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Abstract—The state-of-the-art interactive image segmentation
algorithms are sensitive to the user inputs and often unable to
produce an accurate boundary with a small amount of user
interaction. They frequently rely on laborious user editing to
refine the segmentation boundary. In this paper, we propose a
robust and accurate interactive method based on the recently
developed continuous-domain convex active contour model. The
proposed method exhibits many desirable properties of an
effective interactive image segmentation algorithm, including
robustness to user inputs and different initializations, the ability
to produce a smooth and accurate boundary contour, and the
ability to handle topology changes. Experimental results on
a benchmark data set show that the proposed tool is highly
effective and outperforms the state-of-the-art interactive image
segmentation algorithms.

Index Terms—Interactive image segmentation, convex active
contour, digital image editing.

I. INTRODUCTION

Interactive image segmentation, which incorporates small
amount of user interaction to define the desired content to
be extracted, has received much attention in the recent years.
Many interactive image segmentation algorithms have been
proposed in the literature. In general, interactive image seg-
mentation algorithms can be classified into two categories:
boundary-based approaches and region-based approaches.

In boundary-based approaches, the user is often asked to
specify an initial area that is close to the desirable boundary.
The active contours/Snake method [1] attempts to evolve an
initial contour toward the object boundary. Methods based
upon intelligent scissors [2], [3] apply Dijkstras shortest path
algorithm to find a path between boundary seed points speci-
fied by the user.

Considering that the boundary-based approaches require
great care to specify the boundary area or the boundary points,
especially for complex shapes, most recent interactive image
segmentation algorithms take the regional information as the
input. In particular, in region-based approaches, the user is
often asked to draw two types of strokes to label some pixels

Manuscript received on Jun. 24, 2011; revised on Oct. 5, 2011 and
Dec. 26, 2011. This research was partially supported by the ARC 9/09
Grant (MOE2008-T2-1-075) of Singapore. This paper was recommended by
Associate Editor Dr. Xilin Chen.

T. Nguyen is with Danang University of Technology, Vietnam, email:
ngt.nhatanh@gmail.com. J. Cai, J. Zhang and J. Zheng are with School of
Computer Engineering, Nanyang Technological University, Singapore, e-mail:
{asjfcai, S070051, asjmzheng} @ntu.edu.sg. Contact author: Jianfei Cai.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions @ieee.org.

as foreground or background, after which the algorithm com-
pletes the labelling of all other pixels. State-of-the-art region-
based interactive segmentation algorithms include Graph Cut
based methods [4], [5], Random Walks based methods [6],
[71, [8], and Geodesic methods [9], [10]. All these methods
basically treat an image as a weighted graph with nodes
corresponding to pixels in the image and edges being placed
between neighboring pixels, and minimize a certain energy
function on this graph to produce a segmentation.

In this paper, we consider the problem of interactive image
segmentation with the input of foreground and background
strokes, which requires only a small amount of interaction
from the user. By carefully examining the state-of-the-art
region-based approaches, we find that their performance is
limited in terms of robustness and accuracy. First, many of
the state-of-the-art region-based methods are overly sensitive
to small variations in the interactions provided by the user
(see Fig. 1). As pointed out in [11], the Graph Cut algorithm
is sensitive to the number of seeds, while the Random Walks
and Geodesic algorithms are sensitive to locations of seeds.
This is mainly due to the different behaviors of the different
energy functions. For example, Graph Cut tries to minimize
the total edge weights along the cut. Thus, it may return very
small segmentations (known as the “small cut” problem) in
the case with small number of seeds provided. Random Walks
based approaches minimize a Dirichlet energy functional with
respect to the boundary conditions (locations of seeds), and
variations in the boundary conditions result in different har-
monic functions.

