
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 1

Interactive Mesh Cutting Using Constrained
Random Walks

Juyong Zhang, Jianmin Zheng, and Jianfei Cai, Senior Member, IEEE

Abstract—This paper considers the problem of interactively finding the cutting contour to extract components from an existing mesh.

First, we propose a constrained random walks algorithm that can add constraints to the random walks procedure and thus allows for

a variety of intuitive user inputs. Second, we design an optimization process that uses the shortest graph path to derive a nice cut

contour. Then a new mesh cutting algorithm is developed based on the constrained random walks plus the optimization process. Within

the same computational framework, the new algorithm provides a novel user interface for interactive mesh cutting that supports three

typical user inputs and also their combinations: 1) foreground/background seed inputs: the user draws strokes specifying seeds for

“foreground” (i.e., the part to be cut out) and “background” (i.e., the rest); 2) soft constraint inputs: the user draws strokes on the mesh

indicating the region which the cuts should be made nearby; and 3) hard constraint inputs: the marks which the cutting contour must

pass. The algorithm uses feature sensitive metrics that are based on surface geometric properties and cognitive theory. The integration

of the constrained random walks algorithm, the optimization process, the feature sensitive metrics and the varieties of user inputs

makes the algorithm intuitive, flexible, and effective as well. The experimental examples show that the proposed cutting method is fast,

reliable, and capable of producing good results reflecting user intention and geometric attributes.

Index Terms—Computational geometry and object modeling, interaction techniques, geometric algorithms.

F

1 INTRODUCTION

M ESH cutting refers to the process of extracting sub-
parts or components from an existing mesh. It

is also known variously as mesh segmentation, mesh
partitioning, and mesh scissoring. The cutting operation
is of great practical importance in mesh editing [1], [2]. It
has been proved useful in many mesh related processing
and applications, examples of which include modeling
by examples, 3D morphing, parameterization, texture
mapping, and shape analysis and understanding.

This paper considers the problem of how to inter-
actively cut out a meaningful sub-mesh from its un-
derlying mesh, which is consistent with user intention,
geometric mesh attributes and human shape perception.
Human perception and the concept of “meaningful” are
content dependent. It is difficult to compute a mean-
ingful partition automatically. Segmentation involving a
little user interaction indicating user’s interested part is
therefore increasingly of interest. Our goal is to develop
intuitive and intelligent mesh cutout algorithms or tools
that allow users to interactively specify the cutting con-
tour reflecting user intention, geometric features and hu-
man perception via flexible and less tedious interactions,
and provide instant visual feedback.

1.1 Related work

A lot of research has been done on mesh segmentation
in literature. To partition a mesh into meaningful parts,
many methods iteratively cluster similar mesh elements
or components and then refine the border between the

parts to find the segmentation. Examples are k−means
clustering [3], fuzzy clustering [4], and spectral cluster-
ing [5], [6]. Other methods are also proposed, including
watershed segmentation [7], edge contraction and space
sweeping based decomposition [8], spectral embedding
and contour analysis based recursive bisection [6], and
hierarchical pose-invariant mesh segmentation [9]. Be-
sides static models, there are also some studies inves-
tigating how to segment animating meshes [10]–[12].
Comprehensive references and comparison can be found
in the excellent survey papers [1] and [13]. A benchmark
for evaluation of 3D mesh segmentation algorithms is
provided in [14].

Recently, interactive mesh segmentation, which allows
the user to affect or instruct the segmentation, has be-
come popular in computer graphics. The approaches for
interactive segmentation of 3D meshes can roughly be
classified into three categories:

1) The user is asked to specify a few points on the
desired cutting contour and the cut is then accomplished
by finding the shortest paths between them [15]–[17].
The methods of this category target the cutting contours
and are able to support cuts of arbitrary shape, but they
require great care when specifying the points and the
points are usually specified in order.

2) The user is asked to provide an initial area that
is “close” to the desired cutting contour or that the cut
should be made within. The geometric snake (or active
contour) and mesh scissoring algorithms [2], [18], [19]
evolve the initial area to or find the desired cutting
contour which is “close” to the initial area. The minimum
ratio cycle (MRC) algorithm discretely finds the optimal
contour within a prescribed search domain, which has

0000–0000/00/$00.00 c© 2007 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 2

the minimal ratio between a contour energy and the
length of the contour [20]. The intelligent scissoring
[21] applies a variant of Dijkstra’s algorithm to find the
cutting contour that goes within the initial area. [22]
applies the Graph Cut algorithm to find the cutting
contour. All these methods allow the user to specify the
initial area less precisely. However, as pointed out in [2],
[23], the generated contour may not respect the user’s
intention if the stroke is too short or the back of mesh
is too complex. The methods may converge to a local
minimum and are hard to control. Graph Cut has the
“small cut” behavior. That is, it may return very small
segmentations as a result of a small number of seeds.

3) The user is asked to provide an initial labeling of
some vertices as belonging to the desired part to be
segmented (foreground) or to the rest (background), and
then the algorithm completes the labeling for all un-
labeled vertices. The easy mesh cutting [24] belongs to
this category and it starts with different seed vertices
and grows several sub-meshes according to an improved
isophotic metric incrementally. The “WYSIWYG” mesh
decomposition [25] requires the user to specify the fea-
ture points and then assigns each face of the mesh to
a certain partition based on the distance to that feature
point. Similar approaches are also widely used for image
segmentation. For example, with a set of given user-
defined seeds, for an unseeded pixel, the random walks
algorithm [26] determines the probability that a random
walk starting at that pixel first reaches each particular
seed and then segmentation is formed by assigning the
label for which the greatest probability is calculated.
The algorithm has been proved very efficient. Since the
random walks algorithm is formulated on a graph, it
is possible to extend the application of the algorithm
to surface meshes [27]. The approaches of this category
have the advantage that the user specification is less
tedious, but they usually have difficulty in producing
accurate results.

