

Delaunay Triangulation and Mesh Generation

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Outline

- Concepts
- Delaunay Triangulation
- Optimal Delaunay Triangulation (ODT)
- Centroidal Vonoroi Tessellation (CVT)
- 3D mesh generation

Boris N. Delaunay

- Russian mathematician
- March 15, 1890 July 17, 1980
- Introduce Delaunay triangulation in 1934

Georgy F. Voronoi

- Russian mathematician
- April 28, 1868 November
 20, 1908

Properties of DT (1)

 Empty sphere property: no points inside the circum-sphere of any simplex

Delaunay edge

Properties of DT (2)

- DT maximizes the smallest angle
 - [Lawson 1977] and [Sibson 1978]

Properties of DT (3)

Convex hull: union of all triangles

Properties of DT (4)

- DT maximizes the arithmetic mean of the radius of inscribed circles of the triangles.
 - [Lambert 1994]
- DT minimizes roughness (the Dirichlet energy of any piecewise-linear scalar function)
 - [Rippa 1990]
- DT minimizes the maximum containing radius (the radius of the smallest sphere containing the simplex)
 - [Azevedo and Simpson 1989], [Rajan 1991]

Properties of DT (5)

- The DT in d-dimensional spaces is the projection of the points of convex hull onto a (d+1)-dimensional paraboloid.
 - [Brown 1979]

Properties of DT (6)

- DT minimizes the spectrum of the geometric Laplacian (spectral characterization)
 - [Chen et al. 2010]

The spectrum of the geometric Laplacian obtains its minimum on a Delaunay triangulation. Namely if $\{\lambda_1 = 0, \lambda_2, ..., \lambda_n\}$ and $\{\mu_1 = 0, \mu_2, ..., \mu_n\}$ are the sequences of non-decreasing eigenvalues of the geometric Laplacian of a Delaunay triangulation and of any other triangulation of the same set of points, respectively, then $\lambda_i \leq \mu_i$ for i = 1, ..., n.

Edge Swapping/Flipping [Sibson 1978]

- Start with any triangulation
 - 1. find any two adjacent triangles that form a convex quadrilateral that does not satisfy empty sphere condition
 - 2. swap the diagonal of the quadrilateral to be a Deluany triangulation of that four points
 - 3. repeat step 1,2 until stuck.

Convergence? Is it possible to end with an infinite loop?

Mesh Generation

 Given a fixed point set, Delaunay triangulation will try to make the triangulation more shape regular and thus is considered as a "good" unstructured mesh.

Mesh Quality

- What do we mean a "good" mesh/simplex (triangle)?
 - Minimal angle
 - Mean ratio
 - Aspect/radius ratio
 - ...

 It is not easy to define a universal mesh quality acceptable by everyone. But everyone agrees on the "best" simplex: equilateral triangle and tetrahedra.

DT is not necessary a good mesh

DT only optimize the **connectivity** when points are fixed. The **distribution of points** is more important for a good mesh.

What is the usage of a mesh?

One Answer: Mesh is used to approximate functions.

For a given function $f \in C(\Omega)$ and a triangulation T of Ω , we define the quality of T as the interpolation error:

$$Q(\mathcal{T}, f, p) = \|f - f_{I,\mathcal{T}}\|_{L^p,\Omega} = \left(\int_{\Omega} |f(\mathbf{x}) - f_{I,\mathcal{T}}(\mathbf{x})|^p d\mathbf{x}\right)^{1/p}.$$

Mesh quality is a function depedent concept from the approximation point of view.

On the other hand, by choosing appropriate functions, we can get meshes with good geometric shape.

Optimality of Delaunay Triangulation

Given a point set $\mathbf{P} \subset \mathbb{R}^n$, denote by Ω be the convex hull of \mathbf{P} and $\mathscr{T}_{\mathbf{P}}$ all possible triangulations of Ω by using the points in \mathbf{P} .

Theorem [Chen and Xu 2004]

Delaunay triangulation optimizes the connvectivity for a given point set. Namely

$$Q(DT, \|\mathbf{x}\|^2, p) = \min_{\mathcal{T} \in \mathscr{T}_{\mathbf{P}}} Q(\mathcal{T}, \|\mathbf{x}\|^2, p), \quad \forall \ 1 \leq p \leq \infty.$$

- \mathbb{R}^2 , $p = \infty$ (D'Azevedo and Simpson 1989 [12])
- $\mathbb{R}^n, p = \infty$ (Rajan 1991 [21])
- \mathbb{R}^2 , $1 \le p < \infty$ (Rippa 1992 [23])
- ℝⁿ, 1 ≤ p ≤ ∞ (C. and Xu 2004 [11])

Graph of the Linear Interpolation

Figure: Different triangulations and graphs of linear interpolations

Convergence of Edge Swapping Algorithm

$$Q(T_1, ||\mathbf{x}||^2, p) > Q(T_2, ||\mathbf{x}||^2, p) > \cdots > Q(T_n, ||\mathbf{x}||^2, p) > \cdots > 0$$

Lifting Trick

We lift **P** to the paraboloid $x_{n+1} = \|\mathbf{x}\|^2$ and construct the convex hull of **P**'. A facet of this convex hull in \mathbb{R}^{n+1} belongs to the lower convex hull if it is supported by a hyper-plane that separates **P**' from $(\mathbf{0}, -\infty)$.

The projection of the lower convex hull of \mathbf{P}' to \mathbb{R}^n is the Delaunay triangulation of \mathbf{P} .