Second, the boundaries generated by the region-based ap-
proaches, especially those generated by Random Walks and
Geodesics based approaches, are often jaggy and do not
adhere to the geometric features in the image (see Fig. 1). An
additional refinement step is often needed to improve the seg-
mentation performance of the existing region-based methods.
Most of the state-of-the-art interactive image segmentation
methods [5], [6], [9], [8] rely on additional user inputs to either
globally or locally refine the boundary. However, when dealing
with complex images, the user is often required to provide a
lot of additional strokes or boundary points and thus struggles
with laborious refinement/editing. Another way for boundary
refinement is to use the active contours/Snakes model [1] to
refine the initial boundary contour produced by a region-based
segmentation approach as in [12]. However, the refinement
based on Snakes is only able to change the contour locally
for smoothness but incapable of evolving the entire contour
to snap to geometry features/edges and incapable of handling
topology changes of the evolving contour.
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The segmentation results of different algorithms, including Random Walks [6], Geodesic [9] and GrabCut [5], and our proposed method. Note that

GrabCut is an advanced version of Graph Cut. The three state-of-the-art algorithms are overly sensitive to different user inputs while our method is quite
robust. In addition, the existing methods produce jaggy boundary contours while our constrained active contour method is able to smooth out the contours

and make them snap to geometric edges without additional user input.

The above observations motivate us to design a new method
for interactive image segmentation. The mathematical tool
at the heart of the new method is the continuous-domain
convex active contour model [13], which makes use of both
the boundary and the regional information to find a global
“optimal” solution. Continuous-domain convex methods have
started to receive attention since they avoid the inherent grid
bias in all discrete graph-based methods and also have fast and
global numerical solvers through convex optimization [13],
[14]. However, the convex active contour model so far has
mainly been applied for automatic image segmentation, which
often results in over-segmentation with trivial solutions for
complex images [13], [15]. On the other hand, it is not
clear how to apply the convex active contour model [13] for
interactive image segmentation. Directly incorporating user
inputs as hard constraints into the model does not lead to better
performance. The major contributions of this paper include

e We propose to marry the powerful continuous-domain
convex active contour with one of the state-of-the-art
region-based methods, either Geodesic or Random Walks
(Geodesic is chosen due to its fast processing speed),
where the region-based method is used in the first step
to generate an initial contour and the convex active
contour is then applied in the second step to optimize the
contour. Note that here we not only use the region-based
method to generate an initial contour, but also incorporate
the information obtained in the pre-segmentation into
the convex active contour model, which is non-trivial.
Such an integration utilizes the seed propagation and
the location features introduced by Geodesic / Random
Walks to reduce the possible “small cut” problem in
the convex active contour, and also the powerful contour
evolving capability provided by the convex active contour
model to absorb the non-robustness of the region-based
approaches. It ensures that the contour evolving does not
drift too far away from the initial contour, complies with
the user input, reflects the user intention and snaps the
contour to geometry features.

o In addition, considering that the convergence speed for
solving the convex active contour model is generally slow,

we make use of the Split Bregman method, as in [16],
to solve the proposed constrained convex active contour
model rapidly.
Experimental results show that the proposed method is fast,
robust to different user inputs and different initializations, and
capable of producing good results reflecting user intention and
geometric features.

The rest of the paper is organized as follows. Section II
reviews the general convex active contour model designed
for automatic image segmentation and the use of the Split
Bregman method to solve the model. Section III presents our
proposed constrained active contour model, which incorporates
the user input and the initial segmentation result into the
convex active contour model. Section IV shows the experi-
mental results to demonstrate the effectiveness of our proposed
method. Finally, Section V concludes the paper.

II. RELATED WORK

As previously noted, the classical active contour model [1]
is primarily used to perform local contour adjustment to
improve the smoothness. The geodesic active contour model
proposed in [17] is capable of evolving the entire boundary
contour to snap to geometry edges, but it heavily depends
on the edge detection function. The active contour without
edges model [18] adds in regional information and removes
the dependency on edge detection, but it is often trapped in
local minimum due to non-convex modelling. In this section,
we briefly review the convex active contour model recently
introduced in [13], which is able to find the global minimum
solution, and its application on automatic image segmentation.
Furthermore, we also summarize the use of the Split Bregman
method for solving the convex active contour model rapidly,
which has been discussed in [16].