No matter whether a segmentation algorithm is au-
tomatic or interactive, the problem of how to produce
a natural and semantic partition reflecting the human
shape perception is of great interest. Theories of the
cognitive studies have been used in segmentation algo-
rithms. For example, the minima rule states that human
perception tends to divide a surface into parts along
minimum negative curvatures [28] and it has been used
in the mesh scissoring [2], [19] and the easy mesh
cutting [24]. The part salience theory determines the
salience of a part based on its relative size, protrusive-
ness and cut strength [29], [30], and it has been used
to reject counter-intuitive segmentation [2] or to guide
a cut [6]. Recently, shape analysis based on randomized
cuts of meshes is proposed [31], in which a random set
of mesh segmentations is generated and the results are
used to provide a continuous measure of where natural
cuts occur in a mesh.

1.2 Our approach

Our work was initially inspired by the easy mesh cut-
ting [24] and the random walks algorithm for image
segmentation [26]. When our work completed, we also
noticed that the random walks algorithm had been ex-
tended for both interactive and automatic mesh segmen-
tation [27]. We appreciated the ease of user’s specifica-
tion for foreground and background in these methods
and the speed of the random walks algorithm. However,
it is observed that both the easy mesh cutting and the
random walks sometimes have difficulty in achieving the
user desired cutting, especially when there is no clearly
defined boundary in geometry. Even when the desired
boundary contains some features, if high accuracy is
required, it is also difficult for them to produce a cutting
that consistently matches the features. Adding more fore-
ground/background seeds helps to make the foreground
and background classification become more accurate, but
the process is not so effective. Referring to Figure 1, We
try to cut out the bottom circle of the teapot model.
Figure 1(a) shows the cutting result by the random
walks algorithm [27] with the foreground seeds shown
in red and the background seeds shown in blue. We
refine the results by gradually adding more foreground
and background seeds as shown in Figure 1(b)-(e). This
process is a little tedious and the results are still not quite
satisfactory. Instead, if we use the method proposed in
this paper, we add two strokes (soft constraints) dis-
played in semi-transparency (see Figure 1(f)) to indicate
the region which the cut should be nearby in addition
to the initial foreground/background inputs and then
the desired result can be quickly found. Figure 2 is
another example of using the random walks algorithm.
Figure 2(a) and (b) show that the accuracy is difficult
to ensure by just specifying foreground and background
strokes. However, with a few extra point specifications
served as the hard constraints, a neat cutting can be
generated, which consistently matches the feature of the
desired cutting boundary, as shown in Figure 2(c) and
(d). Therefore there is a need for an algorithm to combine
user’s specification of different levels of ease to provide
a simple affordance for fast and accurate cutting.

In this paper, we propose a novel user interface
for interactive mesh cutting, which supports the fore-
ground/background seed input, with which the user
sketches two strokes to specify which part is foreground
and which part is background; the soft constraint in-
put, with which the user draws strokes to show region
where the cuts should be made nearby; and the hard
constraint input, with which the user places marks to
show a set of vertices through which the cuts must go.
This is a coarse-to-fine design. In terms of ease of use,
the foreground/background seed input needs the least
attention, the soft constraint needs only a loose input,
and the hard constraint demands a careful input but
it assures accuracy. To our knowledge, there is no such
user interface for mesh segmentation before. These three

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 3

(a) foreground/background
strokes

(b) adding another foreground
stroke to (a)

(c) adding another foreground
stroke to (b)

(d) adding 2 more background
strokes to (c)

(e) adding 2 more foreground
strokes to (d)

(f) foreground/background +
soft constraints

Fig. 1. Incremental foreground/background specifications

(a-e) vs foreground/background + soft constraints (f).

(a) foreground/background (b) close-up view of the
right part of (a)

(c) foreground/background +
hard constraints

(d) close-up view of the
right part of (c)

Fig. 2. Specifying a few points (hard constraints) on the

desired cutting contour helps the random walks find more
accurate results.

types of user inputs are accomplished by the same com-
putational framework, which includes the constrained
random walks algorithm that introduces constraints into
the random walks problem and computes the proba-
bility for vertices to hint cutting contour information,
an optimization process for finding the desired cutting
contour, some feature sensitive metrics reflecting the
minima rule, and a watershed based preprocessing to
speed up computation. The varieties of user inputs make
our framework easier and more flexible than the existing
interactive mesh segmentation algorithms such as easy
mesh cutting, intelligent scissors, mesh scissoring and
random walks [2], [21], [24], [27]. Meanwhile, the effi-
cient integration and optimization makes our algorithm
fast, reliable and effective.

The main contributions of the paper therefore include:
(1) the handling of interactive mesh cutting; (2) the
constrained random walks algorithm that adds extra
constraints to the conventional random walks and thus
allows for useful and intuitive user inputs; and (3) the
optimization procedure that uses the shortest graph path
to find a nice cutting contour.

1.3 Overview

We first propose a constrained random walk algorithm
for computing probability for each vertex of a triangular
mesh in Section 2. Then, an optimization process that
finds the cutting contour is presented in Section 3. The
workflow of our interactive cutout tool is described
in Section 4. Section 5 presents experimental results
demonstrating the algorithm and Section 6 concludes the
paper.

