for multi-region segmentation

1. Initialization: λ0
p = 0, λ0

z = 0,u−1 = 0,p−1 = 0, z−1 = 0;
2. For k = 0,1,2, . . .: compute (uk,pk, zk) as an (approximate) minimizer of the augmented

Lagrangian functional with the Lagrange multipliers λk
p, λ

k
z , i.e.,

(uk,pk, zk) ≈ arg min
(u,p,z)∈VM×QM×VM

Lmrs(u,p, z;λk
p, λ

k
z), (38)

where Lmrs(u,p, z;λk
p, λ

k
z) is as defined in (36); and update

λk+1
p = λk

p + rp(pk − ∇Muk),

λk+1
z = λk

z + rz(zk − uk).
(39)

– The p-sub problem: for a given u, z,

min
p∈QM

βRmrs(p) + ((λk
p,p))QM

+ rp

2
‖p − ∇Mu‖2

QM
. (41)

– The z-sub problem: for a given u,p,

min
z∈VM

((z, s))VM
+ χC(z) + ((λk

z, z))VM
+ rz

2
‖z − u‖2

VM
. (42)

All of these subproblems can be efficiently solved.

6.1 Solving the u-sub Problem

The u-sub problem (40) is a quadratic programming, whose optimality condition is as fol-
lows

divM λk
p − λk

z + rp divM p − rp divM ∇Mu − rz(z − u) = 0, (43)

which is, in channel wise, as follows:

divM(λp)
k
m − (λz)

k
m + rp divM pm − rp divM ∇Mum − rz(zm −um) = 0, 1 ≤ m ≤ M. (44)

These M sparse linear systems with the same coefficient matrix can be very efficiently
solved by well-developed numerical packages.

6.2 Solving the p-sub Problem

The p-sub problem (41) is decomposable and can be solved triangle-by-triangle. For each
triangle τ , we need to solve

min
pτ

β|pτ | + ((λp)
k
τ ,pτ ) + rp

2
|pτ − (∇Mu)τ |2, (45)

which has the following closed form solution

pτ =
{

(1 − β

rp

1
|wτ | )wτ , |wτ | > β

rp
,

0, |wτ | ≤ β

rp
,

(46)
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where

w = ∇Mu − λk
p

rp
. (47)

It can be seen that pτ obtained via (46) is in the tangent vector space T τ and thus p ∈
QM , as long as (λp)

k
τ ∈ T τ,∀τ . This is also indicated by the Hilbert space in the problem

formulation.

6.3 Solving the z-sub Problem

The z-sub problem (42) is equivalent to

min
z∈C

((z, s))VM
+ ((λk

z, z))VM
+ rz

2
‖z − u‖2

VM
, (48)

which is actually a quadratic programming problem where the objective functional is de-
composable and the admissible set C is a convex set. Therefore we can first minimize the
objective functional over VM and then project the minimizer to C. The solution to (48) reads
as follows

z = ProjC

(

u − s + λk
z

rz

)

, (49)

which can be calculated vertex-by-vertex via Michelot’s algorithm [55].
We then apply an alternative minimization to solve the problem (38). See Algorithm 6,

which iteratively and alternatively computes the u, p, and z, according to (43), (46), and
(49), respectively. Here L can be chosen using some convergence test techniques. In this
paper we simply set L = 1.

Algorithm 6 Augmented Lagrangian method for multi-region segmentation—solve the
minimization problem (38)

– Initialization: uk,0 = uk−1,pk,0 = pk−1, zk,0 = zk−1;
– For l = 0,1,2, . . . ,L − 1: compute uk,l+1 from (43) for p = pk,l , z = zk,l ; then com-

pute pk,l+1 from (46) for u = uk,l+1, z = zk,l ; and then compute zk,l+1 from (49) for
u = uk,l+1,p = pk,l+1;

– uk = uk,L,pk = pk,L, zk = zk,L.

By the zero initialization of Algorithm 5 and induction, it is guaranteed that uk ∈
VM,pk ∈ QM, zk ∈ VM,∀k.