A. Convex Active Contour Model

The convex active contour model introduced in [13] can
be generally expressed as

min (/ gv|Vul da:—l—)\/ hyu dz), (1)
Q Q
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with the following symbol definitions:

e u is a function on image domain 2, which receives a
value between O and 1 at each pixel location z in the
image. The segmented region is obtained by thresholding
the function u.

o Function g; is a boundary function, which is often an
edge detection function such as

1
1+ |VI(2)]2

where I(z) is the intensity of image pixel x.

o Function h, is a region function that measures the inside
and outside regions. Particularly, h, = h‘" — ho"!, where
hi® and h2“t are the inside and outside region functions,
respectively. They are often defined as
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where (1, and pi,,; are the mean intensities for inside

and outside regions, C;,, and C,,;, respectively.
Basically, Eq. (1) consists of two terms balanced by a tradeoff
factor A\, where the first term is a boundary term and the second
term is a region term.The boundary term favors segmentations
with boundaries along areas where the gradient is small, and
also favors segmentations which have a smooth boundary. The
second term ensures the segmentation complying with some
region coherence criteria defined in function h,..

Once the optimization problem of (1) is solved, the seg-

mented region is found by thresholding the function w, i.e.

Cin = {z|u(z) > T}, 3

where typically 7" = 0.5.

The automatic segmentation problem based on the convex
active contour model of (1) is usually solved by an alternate
iterative approach depicted as follows.

1) Fix the segmentation, i.e. C;,, and C,,;, and update h,..

2) Fix h, to find the solution u for (1).

3) Update C,, and Cy,; according to (3)

The above three steps are repeated until convergence (i.e.
when C;, and C,,; no longer change). It can be seen that
the computation bottleneck of this iterative approach lies in
step 2, i.e. solving the optimization problem of (1).

B. Split Bregman Solver

Several methods have been proposed to solve (1) for a given
h,.. Chan et al. [15] proposed to either enforce the inequality
constraint of (0 < w < 1) using an exact penalty function,
which is non-differentiable, or regularize the penalty function,
which does not exactly enforce the inequality constraint.
Bresson et al. [13] used a splitting/regularization approach
to minimize (1). Their method ‘“smears” the values of wu
near the object boundaries, and thus makes the segmentation
results more dependent on the cutoff parameter 7', which could
eliminate the segmentation details.

Recently, Goldstein et al. [16] proposed to use the Split
Bregman method to solve (1). The Split Bregman method is
not only able to solve the convex active contour model but
also a much more efficient solver. In the following, we briefly
summarize the use of this Split Bregman solver as introduced
in [16].

In particular, instead of solving (1) directly, Bregman intro-
duced a new vectorial function d into the model as

[ oo+ A d, )
Q
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with the constraint of d = Vu. This constraint is enforced
using the efficient Bregman iteration approach defined as
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where k is the iteration index, k > 0. The computations of (5)
and (6) are repeated until convergence.

Since (5) is differentiable, it can be solved using a simple
alternating method. Specifically, the function is first differen-
tiated with respect to u using the Euler-Lagrange Differential
Equation, which results in the following optimality condition
for u:

pAu = Mh, + pdiv(d® —b¥), u € [0,1]. (7)

where Au is the Laplacian of u and div(d* — b*) is the diver-
gence of (d* —b*). Based on (7), u**! can be approximately
obtained by a Gauss-Seidel iterative method [16]. After that,
(5) is solved with respect to d. It has been shown in [19] that
the minimizing solution d**! is given by soft-thresholding:
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III. OUR METHOD

In this section, we describe the proposed constrained active
contour method, which extends the convex active contour
model of (1) (originally designed for automatic image seg-
mentation) for interactive image segmentation.

A. Contour Initialization

For any active contour method, the contour needs to be
initialized before the contour evolution process. Here, we use
the segmentation result of the Geodesic method [9] for contour
initialization due to its fast processing speed and the ability to
avoid the “small-cut” problem.

In particular, we represent the result of the Geodesic algo-
rithm by a probability map P(x), whose value is within the
range of [0,1] indicating the probability that pixel = belongs
to the foreground region. In the Geodesic algorithm, for a
pixel z, its geodesic distances to the foreground or background
seed regions are computed, which are denoted as Dp(x) and
Dp(x) respectively. Then, an estimate of the probability that
the pixel = belongs to the foreground is calculated as

_ Dp(x)
Plz) = Dr(z) + Dp(z)’



Once the probability map is available, we initialize the contour
evolution by assigning P(x) to the function u(x) in (1).

It is worth mentioning that other region-based image seg-
mentation algorithms such as Random Walks [6] can also be
used for contour initialization. For example, the segmentation
result of the Random Walk algorithm can be directly used as
the probability map P(x). The second column of Fig. 3 shows
the probability maps of Geodesic and Random Walks.