2 CONSTRAINED RANDOM WALKS FOR TRIAN-
GULAR MESHES

Consider a triangular mesh defined by a tuple {V, E, T }
of vertices V = {vi | vi ∈ R3, i = 1, ..., m}, edges
E = {eij = (vi, vj) | vi, vj ∈ V, i 6= j}, and faces T =
{fijk = (vi, vj , vk) | vi, vj , vk ∈ V, i 6= j, i 6= k, j 6= k}. All
the edges are undirected and each edge eij is assigned a
value called weight wij standing for the likelihood that a
random walker will move along the edge. Then for each
vertex vi, a scalar value di =

∑

eij∈E

wij can be computed.

The vertex set consisting of all the vertices lying within
the k−ring neighborhood of vi is denoted by Nk(vi).
Assume that we are given a set of vertices F ⊂ V labeled
foreground; a set of vertices B ⊂ V labeled background,
and F

⋂

B = ∅. Denote by P (vi) the probability of a
random walker starting from vertex vi arriving at F first,
before reaching B. Then for any v ∈ F , P (v) = 1 and for
any v ∈ B, P (v) = 0. For any of the remaining vertices
vi ∈ V \ (F ∪ B), we have

P (vi) =
1

di

∑

eij∈E

wijP (vj). (1)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 4

This leads to a system of linear equations with P (vi), vi ∈
V \ (F ∪ B) as unknowns. Solving the equations gives
the probability of vertex vi first arriving at F . Based on
the computed probability values, classifications can be
performed. In particular, for binary segmentation, the
vertices with probability value greater than or equal
to 1

2
are classified as the foreground and the vertices

with probability value smaller than 1

2
are classified as

the background. This approach is known as the random
walks algorithm.

We now impose two types of constraints on some of
the vertices except for the foreground and background
vertices. The first type is called the soft constraint. A
vertex on which the soft constraint is imposed has the
property that the difference between its probability and
1/2 is within a small prescribed range [−ǫ, ǫ]. Let S
denote the set of all such vertices. The second type is
called the hard constraint. A vertex on which the hard
constraint is imposed has a probability of 1/2 and let H
denote the set of all vertices with the hard constraint.
Then we consider the problem of finding the solution to
the equations defined by (1) for vi ∈ V \ (F ∪ B ∪ H)
subject to the constraints that P (v) = 1 for v ∈ F ,
P (v) = 0 for v ∈ B, P (v) = 1/2 for v ∈ H , and
|P (v) − 1/2| ≤ ǫ for v ∈ S.

It can be proven that the above problem is equivalent
to the following minimization problem:

min
∑

eij∈E

wij(P (vi) − P (vj))
2

s.t. P (v) = 1 for v ∈ F
P (v) = 0 for v ∈ B
P (v) = 1/2 for v ∈ H
|P (v) − 1/2| ≤ ǫ for v ∈ S

(2)

This is a typical quadratic programming problem. Solv-
ing a quadratic programming problem is usually time
consuming. More seriously, if the soft constraints are
ill-imposed, this quadratic programming problem may
have no solution. Therefore, instead of searching for so-
phisticated quadratic programming solvers, we modify
the problem slightly and seek a solution to the following
problem, which we call the constrained random walks
problem:

min
∑

eij∈E

wij(P (vi) − P (vj))
2 +

∑

vi∈S

λi(P (vi) −
1

2
)2

s.t. P (v) = 1 for v ∈ F
P (v) = 0 for v ∈ B
P (v) = 1/2 for v ∈ H

(3)
where λi is a tradeoff factor controlling the importance
of the difference between P (vi) and 1/2. The larger λi

is, the more closely P (vi) tends to 1/2.

Differentiating the objective function of (3) with re-
spect to each P (vi) for vi ∈ V \ (F ∪ B ∪ H) and setting

it equal to zero, we arrive at

P (vi) =

1

di+λi

∑

eij∈E

wijP (vj) + λi

di+λi

1

2
, for vi ∈ S

1

di

∑

eij∈E

wijP (vj), for vi ∈ V \ (F ∪ B ∪ H ∪ S).

(4)
This expression has a geometric interpretation (see Fig-
ure 3): each vertex with the soft constraint is considered
to be connected by a virtual edge with weight λi to a
virtual neighbor vertex whose probability is 1/2.

v

v
1

λ
i

v
i

w
i1

w
in

v
n

w
i2

v
2

Fig. 3. A vertex vi with the soft constraint can be con-

sidered to have a virtual neighboring vertex v with the
probability of 1/2 connected by a virtual edge of weight

λi.

Equation (4) also gives an estimation of |P (vi)−
1

2
| for

vi ∈ S as follows:

|P (vi) −
1

2
| = 1

di+λi

∣

∣

∣

∣

∣

∑

eij∈E

wijP (vj) − di
1

2

∣

∣

∣

∣

∣

≤ 1

di+λi

∑

eij∈E

wij

∣

∣P (vj) −
1

2

∣

∣ ≤ 1

2

di

di+λi

Therefore, given a small positive number ǫ (< 1

2
), if

we let λi ≥
(

1

2ǫ
− 1

)

di, we have 1

2

di

di+λi
≤ ǫ which

guarantees |P (vi)−
1

2
| ≤ ǫ. In our experiments, we choose

λi = 3di, which corresponds to ǫ = 1

8
.

Let P be a column vector consisting of all these
P (vi)(vi ∈ V \ (F ∪ B ∪ H)). Then the equations (4) can
be rewritten in matrix form LP = C where L is a square
coefficient matrix and C is a column vector. Following
the argument in [26], it can be proven that L is a
sparse, symmetric, and positive definite matrix. Thus the
linear system (4) has a unique solution. Many efficient
methods are available for solving such a sparse linear
system. It is worth pointing out that many properties of
the random walks also remain true for our constrained
random walks. For example, it can be found from (4)
that P (vi) falls between 0 and 1 for any vi ∈ V .

2.1 Edge weights

In the random walks algorithm, the weights assigned to
the edges have an important impact on the final results.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 5

For our mesh cutting application, the weights should be
properly set so that the segmentation tends to cut the
mesh into meaningful pieces.

