

Digital Geometry Processing

Instructor: Ligang Liu

lgliu@ustc.edu.cn

http://staff.ustc.edu.cn/~lgliu

About This Course

- Prerequisite
 - Computer Graphics
 - CAGD
 - C/C++, Matlab
- State-of-the-art of geometry modeling and processing
 - Hot topics
 - Future trend

Digital Media

Digital Media

- Sound
- Image
- Video
- Geometry
 - Computer animation
 - Visualization
 - Computer game
 - Entertainment

Geometry Representations

- Constructive Solid Geometry (CSG)
 - Cube, cylinder, cone...
 - Boolean operations
- Boundary Representation
 - B-spline, NURBS
 - Triangular mesh
 - Rendering engine

Mesh Surfaces

• Demo: Examples of mesh surfaces

Geometry Examples

- Meshes
- Point clouds
- Implicit surfaces
- Volumetric data
- CSG

Geometry Processing

- 3D Geometry is based data for
 - CAD/CAM, Engineering
 - Visualization and simulation medical, physics, etc...
 - Graphics, multimedia
- Geometry processing
 - Computerized modeling of 3D geometry
- Digital Geometry ≈ Mesh Processing

Digital Geometry Processing (DGP)

- Processing of discrete models
 - Polygonal mesh (Typically triangular)
- Why discrete?
 - Simplicity ease of description
 - Based data for rendering software/hardware
 - Input to most simulation/analysis tools
 - Output of most acquisition tools
 - laser scanner, CT, MRI, etc...

Applications

Geometry Data Processing

- Data acquisition and reconstruction
- Data storage and compression
- Data representation
- Data editing
- Data rendering
- Data retrieval

Course Syllabus

- Model acquisition
- Surface reconstruction
- Mesh simplification and Remeshing
- Geometry compression
- Mesh parameterization
- Mesh editing, deformation and morphing
- Subdivision surfaces
- Discrete differential geometry

Data Acquisition

Surface Reconstruction

Differential Geometry

Smoothing/Fairing

Mesh Simplification

Geometry Coding

Parameterization

Remeshing

Subdivision Surfaces

Mesh Editing and Morphing

Segmentation

Point Based Surfaces

Others

- Matching
- Deformation transfer
- Connectivity shape
- Statistical learning
- ...

Course Requirements

- Programming exercises (30%)
 - Mesh library
 - Parameterization
 - Deformation
- Final projects (40%)
 - Develop an algorithm for interesting problem
 - Or implement existing paper
- Survey report (30%)
 - Literature survey on an interesting topic

Expectations

- DGP
 - Many interesting topics
 - Wide applications
- Do something interesting
- Learn something
 - Coding, writing, <u>demo</u>, presentation
- Hard work!

Have fun! ©

Resources

- Course website:
 - http://staff.ustc.edu.cn/~lgliu → "Teaching" → "Digital geometry processing"
- http://www.math.zju.edu.cn/ligangliu/Resources/Graphics/resource_graphics.htm

Q&A