B. Constrained Active Contour Model

As shown in (1), the convex active contour model consists
of two terms: a regional term and a boundary term. Next,
we discuss how to modify these two terms to incorporate the
information from the user input and the initial segmentation
result so as to ensure the refined contour complying with the
user input.

1) Regional term formulation: The foreground and back-
ground seeds give an excellent description about the color
distributions of the foreground and background regions.
Foreground/background GMMs introduced in [20] are esti-
mated from foreground/background seeds and used to rep-
resent the color distributions of the foreground and back-
ground regions. Specifically, let Pr(z|F) and Pr(z|B)
denote the probabilities that pixel z fits the foreground
and background GMMs, respectively. The normalized log
likelihood that = belongs to foreground and background

— log Pr(z|F) -
are Prp(z) “Toa Pl -l Prarm) 04 P(z) =
—log Pr(z|B)

~Tog Pr(a| F)—log Pr(z|B)" We incorporate this regiongl infor-
mation derived from foreground/background strokes into the
regional term of the convex active contour model as

h.(xz) = Pg(x) — Pr(x) 9)

This definition of A, ensures that the active contour evolves
towards the one complying with the known GMM models.
For instance, for a pixel z, if Pg(z) > Pr(x) (resp. Pp(x) <
Pr(x)) and Pg(z) — Pp(x) is positive (resp. negative), u(x)
tends to decrease (resp. increase) during the contour evolution
in order to minimize (1), which can lead to u(xz) < T (resp.
u(x) > T) and the classification of the pixel belonging to the
background (resp. the foreground).

The h, definition of (9) fails in the case that the foreground
and background color models are not well separated. Thus, to
avoid this problem and also to make use of the segmentation
result obtained by the Geodesic algorithm in step 1, we further
propose to incorporate the probability map P(z) into the
region term h, as

hy(z) = a(Pp(x) — Pp(z)) +

where «, a € [0,1], is a tradeoff factor. The second term
(1—2P(x)) in (10) prevents the refined contour drifting too far
apart from the initial segmentation. Specifically, when P(z) >
0.5 and (1 — 2P(x)) is negative, u(x) tends to increase in
order to minimize (1), which favors classifying the pixel as a
foreground pixel, and vice versa.

It is important to properly set the tradeoff factor o in (10).
When the foreground and background colors are well separa-
ble, it is desired that the first term in (10) becomes dominating;

(1-a)(1-2P@) (10)

otherwise, the second term in (10) should dominate. Thus,
similar to the one suggested in [8], we set « to be the distance
between the foreground and the background GMMSs, which is
defined as

log Pr(xz;|F) — log Pr(z;|B

< log Pr(xi|F) + log Pr(z;|B)

where n is the total number of pixels in the image.

In addition, it can be observed that when h,.(z) — 400
(resp. hy(x) — —o0), the regional term forces u(x) = 0
(resp. u(z) = 1) to minimize Eq. (1). This observation
allows us to enforce some hard constraints in the contour
evolution process. In particular, for those pixels that have
no ambiguity in classification, including the pixels lying on
the foreground/background strokes and the pixels having very
large or very small P(z) values (P(z) > 0.9 or P(z) < 0.1),
we treat them as hard constraints in the contour evolution
process. We directly assign a negative h, value and a positive
h, value, both with extremely large magnitude, to these
confirmed foreground and background pixels, respectively. In
this way, we guarantee that the refined result complies with the
user input and also exploit more information from the initial
segmentation result.

Note that unlike the h, definition in section II-A, our
proposed h, model is fixed given the user input and the
initial segmentation. Thus, there is no need for the three-step
alternate iteration described in section II-A. Instead, only step
2 is needed, which can be solved by the Split Bregman method
discussed in section II-B.