In graph-based algorithms for image analysis, a com-
mon practice is to compute a change in image intensities
and then map the change to edge weights. Analogously,
here we need to find a distance metric measuring the
change of geometric properties along the edges. The
feature sensitive metric proposed in [24] is adapted,
which considers both the isophotic metric and the min-
ima rule. The isophotic metric was introduced by [32],
which is dependent on the length of the path on the
surface connecting the two points and also the variation
of the surface normals along it. The isophotic metric is a
feature sensitive metric on the surface. The minima rule
is an approximated perceptual criterion in the cognitive
theory [28]. It states that human perception usually
divides a surface into parts along negative minima of
the principal curvature. For an edge eij with vertices vi

and vj , its distance is defined by

dij = w1||vi − vj || + w2||ni − nj || + w3f(κvivj
) (5)

where the first two terms account for the isophotic metric
and the third term for the minima rule, ni and nj are
respectively the unit normals of the surface at vertices vi

and vj , κvivj
is the average of the normal curvature at

vi along the line direction −−→vivj and the normal curvature
at vj along −−→vjvi. The normal curvature for a discrete
triangular mesh is calculated based on a formula given
in [33] or [34]. The function f(κ) is set as

f(κ) =

{

κ, κ ≥ 0
5|κ|, κ < 0

(6)

where 5 is added to augment the effect of the negative
curvature, which is in accord with the minima rule. The
coefficients w1, w2 and w3 are used to control the relative
importance of the distance, normal variation and curva-
ture. Usually the size scales are diverse among different
3D models and we note that some terms in equation (5)
depend on the size of the models. Thus, before we apply
the distance metric (5) to a mesh model, we normalize
the model to make the maximum Euclidean distance
between two vertices on the mesh be equal to 1. Then we
set the values of wi by making them satisfy the following
relations: avg(w1||vi − vj ||) = 0.1 avg(w2||ni − nj ||) =
0.1 avg(w3f(κvivj

)) and avg(dij) = 1, where avg(x)
returns the average value of quantity x over the whole
model.

Once the edge distance metrics have been computed,
we need to find a function to map the edge metrics
dij to the weights wij . The larger distance dij is, the
less weight wij will be assigned to edge eij . Therefore
the function should be decreasing. Following [26], we
use the Gaussian function wij = exp(−d2

ij), which can
maximize the entropy of the resulting weights.

3 OPTIMIZATION FOR THE CUTTING CONTOUR

While some algorithms such as in [2], [24] compute new
edges for the cutting contour, we restrict ourselves to cut-
ting only along the existing vertices and edges of a mesh
in this paper. This has an advantage that the cut mesh is
exactly one part of the original mesh, both geometrically
and topologically. Note that in man-made models edges
of the mesh usually occur along semantic seams and
in natural models meshes are usually sufficiently dense.
Therefore for these kinds of models our restriction will
not affect the results very much and meanwhile it can
avoid some unwanted operations.

Once the probability values are computed from the
constrained random walks algorithm, we have to design
a way to determine the cutting contour. Our basic idea
is first to find a contour area, which we denote by G.
The contour area is formed by all the candidates for the
vertices on the cutting contour and the edges connecting
them. The contour area is a part of the original mesh.
The second step is then to choose vertices from G for
the cutting contour. Since our constrained random walks
algorithm gives the probability of a random walker start-
ing from a vertex arriving at the foreground seeds first,
before reaching the background seeds, it is reasonable
to choose the probability value of 1/2 as a selection
criterion. However, if the closeness of the probability
values to 1/2 is the only criterion, this likely results in
a jaggy contour. The top of Figure 4 shows the result
generated by this way. Therefore other criteria such as
the smoothness of the contour should also be consid-
ered for good cutting contours. The purpose of cutting
contour optimization is to find the cutting contour that
optimizes a certain energy function. The rest of this
section describes how to find the contour area and how
to determine the cutting contour within the contour area.

Intuitively, if a vertex vi ∈ V \F∪B∪H with probability
P (vi) ≥ 1/2 (or < 1/2) has at least one neighboring
vertex vj with probability P (vj) < 1/2 (or P (vj) ≥ 1/2),
it is a candidate for the vertices on the cut contour. All
these candidate vertices and the edges connecting them
form the contour area G. G has two boundaries B+ and
B−, which consist of vertices with probability ≥ 1/2
and < 1/2, respectively. Note that for a hard constraint
vertex, the weighted average of the probability values of
the vertices in its 1-ring neighborhood is not necessarily
1/2. It is possible that the probability values of all its
1-ring neighboring vertices are greater than 1/2. Thus,
this hard constrained vertex will not be included in G
and it will not be in the cutting contour. This contradicts
our intention of introducing the hard constraint. To
overcome this problem, we expand the candidate set G
by moving the two boundaries B+ and B− along their
respective directions independently until G contains all
the hard constraint vertices.

To find a good cutting contour within G, we propose
an energy function and try to find the contour that mini-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 6

Fig. 4. A non-smooth cutting contour (top) vs a smooth
cutting contour (bottom).

mizes the energy function among all possible contours in
G, which separate the foreground and the background.
For a contour C = {v1v2 · · · vl} in G, we define its energy
function by

∑

vi∈C

{g(|P (vi)−
1

2
|)+ αθi + β(1−

f(κi1) + f(κi2)

max(f(κi1) + f(κi2))
)}

(7)
where α and β are the tradeoff factors (the default values
for α and β are set to 1), θi is the angle (measured
in radians) between the projection lines of vi−1vi and
vivi+1 on the tangent plane of the surface at vi, f() is the
function defined in (6), κi1 and κi2 are the two principal
curvatures of the surface at vi, max() takes the maximum
value over all the vertices of the mesh, and g() is

g(|P (vi) −
1

2
|) =

{

−M, if vi ∈ H
|P (vi) −

1

2
|, otherwise

where M is a big positive number. The function g() is de-
signed to ensure that the optimal solution goes through
the vertices with hard constraints. In energy function (7),
the first term measures how close the vertices’ probabil-
ity is to 1/2, respecting the probability values; the second
term measures the fairness of the polygon; and the third
term makes the cutting contour tend to pass the vertices
with minimum negative principal curvatures (i.e., in the
concave shape areas). According to the minima rule, the
vertices with minimum negative principal curvatures are
in the interfaces separating object parts.