Remark The problem (10) is non-convex and it is usually difficult to find its global minima.
One may consider to apply an alternative minimization procedure with respect to u (with
fixed μ) and μ (with fixed u). For fixed μ, Algorithm 5 can be applied to find u. For fixed
u, μ can be easily obtained by its first order optimality condition. However, this alternative
minimization algorithm is not guaranteed to converge, since the problem (10) is non-convex.
Currently our tests for (10) show correct segmentation results for only the case of two-region
segmentation.



J Sci Comput

Table 1 Mesh surfaces used in
this paper and their sizes
(numbers of vertices and
triangles)

Mesh surface # vertices # triangles

Sphere 40962 81920

Horse 48485 96966

Cameraman 66049 131072

Lena 65536 130050

Bunny 34817 69630

7 Numerical Examples

7.1 Test Platform, Stopping Condition, and the Computation of SNR

We implemented the proposed algorithms in C++. All of the numerical experiments were
made on a laptop with Intel Core 2 Duo 2.80 GHz CPU and 4 GB RAM and MS Windows
XP Professional x64 Edition.

In our experiments, we applied the following stopping condition:

‖uk − uk−1‖VM
< ε (or ‖uk − uk−1‖VM

< ε), for a predescribed ε > 0.

See Sect. 3 for the definition of ‖‖VM
and ‖‖VM

.
The SNRs (signal-to-noise ratios) given in the examples were computed as follows. For

gray images,

SNR = 10 log
‖u − ū‖2

VM

‖u − g‖2
VM

, (50)

where u is the noise-free (clean) image; g is the observed or recovered image; ū is the
average intensity of the image u on M . The formulae for color images is similarly defined
by using the definition of the norm ‖‖VM

.

7.2 Examples

Here we give some examples. In particular, we used the following triangular mesh surfaces
in our experiments; see Table 1 where the mesh sizes are shown.

A group of examples of ALM applied to TV and vectorial TV based restoration and
segmentation of gray and color images are shown in Figs. 1, 2, 3, 4, 5, 6, and 7. The experi-
mental information of these examples is given in Tables 2, 3, 4, 5, 6, 7, and 8, respectively.
As one can see, our algorithms are very efficient for both gray and color image restoration
and segmentation.

In image restoration, our algorithms generate reconstruction results with greatly im-
proved SNRs in seconds. In all these restoration examples, the parameter r of ALM and
the stopping condition ε were simply set to 0.01 and 1.e−7, respectively.

In multi-region segmentation, our algorithms also perform efficiently and generate cor-
rect segmentation results. Experiments show that they are robust to image noise and inaccu-
rate inputs of intensity means of segments μ present in the segmentation model. The robust-
ness to noise makes our method work for noisy images. The robustness to inaccurate inputs
is of great importance in real applications, since in noisy images the intensity means μ are
difficult to estimate precisely. In these segmentation examples we used uniform parameters
and stopping condition; see Tables 7 and 8.
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Fig. 1 Denoising two images (with non-symmetric and symmetric structures, respectively) with different
levels of noise on the sphere surface based on TV restoration. The first and third rows are noisy images. From
left to right, the standard deviations of the noise are 0.04, 0.06, 0.08, 0.1, respectively. The second and fourth
rows are recovered images. See Table 2

Table 2 Experimental information about the examples in Fig. 1. The stopping condition is ε = 1.e−7

Observation Parameters Recovered

Example # Noise level SNR(dB) α r SNR(dB) CPU(s)

Column 1 NonSymm 0.04 17.5309 4500 0.01 30.0471 3.235

Column 2 NonSymm 0.06 14.0091 3000 0.01 27.8715 3.282

Column 3 NonSymm 0.08 11.5103 2500 0.01 26.2949 3.641

Column 4 NonSymm 0.10 9.5721 2000 0.01 24.9920 3.781

Column 1 Symm 0.04 17.1230 5000 0.01 27.9418 3.375

Column 2 Symm 0.06 13.6012 3500 0.01 25.5181 3.437

Column 3 Symm 0.08 11.1024 2500 0.01 23.7845 3.656

Column 4 Symm 0.10 9.1642 2000 0.01 22.4252 3.484
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Fig. 2 Denoising a text-image with different levels of noise on the horse surface based on TV restoration.
The first row are noisy images. From left to right, the standard deviations of the noise are 0.02, 0.04, 0.06,
0.08, respectively. The second row are recovered images. See Table 3