2) Boundary term formulation: The boundary term of
fQ gu(2)|Vu| dx in (1) is essentially a weighed total variation
of function u, where the weight g, plays an important role.
The definition of g, in (2) is effective in the sense that
it encourages the segmentation along the curves where the
edge detection function is minimal. The problem with (2)
is that at locations with weak edges the boundary is likely
to be smoothed out. Thus, in this paper, we propose to
incorporate the GMM probability map Pr(x) to enhance the
edge detection. Particularly, we define g; as

G =089+ (1—5)"ge

where g. and g. are the results of applying the edge detection
to the GMM probability map Pr(z) and the original image,
respectively, and 3, 8 € [0, 1], is a tradeoff factor computed in
a similar way as « given in (11). Note that the edge detection
function returns values between 0 to 1 and a small value of
gp corresponds to a likely edge.

Fig. 2 compares the results with and without incorporating
the edge detection of the GMM probability map. It can be seen
that incorporating g. enhances the conventional edge detection
result g., especially at the weak edges, which leads to a more
accurate boundary contour.

12)

1V. EXPERIMENTAL RESULTS
A. Parameter Setting

Our proposed method has a few parameters, including
{\T, p,, B}. The settings of « in (10) and 53 in (12) have
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been discussed in Sections III-B1 and III-B2, respectively. The
parameter \ in (1) allows the user to control the scale and the
smoothness of the segmentation. A smaller value of A\ results
in a smoother contour. We empirically set A to be 100 in our
experiments. The parameter 7' in (3) is set to 0.5, although
the results are quite robust to different values of 7T'. This is
because the converged u values are typically close to either
0 or 1. The parameter p in (5) is set to 10000 empirically.
Note that all the parameters are set in the same way for all
the experiments.

B. Test on The Benchmark Data Set

The commonly used MSRC ground truth data set [5] is
chosen for testing and comparison. The MSRC data set con-
tains 50 test images, each of which are provided with trimaps
and ground truth. Table I summarizes the achieved error rates
(percentage of mislabelled pixels) by different state-of-the-art
interactive image segmentation algorithms and our proposed
method. We also test several variants of our method, where
we replace the Geodesic method by the Random Walks or the
Yang’s method [8]. For fair comparison, we use exactly the
same trimaps provided by the MSRC data set as the user inputs
for all the algorithms. The error rates for other state-of-the-
art algorithms are either directly quoted from the best results
reported in literature or obtained through our implementation.
Note that the MSRC data set is somewhat biased because
the provided trimaps only contain small unknown regions, for
which Geodesic and Random Walks perform well. We still
choose it since it is the only publicly available data set with
trimaps provided.

From Table I, it can be seen that our proposed method
achieves very low error rate, outperforming the state-of-
the-art interactive image segmentation algorithms, including
Geodesic [9], Random Walks [6], GrabCut [S] and Yang’s
approach [8]. In addition, the table suggests that our method
is insensitive to the initial contour since the initializations
using different methods lead to almost the same error rate
(also illustrated in Fig. 3).
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Comparisons of the results using the two different g, definitions in (2) and (12), respectively. Note that some boundary problems due to using (2)

TABLE 1
ERROR RATE COMPARISON USING THE MSRC DATASET WITH EXACTLY
THE PROVIDED TRIMAPS.

Method

GMMREF [21]

Geodesic [9]

Random Walks [6]

Segmentation by transduction [22]
GrabCut [5]

Yang et al. [8]

Error rate (%)

7.9 (reported in [21])
5.21 (our implementation)
5.4 (reported in [22])

5.4 (reported in [22])
5.66 (reported in [8])
4.08 (reported in [8])

Our method 3.768
Our method with Random Walks 3.77
Our method with Yang et al. 3.765

Random Walks with AT [22]
Segmentation by transduction with AT [22]

3.3 (reported in [22])
3.3 (reported in [22])

We would like to point out that a lower error rate of
3.3% on MSRC data set has been reported in [22], where
a segmentation by transduction (SBT) method was proposed.
In fact, the SBT itself produces a high error rate of 5.4%,
the same as Random Walks, for the MSRC dataset. When
testing the MSRC dataset with the provided trimaps, the
authors of [22] further proposed a simple adaptive threshold
method (AT) as a post-processing step for Random Walks or
SBT, which subsequently reduces the error rates of Random
Walks and SBT from 5.4% to 3.3%, for the given trimaps.
As explained in [22] itself, this large reduction in the error
rate is due to the particular form of the seeds in this data
set. As the unlabelled points only cover a small band along
the object boundary, any naive segmentation approach such
as AT that tracks the skeleton of the unlabelled points might
perform quite well on this data set. There, the AT method is
very specific to the MSRC data set or a boundary brush tool
where the unseeded region only covers a small band along the
object boundary. It does not work well for images with large
and unregulated unknown regions, as shown in Fig 4.