Finding the solution that minimizes (7) is actually a
problem of finding the shortest path in a graph inferred
from the triangular mesh, where each vertex is a node
and each mesh edge is an edge connecting two nodes.
The cost function (7) is defined on each node. However,
the problem we are trying to solve has three features

that complicate the optimization. In the following, we
explain these features and our strategies.

The first feature is that the cutting contour we want to
find separates the foreground and the background and
thus is often closed. In this case, we take an approach
that is similar to the one used in [35] in order to use
Dijkstra’s algorithm later. For each boundary of G, say
B+, we arbitrarily choose a vertex vi in it. We apply
the breadth-first search algorithm on G starting from vi

until encountering a vertex (say, vj) in B−. The path from
vi to vj found in the breadth-first search algorithm will
be used to split G. See the blue path in Figure 5 for
illustration. To make the algorithm simpler and easier,
we remove those edges (i.e., the dashed edges in Figure
5) that are on one side of the splitting path and are
connected to it.

source

sink

end

Fig. 5. Splitting the contour area G along the blue path.

The second feature is that when we compute θi for
each vertex vi, it depends on which two edges incident
to vi are chosen. That is, θi is determined not only by
vi, but also by vi−1 and vi+1. To handle all the vertices
properly, when we use Dijkstra’s algorithm to find the
shortest path from “source” to the “end” (see Figure
5), we place a virtual vertex called “sink” on the line
between “source” and “end” and replace the dashed line
between “source” and “end” by a solid edge for “end”
and “sink” and a dashed line for “sink” and “source”.
Here, the “sink” vertex’s probability is set to 0.5 and its
two principal curvatures are set to zero. Now we turn to
finding the shortest path from “source” to “sink”, which
is equivalent to our original minimization problem. The
introduction of the virtual vertex “sink” makes the cost
computation for “source” and “end” simpler.

The third feature is the negative cost when there are
hard constraint vertices. In this situation, we cannot sim-
ply use Dijkstra’s algorithm which assumes all the costs
to be nonnegative. Thus we adopt the following strategy
to approximate the global optimum. Assume there are
m vertices with hard constraints. Dijkstra’s algorithm
is applied from the “source” vertex until encountering
a hard constraint vertex, which we denote by h1, and
we label h1 as processed. Then Dijkstra’s algorithm is
applied again from h1 until meeting an unprocessed
hard constraint vertex, which we denote by h2. Repeat
this process until we meet hm. Then, we find the shortest
path between hm and sink. The union of all these pathes

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 7

gives the cut contour.
This procedure is applied to every dashed edge in

graph G, where the intersection point of the dashed line
and the path is used as “source” and the other endpoint
of the dashed line is used as “end”. The optimal solution
is the one that has the minimum energy value. The bot-
tom of Figure 4 is the result generated by this approach.
Compared to other optimal methods such as the snake
used in [24] which tends to converge to a local mini-
mum, our approach usually returns global optimization.
Besides, the time complexity of the modified Dijkstra’s
algorithm is suitable for interactive mesh cutting.

4 INTERACTIVE MESH CUTTING

We are now ready to describe our framework and its
implementation for interactive mesh cutting.

When a triangular mesh model is loaded into the
system, the user can navigate the mesh, select an ap-
propriate viewpoint, and use the following three basic
modes to specify his/her intention:

• foreground/background seed inputs: The user
sketches strokes on the screen to define his/her
foreground and background.

• soft constraint inputs: The user draws strokes on the
screen to show the region which the cutting contour
should be made nearby.

• hard constraint inputs: The user places marks on the
screen to show the points where the cutting contour
should go through.

Each stroke has a user-specified width. Those vertices on
the front-face of the mesh will be marked if their image
on the screen is covered by the user’s strokes. If more
than one vertex map to the same screen position, the one
with the nearest distance to the user will be marked. The
user input mode is also transferred to the corresponding
vertices. Except for the hard constraint inputs that allow
the user to specify which vertex should be on the cutting
contour, the strokes are not necessarily needed to be
precise. The user can freely switch one input mode to
another and mix the use of them. This provides a lot
of flexibility to the user because some models or some
parts of the models may need a specific input mode.

Once the user completes the sketching, the constrained
random walks algorithm starts to compute probability
for each vertex of the mesh, followed by the optimiza-
tion procedure for finding the cutting contour. Then
the cutting contour and the “cutout” mesh are quickly
generated.

It should be pointed out that if we have only soft
or/and hard constraint inputs, the algorithm actually
does not know which part should be cut out. This
means the information for the user’s intention is not
sufficient. In this case, our system will be able to find the
cutting contour and automatically set one segment as the
foreground and the other as the background by default.
The user can input further information to specify which
part should be treated as foreground or background.