Fig. 3 Denoising the cameraman image with different levels of noise on a flat surface based on TV restora-
tion. The first row are noisy images. From left to right, the standard deviations of the noise are 0.06, 0.08,
0.10, 0.12, respectively. The second row are recovered images. See Table 4

Table 3 Experimental information about the examples in Fig. 2. The stopping condition is ε = 1.e−7

Observation Parameters Recovered

Example # Noise level SNR(dB) α r SNR(dB) CPU(s)

Column 1 0.02 5.8059 11000 0.01 16.5931 1.672

Column 2 0.04 −0.2147 7000 0.01 13.0695 1.953

Column 3 0.06 −3.7366 5000 0.01 10.9710 2.172

Column 4 0.08 −6.2353 4000 0.01 9.3320 2.359
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Fig. 4 Denoising a color image with different levels of noise on the Bunny surface based on vectorial TV
restoration. The first row are noisy images. From left to right, the standard deviations of the noise are 0.04,
0.06, 0.08, 0.10, respectively. The second row are recovered images. See Table 5

Table 4 Experimental information about the examples in Fig. 3. The stopping condition is ε = 1.e−7

Observation Parameters Recovered

Example # Noise level SNR(dB) α r SNR(dB) CPU(s)

Column 1 0.06 12.0609 10000 0.01 19.1417 3.735

Column 2 0.08 9.5621 8000 0.01 17.6617 3.828

Column 3 0.10 7.6239 6000 0.01 16.5206 3.796

Column 4 0.12 6.0384 4500 0.01 15.5818 4.25

Table 5 Experimental information about the examples in Fig. 4. The stopping condition is ε = 1.e−7

Observation Parameters Recovered

Example # Noise level SNR(dB) α r SNR(dB) CPU(s)

Column 1 0.04 10.9407 1500 0.01 29.5013 5.797

Column 2 0.06 7.4189 1200 0.01 27.5986 6.187

Column 3 0.08 4.9201 1000 0.01 26.2133 7.109

Column 4 0.10 2.9819 900 0.01 25.3085 8.500

At the end of this section, we remark on the choice of the positive parameters r, rp, rz in
the augmented Lagrangian method. According to our experiments, there seem some ranges
for the values of these parameters to make the algorithms stable and efficient. The algorithms
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Fig. 5 Denoising the Lena (color) image with different levels of noise on a flat surface based on vectorial
TV restoration. The first row are noisy images. From left to right, the standard deviations of the noise are
0.06, 0.08, 0.10, 0.12, respectively. The second row are recovered images. See Table 6

Table 6 Experimental information about the examples in Fig. 5. The stopping condition is ε = 1.e−7

Observation Parameters Recovered

Example # Noise level SNR(dB) α r SNR(dB) CPU(s)

Column 1 0.06 8.7710 7000 0.01 15.7636 8.140

Column 2 0.08 6.2722 5000 0.01 14.3979 9.000

Column 3 0.10 4.3340 4000 0.01 13.3181 9.391

Column 4 0.12 2.7503 4000 0.01 11.8496 9.484

may be not numerically stable for too large or too small positive parameters. One potential
reason is that, due to the irregularity of the mesh surface, the condition number of the co-
efficient matrix of the u-sub or u-sub problem and hence the stability of the algorithms are
more sensitive to the parameters r, rp, rz, compared to the case of 2D planar image process-
ing. Consequently, r (or rp, rz) depends on the model parameter α (or β) and the gradient
and divergence operators. The model parameter α (or β) depends on the image to be pro-
cessed. The two differential operators are determined by the structure and distribution of the
triangles on the mesh surface as well as the mesh resolution, i.e., the geometry of the mesh
surface. To precisely describe the relation between good parameters r (or rp, rz) and α (or β)
as well as the geometry of the mesh surface is quite difficult. Therefore, it is hard to obtain
optimal values of r, rp, rz. Fortunately, our tests show that, the effective ranges of r, rp, rz