In contrast, our approach is general and works well on
images with large unknown regions. This is evident by all
the figures shown in this paper, where the strokes are sparsely
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second row: our method initialized by Random Walks.
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The segmentation results of our methods initialized by either Geodesic [9] or Random Walks [6]. First row: our method (initialized by Geodesic);

(c) Result by RW with AT

(f) Result by RW with AT

(g) Our result

Fig. 4. Comparison between our method and Random Walks (RW) with the adaptive thresholding (AT) method [22]. The RW with AT method works well

with the provided trimap but fails with the input of sparse strokes.

drawn, leaving large unknown areas in the images. The good
visual results (see Section IV-C) indicate that the performance
of our method does not rely on a carefully designed trimap,
as in the MSRC data set. Moreover, our segmentation tool
implemented in C++ using the Geodesic method [9] for pre-
segmentation runs very fast, taking less than three seconds in
total to segment an image with a resolution of 640 x 480 on a
PC with Intel 2.67 GHz CPU and 2 GB RAM, where the speed
of convergence of our constrained active contour optimization
costs less than half a second.

C. More Visual Results

Fig. 5 shows the segmentation results of different algorithms
for three different images. It can be seen that in these cases
with large unknown regions, Geodesic and Random Walks
perform poorly, producing inaccurate and jaggy boundary
contours. Although the performance of GrabCut is much
better, its results still contain some clearly visible artifacts, e.g.

around the neck of the man, the right elbow of the boy, and
the bottom of the boat. On the contrary, our method produces
accurate and smooth contours that snap to geometry edges.

As we previously mentioned, the Random Walks and
Geodesic algorithms are sensitive to the seed locations. Fig. 6
compares the segmentation results with different user inputs.
It can be seen that, for Random Walks and Geodesic, different
users inputs result in different segmentations. In contrast, our
constrained active contour is able to fix the problem and
generate stable results insensitive to the user input, as shown
in Fig. 6.

Although the GrabCut algorithm is insensitive to the seed lo-
cations, it is sensitive to the number of seeds and has the “small
cut” problem (see Fig. 1). Fig. 7 gives another example, where
we want to cut out the fireman on the left. GrabCut tends to
include the other fireman into the foreground region due to
similar appearance. Even when more background strokes are
drawn over the fireman on the right (Fig. 7(c)), Grabcut still
chooses the minimum cut around the added strokes (Fig. 7(d)).
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Fig. 5. The segmentation results of different algorithms, including Random Walks [6], Geodesic [9] and GrabCut [5], and our proposed method, for three
different images.

(a) Input (b) Random Walks (c) Geodesic (d) Our method

Fig. 6. The segmentation results with different user inputs.



Grabcut eventually produces the expected result after a large
number of strokes. On the contrary, our method can produce
the good segmentation result with only two input strokes.
This is mainly because in our method the combination with
the Geodesic / Random Walks helps propagate the seeds and
introduces the spatial or location information into the active
contour model, which significantly mitigates the small cut
problem. Moveover, GrabCut heavily relies on the global color
model, which often results in disjointed parts or noisy parts in
the cases that the foreground and the background have similar
color (see Figures 1, 5 and 7).

One important property of our constrained active contour
model is the ability to handle topology changes of the bound-
ary contour, which can not be achieved using the classical
Snakes model. As shown in Fig. 8, while the Random Walks
method produces two initial boundary contours that separate
the object into two halves, our constrained active contour can
evolve the boundary contours to one outer contour around
the object and one inner contour at the object’s left hand.
Similarly, the geodesic method produces only one initial closed
boundary contour while our method further produces the
additional inner contour.

D. Limitations

The proposed method is essentially a hard segmentation
method. It cannot handle transparent or semi-transparent
boundaries such as semi-lucent hair. Another inherent limita-
tion of the proposed method lies in its underlying assumption
that the shape of the object is smooth and can be well described
by the weighed shortest boundary length. It cannot handle very
sophisticated shapes such as bush branches or hair. Fig. 9 gives
two failure examples, where our method is unable to cut the
deer antlers and the tree branches in a clean way.