To implement the cutting with only soft or hard con-
straint inputs, we use the following strategies. For the
soft constraint only, we automatically create two new
strokes which are on both sides of the input stroke and
have a similar direction as the input one. One of these
two new strokes is treated as the foreground seeds and
the other as the background seeds. Then the problem
becomes the one that has foreground/background seed
inputs and a soft constraint input. The constrained ran-
dom walks algorithm can be used now. Figure 6 (left)
shows such an example, where the user only inputs one
stroke for soft constraints and the algorithm automat-
ically creates two new strokes which are used as the
foreground/background seed inputs. A similar approach
can be developed for the hard constraint only in which
two input marks are used to define a line and two new
strokes along the similar direction on both sides of the
line are automatically created. See Figure 6 (right) for
an illustration. In our mesh cutting system, these new
strokes are created just for the underlying computational
purpose and are actually not displayed to avoid con-
fusing the user. Also these “automatically” generated
strokes are created only when they are really needed.
When there are already some foreground/background
seeds, the “automatically” generated strokes will not be
created.

If the cut result is not satisfactory, the user can re-
fine the cutting results by interactively sketching more
strokes in any of these three input modes.

Fig. 6. Automatically generating foreground/background
seeds for the soft or hard constraint input only. left: soft

constraint input; right: hard constraint input.

4.1 Preprocessing

For interactive applications, instant feedback is very
important. Although the constrained random walks al-
gorithm can be implemented by solving a sparse linear
system and many efficient solvers for a sparse linear
system are available, there is still a need to speed up
the computation for very large models. Here we present
a preprocessing step based on the watershed method [7],
as [36] did.

First, the watershed algorithm is performed to over-
segment the mesh. To do so, the total curvature at each
vertex is computed. The vertex with local minimum
total curvature is assigned a unique label. Loop through

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 8

vertices and allow each vertex to descend until a labeled
region is encountered.

Second, we perform segmentation using the methods
described in preceding sections on the super set of the
mesh, in which the vertices are the segmented regions
from the watershed segmentation and the edges are the
arcs connecting adjacent regions. The weight between
two adjacent regions is defined as the sum of weights
of those edges crossing the two regions. The outputs
of the segmentation are then distributed back to each
vertex in the initial mesh and they provide a good
approximation that can be used as the initial values for
our constrained random walks algorithm. Since the wa-
tershed segmentation yields a good superset of the mesh,
this preprocessing improves the speed significantly.

5 EXPERIMENTS AND DISCUSSIONS

This section provides some examples to demonstrate the
applicability and flexibility of our constrained random
walks based mesh cutting algorithm. The experiments
were carried out on a 2.67 GHz Intel(R) Core(TM) 2
processor with 2 Gb memory. In these examples, the red
strokes, the blue strokes, the black dots, and the semi-
transparent grey strokes stand for the foreground input,
the background input, the hard constraint input, and the
soft constraint input, respectively.

We first tested the running time of our algorithm,
without and with the watershed preprocessing step. The
test was conducted on six models with different sizes
in the number of vertices. Figure 7 shows the models,
user’s inputs and the cutting results. Since the cutting
results with and without the watershed preprocessing
are almost the same visually, we just display the results
with the watershed preprocessing in Figure 7. Table 1
lists the statistics of the models and the running time.
It can be seen that our algorithm (with the watershed
preprocessing) can yield the results in real time.

We then compared our algorithm with Lai et al’s
random walks algorithm [27] and the easy mesh cut-
ting [24] which are closely related to our work. In this
comparison, we did not perform the postprocessing step
to smooth the cutting contour for both our algorithm and
Lai et al’s algorithm [27]. From Figure 8, it can be found
that without soft and hard constraints our algorithm
and Lai et al’s algorithm give the similar cutting results.
This is not surprising because our algorithm without the
soft/hard constraints is just one version of the random
walks. One difference between our algorithm and Lai
et al’s algorithm is that our’s random walks is directly
applied to the triangular mesh and Lai et al’s random
walks is applied to the dual graph which treats the faces
of the mesh as the graph nodes. While using the dual
graph has some advantages, we choose the vertices as
the nodes, which facilitates our specifications of hard
constraints. Also note that for a triangular mesh with
a large number of vertices, the number of vertices is
roughly half the number of the faces and this could

reduce the size of the linear system derived from the
random walks. We also find that the easy mesh cutting
algorithm sometimes works badly (see Figure 8(c)). This
is because the easy mesh cutting algorithm uses region
growing to find the cutting contour. The region growing
process selects the smallest weight neighbor adjacent
to the current vertices in each iteration. As a result,
the region growing heavily depends on the initial seeds
position and is sensitive to noises. The vertices with high
curvatures or noises usually have large weight values,
which prevent the region growing process from growing.

Our interactive cutout algorithm supports three typi-
cal inputs and their combinations (see Figure 7). In gen-
eral, the foreground/background seeds input is easiest
to use, the soft constraint input needs some attention and
the hard constraint input needs the most attention. The
choice of the inputs really depends on the user and ap-
plications. For some models, the foreground/backround
inputs are sufficient. However, in some situations, it
is difficult to obtain satisfactory results by using fore-
ground/backround inputs only. As already shown in
Figure 1 and Figure 2, soft and hard constraints can be
used with the foreground/background seed inputs to
quickly find good cutting. Figures 9, 10 and 11 show
another three examples where the soft/hard constraints
are used to further guide the cutting. In these examples,
the random walks algorithm [27] is also used to find
the cutting contours, for which we gradually add more
and more foreground and background strokes to refine
the cutting, but the results are still not good enough.
On the contrary, when we use our constrained random
walks algorithm with a few extra soft or/and hard
constraints, we can quickly find good cutting results.
As pointed out in [23], random walks is quite robust
with respect to the number of seeds but sensitive with
respect to the seed location. The introduction of soft and
hard constraints thus helps to correct the mis-guidance
of the foreground/background seeds. This makes our
constrained random walks work robustly and stably
with respect to various inputs.

