

Meshes: Definitions & Terminologies

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Standard Graph Definition


```
G = <V,E>
V = vertices =
{A,B,C,D,E,F,G,H,I,J,K,L}
E = edges =
{(A,B),(B,C),(C,D),(D,E),(E,F),(F,G),
(G,H),(H,A),(A,J),(A,G),(B,J),(K,F),
(C,L),(C,I),(D,I),(D,F),(F,I),(G,K),
(J,L),(J,K),(K,L),(L,I)}
```

Vertex degree (valence) = number of edges incident on vertex deg(J) = 4, deg(H) = 2

k-regular graph = graph whose vertices all have degree k

Face: cycle of vertices/edges which cannot be shortened

F = faces =
{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,J),(C,D,I),
(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G)}

Connectivity

Graph is *connected* if there is a path of edges connecting every two vertices

Graph is *k-connected* if between every two vertices there are *k* edge-disjoint paths

Graph G'=<V',E'> is a *subgraph* of graph G=<V,E> if V' is a subset of V and E' is the subset of E incident on V'

Connected component of a graph: maximal connected subgraph

Subset V' of V is an *independent* set in G if the subgraph it induces does not contain any edges of E

Graph Embedding

Graph is **embedded** in R^d if each vertex is assigned a position in R^d

Embedding in R²

Embedding in R³

Planar Graphs

Planar Graph

Planar graph: graph whose vertices and edges can be embedded in R² such that its edges do not intersect

Every planar graph can be drawn as a *straight-line plane graph*

Plane Graph

Straight Line Plane Graph

Triangulation

Triangulation: straight line plane graph all of whose faces are triangles

Delaunay triangulation of a set of points: unique set of triangles such that the circumcircle of any triangle does not contain any other point

Delaunay triangulation avoids long and skinny triangles

Meshes

Non-Manifold

Closed Manifold

Open Manifold _s

Planar Graphs and Meshes

Topology

Genus of graph: half of maximal number of closed paths that do not disconnect the graph (number of "holes")

Genus(sphere)= 0 Genus(torus) = 1

Euler-Poincare Formula

$$v+f-e = 2(c-g)-b$$

v = # vertices c = # conn. comp
f = # faces g = genus
e = # edges b = # boundaries

Topology Quiz

What can you say about the genus of these meshes?

Orientability

Oriented

 $F=\{(L,J,B),(B,C,L),(L,C,I),$ (I,K,L),(L,K,J)Not Oriented

 $F=\{(B,J,L),(B,C,L),(L,C,I),$

(L,I,K),(L,K,J)

Orientation of a face is clockwise or anticlockwise order in which its vertices and edges are listed

This defines the direction of face normal

Straight line graph is orientable if orientations of its faces can be chosen so that each edge is oriented in both directions

Not Backface Culled

Backface Culled

Mobius strip or Klein bottle - not orientable

Developablility

Mesh is developable if it may be embedded in R2 without distortion

Duality

Delaunay Triangulation vs. Voronoi Graph

Q&A