V. CONCLUSIONS

In this paper, we have proposed a robust and accurate inter-
active image segmentation method based on the continuous-
domain convex active contour model. We have demonstrated
that our method outperforms the state-of-the-art interactive
segmentation methods. It exhibits many desirable properties
for a good segmentation tool, including the robustness to user
inputs and different initializations, the ability to produce a
smooth and accurate boundary contour, and the ability to
handle topology changes. Our method runs very fast due to
the fact that the proposed constrained active contour model
can be solved quickly by a fast Split Bregman Method and
the adoption of the Geodesic algorithm for initialization. We
would like to point out that although the proposed constrained
active contour model is able to automatically optimize an
initial contour, it can also take additional user inputs for further
user-guided contour evolving. This is especially necessary in
either the case that the initial contour is very poor or the case
that a highly accurate result is sought.

This work can be extended in a few ways. For example,
it might be beneficial to apply the continuous-domain convex
active contour model for other segmentation problems such as
image matting or video segmentation. Also, it is interesting

to adopt some advanced evaluation method such as the user
simulation based approach proposed in [23] to fully evaluate
the performance of different interactive image segmentation
methods.
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(a) GrabCut inputl (b) GrabCut outputl (c) GrabCut input2 (d) GrabCut output2

(e) GrabCut input3 (f) GrabCut output3 (g) GrabCut input4 (h) GrabCut output4

(i) Our input (j) Our output

Fig. 7. Comparision bewteen GrabCut and our method. It can be seen that Grabcut [5] suffers the “small cut” problem while our method can quickly produce
a good segmentation result.

(a) Input (b) Random Walks (¢c) Our method with Ran- (d) Geodesic (e) Our method
dom Walks

Fig. 8. An example to show the ability of our method on handling topology changes.

Fig. 9. Failure examples, where our method is unable to well handle very sophisticated shapes.



Thi Nhat Anh Nguyen received the B.Eng. degree
in 2007, and is expected to receive the M.Eng degree
in 2012, both from School of Computer Engineering,
Nanyang Technological University, Singapore. She
is currently a lecturer at the Information Technology
Faculty, Danang University of Technology, Vietnam.

Jianfei Cai (S’98-M’02-SM’07) received his PhD
degree from the University of Missouri-Columbia.
Currently, he is an Associate Professor and also the
Head of Visual & Interactive Computing Division
at the School of Computer Engineering, Nanyang
Technological University, Singapore. His major re-
search interests include visual signal processing and
multimedia networking. He has published more than
100 technical papers in international conferences
and journals. He has been actively participating
in program committees of various conferences. He
serves as the leading Technical Program Co-Chair for IEEE International
Conference on Multimedia & Expo (ICME) 2012 and the leading General
Co-Chair for Pacific-rim Conference on Multimedia (PCM) 2012. He was an
invited speaker for the first IEEE Signal Processing Society Summer School
on 3D and high definition / high contrast video process systems in 2011. He
is also an Associate Editor for IEEE Transactions on Circuits and Systems
for Video Technology (T-CSVT), and a senior member of IEEE.

10

Juyong Zhang received the B.S. degree in computer
science and engineering from the University of Sci-
ence and Technology of China, and the Ph.D. de-
gree in computer engineering from NTU (Nanyang
Technological University), Singapore, in 2011. From
June 2010 to July 2010, he was a visiting student in
Massachusetts Institute of Technology. From 2011,
he worked as an exchanging Ph.D student and then
a Postdoctoral Research Fellow in computer science
of EPFL (Swiss Federal Institute of Technology
in Lausanne), Lausanne, Switzerland. His research

interests include computer graphics, geometry processing, image processing,
architecture geometry, as well as numerical PDE.

Computer.

Jianmin Zheng received the BS and PhD degrees
from Zhejiang University, China. He is an associate
professor in the School of Computer Engineering
at Nanyang Technological University. His research
interest includes computer aided geometric design,
computer graphics, CAD, animation, visualization
and interactive digital media. He has published
more than 100 technical papers in international con-
ferences and journals. He was a technical papers
committee member for the inaugural SIGGRAPH
Asia 2008. He is an associate editor of The Visual