Finally, Figure 12 shows some examples of cutting
meshes of complex topology using our constrained ran-
dom walks algorithm.

6 CONCLUSION

In this paper, we have proposed a constrained random
walks algorithm and an optimal path finding algorithm.
Based on them, an interactive mesh cutting algorithm
is developed which supports three typical user inputs
and their combinations, simulating the current leading
interactive mesh segmentation algorithms including the
easy mesh cutting, Intelligent Scissoring, and the Ac-
tive Contour Method within the same computational
framework. The experiment results demonstrate that the
new algorithm is robust, fast, and capable of producing
satisfactory results with regard to the user intention and
geometric attributes.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 9

Fig. 7. The cutting results using the proposed algorithm for the examples listed in Table 1, on which the running

time test was conducted. These examples also show that the three types of inputs can be used independently or in a

combined way.

TABLE 1
Running time statistics of our algorithm with and without the watershed preprocessing step.

Model Vertex Number Time(s) without preprocessing Time(s) with preprocessing

Bunny 35947 1.718 0.194

Horse 48485 1.265 0.157

Venus 67173 1.953 0.265

Santa 75781 1.935 0.261

Armadilo 172974 5.984 0.727

Lucy 262909 9.797 1.242

(a) Ours (b) Lai et al’s (c) The easy mesh cutting

Fig. 8. When the input consists of only foreground and background seeds, our method usually gives almost the same

result as Lai et al’s random walks algorithm [27] and a better result than the easy mesh cutting [24].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 10

(a) foreground/background in-
puts

(b) more background inputs

(c) more foreground/background
inputs

(d) foreground/background +
hard constraints

Fig. 9. While gradually inputting more foreground and

background strokes does not guarantee a nice cutting (a-
c), specifying three hard constraints at the weak boundary

can help to quickly find a satisfactory cutting (d).

Since this paper focuses on segmenting the mesh into
two classes, the constrained random walks algorithm is
developed and described for such a binary segmeneta-
tion. However, it is possible to extend the idea and the
algorithm to segment a mesh into several classes. The
basic strategy is that for each class of input seeds, we
compute the probability of a random walk starting from
a node arriving at that class first, before reaching other
classes of seeds, and then we classify this node to the
class with which the probability is the maximal. Since
now we segment the mesh into several classes, when we
enter soft or hard constraints, we need to explicitly indi-
cate which class of seeds the soft or hard constraints are
associated with. Then the proposed constrained random
walks algorithm can be used to compute the probability.
In this way, the soft and hard constraint inputs are used

(a) foreground/background (b) adding another background
stroke

(c) adding another 2 background
strokes to (b)

(d) adding 1 foreground stroke
to (c)

(e) adding 1 background stroke
to (d)

(f) foreground/background +
soft/hard constraints

Fig. 10. (a)-(e) show the cutting results by gradually

adding foreground/background strokes. (f) shows the re-

sult by inputting some soft/hard constraints in addition to
the initial foreground/background, which is a satisfactory

result reflecting user intention and human shape percep-
tion.

to affect the probability distribution. The challenging
part in this extension is how to guarantee that the final
segmentation contours go through the hard constraint
vertices, which is still under investigation.

The contour optimization approach proposed in the
paper is quite heuristic. It is of both theoretical and
practical interest to devise a more elegant manner for
extracting the cutting contour from the results generated
from the constrained random walks.

ACKNOWLEDGMENTS

This work is supported by A*STAR SERC TSRP Grant
(NO. 062 130 0059) and the ARC 9/09 Grant (MOE2008-
T2-1-075) of Singapore.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 11

(a) foreground/background (b) 1 more foreground input (c) 2 more background inputs on
the back

(d) 3 more foreground inputs (e) foreground/background + 2 soft constraints + 5 hard constraints

Fig. 11. Cutting result comparison: (a)-(d) vs (e), where (a)-(d) show the results (at front/back/side view) by gradually

adding foreground/background strokes, which cannot achieve satisfactory results for the all the views; and (e) shows
the result by our proposed algorithm with the initial foreground/background inputs and a few soft/hard constrains.

(a) genus = 1 (b) genus = 1 (c) genus = 4

Fig. 12. More complex meshes.

REFERENCES

[1] A. Shamir, “A survey on mesh segmentation techniques,” Com-
puter Graphics Forum, no. 11, pp. 1–18, Nov 2007.

[2] Y. Lee, S. Leea, A. Shamirb, D. Cohen-Orc, and H.-P. Seideld,
“Mesh scissoring with minima rule and part salience,” Computer
Aided Geometric Design, no. 11, pp. 444–465, July 2005.

[3] S. Shlafman, A. Tal, and S. Katz, “Metamorphosis of polyhedral
surfaces using decomposition,” Computer Graphics Forum, vol. 21,
no. 3, 2002.

[4] S. Katz and A. Tal, “Hierarchical mesh decomposition using fuzzy
clustering and cuts,” ACM Transactions on Graphics (SIGGRAPH),
pp. 954–961, 2003.

[5] R. Liu and H. Zhang, “Segmentation of 3D meshes through
spectral clustering,” in Proc. of Pacific Graphics, 2004, pp. 298–305.

[6] ——, “Mesh segmentation via spectral embedding and contour
analysis,” Computer Graphics Forum (Eurographics 2007), vol. 26,
no. 3, pp. 385–394, 2007.

[7] A. P. Mangan and R. T. Whitaker, “Partitioning 3d surface meshes
using watershed segmentation,” IEEE Transactions on Visualization
and Computer Graphics, vol. 5, no. 4, pp. 308–321, 1999.

[8] X. Li, T. W. Woon, T. S. Tan, and Z. Huang, “Decomposing
polygon meshes for interactive applications.” Procedding of
Symposium on Interactive 3D graphics, 2001, pp. 35–42.