are large enough so that common parameters r (or rp, rz) exist for different mesh surfaces
and different model parameters α (or β); see the examples. Note that the effective ranges of
r and rp, rz may be quite different even for the same mesh surface and image because they
are used in different minimization problems (with different objective functions) in different
applications.
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Fig. 6 Multi-region segmentation of gray and color images based on vectorial TV regularization. From left
to right: the images are divided into 3, 4, 2, 4 segments (note that one segment may have several different
disconnected domains whose intensity values are the same or similar), respectively. The first row is segmen-
tation results on clean images, while the second row contains segmentation results on noisy images. These
examples show the robustness to noise of our algorithms. See Table 7

Fig. 7 Multi-region segmentation of noisy gray and color images based on vectorial TV regularization with
accurate and inaccurate inputs of intensity means of segments. The input intensity means of segments in
Column 1 and 3 are accurate, while those in Column 2 and 4 are inaccurate. These examples show that our
algorithms still work even for inaccurate inputs of intensity means of segments. This robustness to inaccu-
rate inputs is of importance for segmentation of noisy images, since in noisy images the intensity means of
segments are difficult to estimate precisely. See Table 8

8 Conclusion

In this paper, we presented to use the augmented Lagrangian method to solve TV and vec-
torial TV based image restoration and multi-region segmentation problems on triangular
mesh surfaces, based on defining inner product spaces on mesh surfaces. The provided al-
gorithms work well for both gray and color images. Due to the use of fast solvers for lin-
ear systems and closed form solutions to subproblems, the method is extremely efficient,
as demonstrated by our numerical experiments. One future work is the stability and con-
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Table 7 Experimental information about the examples in Fig. 6. In all these examples, the parameters
(β, rp, rz) = (5.e−5,5.e−8,1). The stopping condition is ε = 1.e−5

Example # SNR(dB) Intensity means of segments CPU(s)

Column 1 Row 1 ∞ (0.6 0.6 0.6); (0.3 0.3 0.3); 7.485

Row 2 16.8889 (0.9 0.9 0.9) 8.953

Column 2 Row 1 ∞ (0.1 0.1 0.1); (0.4 0.4 0.4); 16.562

Row 2 16.1223 (0.7 0.7 0.7); (0.9 0.9 0.9) 19.359

Column 3 Row 1 ∞ (0.565 0.565 0.565); (0.1 0.1 0.1) 3.39

Row 2 –4.40196 3.937

Column 4 Row 1 ∞ (0.9 0.9 0.9); (0.501961 0.25098 0.25098); 3.922

Row 2 4.92012 (1 0 0.501961); (0 0 1) 4.937

Table 8 Experimental information about the examples in Fig. 7. In all these examples, the parameters
(β, rp, rz) = (5.e−5,5.e−8,1). The stopping condition is ε = 1.e−5

Example # SNR(dB) Intensity means of segments CPU(s)

Column 1 16.1223 (0.1 0.1 0.1); (0.4 0.4 0.4); 19.359

(0.7 0.7 0.7); (0.9 0.9 0.9)

Column 2 (0.05 0.05 0.05); (0.42 0.42 0.42); 20

(0.72 0.72 0.72); (0.92 0.92 0.92)

Column 3 4.92012 (0.9 0.9 0.9); (0.501961 0.25098 0.25098); 4.937

(1 0 0.501961); (0 0 1)

Column 4 (0.55 0.3 0.3); 3.812

(1 0 0.6); (0.1 0 1); (1 1 1)

vergence analysis of the proposed algorithms. In addition, comparisons between the aug-
mented Lagrangian method with other optimization techniques such as iterative threshold-
ing, Nesterov-based schemes, and primal-dual methods applied to our problems need to be
investigated. To completely solve the multi-region segmentation problem in the case where
the intensity means of segments are unknown is also worthy of future research. Some spe-
cial techniques may be introduced to ensure global minimization of the non-convex objective
functional.
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