[9] S. Katz, G. Leifman, and A. Tal, “Mesh segmentation using feature
point and core extraction,” The Visual Computer, vol. 21, no. 8-10,
pp. 649–658, 2005.

[10] T.-Y. Lee, P.-H. Lin, S.-U. Yan, and C.-H. Lin, “Mesh decomposi-
tion using motion information from animation sequences,” Journal
of Visualization and Computer Animation, vol. 16, no. 3-4, pp. 519–

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXXX 200X 12

529, 2005.
[11] T.-Y. Lee, Y.-S. Wang, and T.-G. Chen, “Segmenting a deforming

mesh into near-rigid components,” The Visual Computer, vol. 22,
no. 9-11, pp. 729–739, 2006.

[12] S. Schaefer and C. Yuksel, “Example-based skeleton extraction,”
in Symposium on Geometry Processing, 2007, pp. 153–162.

[13] M. Attene, S. Katz, M. Mortara, G. Patanè, M. Spagnuolo, and
A. Tal, “Mesh segmentation - a comparative study,” in Proc. of
Shape Modeling International, 2006, p. 7.

[14] X. Chen, A. Golovinskiy, and T. Funkhouser, “A benchmark for 3D
mesh segmentation,” ACM Transactions on Graphics (SIGGRAPH),
2009.

[15] K. C.-H. Wong, T. Y.-H. Siu, P.-A. Heng, and H. Sun, “Interactive
volume cutting,” in Graphics Interface, 1998, pp. 99–106.

[16] A. Gregory, A. State, M. C. Lin, D. Manocha, and M. A. Liv-
ingston, “Interactive surface decomposition for polyhedral mor-
phing,” The Visual Computer, no. 9, pp. 453–470, December 1999.

[17] M. Zöckler, D. Stalling, and H.-C. Hege, “Fast and intuitive
generation of geometric shape transitions,” The Visual Computer,
vol. 16, no. 5, pp. 241–253, 2000.

[18] Y. Lee and S. Lee, “Geometric snakes for triangular meshes,”
Computer Graphics Forum (Eurographics 2002), no. 3, pp. 229–238,
July 2002.

[19] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel, “Intelli-
gent mesh scissoring using 3d snakes,” in Proc. of Pacific Graphics,
2004, pp. 279–287.

[20] A. Clements and H. Zhang, “Minimum ratio contours on surface
meshes,” in Proc. of Shape Modeling International, 2006, pp. 26–37.

[21] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin, “Modeling by example,” ACM
Transactions on Graphics (SIGGRAPH), pp. 652–663, 2004.

[22] A. Sharf, M. Blumenkrants, A. Shamir, and D. Cohen-Or, “Snap-
paste: an interactive technique for easy mesh composition,” The
Visual Computer, no. 9-11, pp. 835–844, September 2006.

[23] A. K. Sinop and L. Grady, “A seeded image segmentation frame-
work unifying graph cuts and random walker which yields a new
algorithm.” Proceedings of ICCV, 2007, pp. 560–572.

[24] Z. Ji, L. Liu, Z. Chen, and G. Wang, “Easy mesh cutting,” Computer
Graphics Forum (Eurographics 2006), vol. 25, no. 3, pp. 219–228, Sep.
2006.

[25] Y.-S. Wang and T.-Y. Lee, “Wysiwyg: Mesh decomposition for
static models,” in IIH-MSP ’07: Proceedings of the Third Interna-
tional Conference on International Information Hiding and Multimedia
Signal Processing (IIH-MSP 2007). Washington, DC, USA: IEEE
Computer Society, 2007, pp. 353–356.

[26] L. Grady, “Random walks for image segmentation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, no. 11, pp. 1768–
1783, November 2006.

[27] Y.-K. Lai, S.-M. Hu, R. R.Martin, and P. L.Rosin, “Rapid and effec-
tive segmentation of 3d models using random walks,” Computer
Aided Geometric Design, vol. 26, no. 6, pp. 665–679, 2009.

[28] D. D. Hoffman and W. Richards, “Parts of recognition,” Cognition,
pp. 65–96, 1984.

[29] D. Hoffman and M. Singh, “Salience of visual parts,” Cognition,
pp. 29–78, 1997.

[30] H.-Y. S. Lin, H.-Y. M. Liao, and J.-C. Lin, “Visual salience-guided
mesh decomposition,” IEEE Transactions on Multimedia, vol. 9,
no. 1, pp. 46–57, 2007.

[31] A. Golovinskiy and T. Funkhouser, “Randomized cuts for 3D
mesh analysis,” ACM Transactions on Graphics (SIGGRAPH ASIA),
Dec. 2008.

[32] H. Pottmann, T. Steiner, M. Hofer, C. Haider, and A. Hanbury,
“The isophotic metric and its application to feature sensitive
morphology on surfaces,” in Proceedings of ECCV, 2004, pp. 560–
572.

[33] M. Meyer, M. Desbrun, P. Schroder, and A. H. Barr, “Discrete
differential-geometry operators for triangulated 2-manifolds,” Vi-
sualization and Mathematics, vol. 1, no. 3, pp. 35–57, 2002.

[34] G. Taubin, “Estimating the tensor of curvature of a surface from
a polyhedral approximation.” Proceedings of ICCV, 1995, pp.
902–907.

[35] J. Jia, J. Sun, C.-K. Tang, and H.-Y. Shum, “Drag-and-drop past-
ing,” ACM Trans. on Graphics (SIGGRAPH), no. 3, pp. 631–636,
July 2006.

[36] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum, “Lazy snapping,” ACM
Transactions on Graphics (SIGGRAPH), pp. 303–308, 2004.