(Brown 1979 [3], Edelsbrunner and Seidel 1986 [13])

Let
$$f(\mathbf{x}) = u(\mathbf{x}) := ||\mathbf{x}||^2$$
. It is equivalent to say

$$u_{I,DT}(\mathbf{x}) \leq u_{I,T}(\mathbf{x}), \quad \forall T \in \mathscr{T}_{\mathbf{P}}.$$

Qhull: a Global Algorithm to Construct DT

- Lift points to the parabolid
- Form the lowest convex hull in Rⁿ⁺¹
- Project the lowest convex hull to Rⁿ

Optimal Delaunay Triangulation (ODT)

$$Q(DT, \|\mathbf{x}\|^2, p) = \min_{T \in \mathscr{T}_{\mathbf{p}}} Q(T, \|\mathbf{x}\|^2, p), \quad \forall \ 1 \leq p \leq \infty.$$

$$Q(ODT, \|\mathbf{x}\|^2, p) = \inf_{\mathcal{T} \in \mathscr{T}_{\mathbf{N}}} Q(\mathcal{T}, \|\mathbf{x}\|^2, p), \quad \forall \ 1 \leq p \leq \infty,$$

where \mathscr{T}_N is the set of all triangulations of Ω with at most N vertices. We allow the move of points inside the domain.

• [Chen and Xu 2004] proved the existence of ODT. In general, it is not unique.

However...

- ODT energy function is only C⁰ (piecewise smooth)
 - Both the point positions and its connectivity are the variables in the function

$$E(p,t) = Q(T, ||x||^2, 1)$$

Can not be solved using general numeric optimization methods

Mesh Optimization based on ODT

Write T = (p, t) with:

- p: the set of points;
- t: the connectivity of points.

We define the energy $E(p,t) = Q(T, ||x||^2, 1)$.

Basic Algorithm

WHILE
$$E(p, t) > \epsilon$$
 DO

For a fixed p, find t for the optimization problem

$$\min_{t} E(p, t);$$

2. For a fixed t, find p for the optimization problem

$$\inf_{p} E(p, t)$$
.

END WHILE

Optimize the Connectivity

Fix points, find the optimal connvectivity using these points

$$\min_{t} E(p, t)$$

We have studied this question in the section of Delaunay triangulations.

- Local algorithm: edge swapping;
- Global algorithm: Qhull (Lifting trick).

Remark

We are not really interested in the optimal mesh. Instead a good mesh will be obtained by performing few steps of optimization methods.

Optimize the Location

Fix connectivity, find the optimal location of points

$$\inf_{p} E(p, t)$$

We will present two algorithms in this section.

- Local algorithm: mesh smoothing;
- Global algorithm: H⁻¹ preconditioner.

Generalization: non-uniform density

We can define our energy as

$$E(p, t, \rho) = \int_{\Omega} |u_I - u| \rho(\mathbf{x}) d\mathbf{x},$$

where $\rho > 0$ is a density function.

Since we only change the measure for the integration, DT is still the optimal triangulation for a fixed point set.

The exact formula for ∇E is not easy. Instead we choose a piecewise constant approximation of ρ on each element. And use the weighted volume $|\tau|_{\rho}$ to replace $|\tau|$.

Generalization: anisotropic metric

We can choose any convex function in the definition

$$Q(T, f, p)$$
.

The error formula holds in the metric given by $\nabla^2 f$. So the optimization will give an equilateral triangulation under this new metric.

Some References

- Huang 2001,2003 Huang and Sun 2003, Huang 2005 [15, 16].
- Shewchuk 2002 [24].
- Cao 2005, 2007, 2008 [4, 5, 6].
- C. 2004, 2005, C. and Xu 2004, C., Sun and Xu 2007 [10, 11, 7, 9].

Centroidal Voronoi Tessellation (CVT)

Centroidal Voronoi Tessellation

 Definition: The VT is a centroidal Voronoi tessellation (CVT), if each seed coincides with the centroid of its Voronoi cell

Centroidal Voronoi Tessellation

- Definition: The VT is a centroidal Voronoi tessellation (CVT), if each seed coincides with the centroid of its Voronoi cell
- CVT energy function:

$$F(X) = \sum_{i=1}^{N} \int_{V_i} \rho(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_i\|^2 d\mathbf{x}$$

• CVT is a critical point of F(X), an optimal CVT is a global minimizer of F(X)

Geometric Interpretation

- Theorem: The CVT energy with $\rho(\mathbf{x})$ identical to 1, is the volume difference between the circumscribed polytope and the paraboloid.
 - An optimal CVT is a best circumscribed piecewise linear approximant to the paraboloid

Lloyd Algorithm

- Construct the VT associated with the points
- Compute the centroids of the Voronoi regions
- Move the points to the centroids
- Iterate until convergent

CVT Energy

- CVT energy is C² smooth!
 - [Liu et al. 2009]

Could be solved much faster than Lloyd algorithm

Compare ODT and CVT

Mesh Generation — 3D

- Regular tetrahedra can't tile the space
- Tetrahedra classified by bad angles

 well-spaced points generate only round or sliver Delaunay tetrahedra [Eppstein 01]

Comparison

Tetrahedron Qualities

Dihedral Angle distribution

Radius ratio distribution

Radius ratio distribution
$$Radius ratio = \frac{3 \cdot r_{in}}{R_{cir}}$$
0.3

3D Tetrahedral Mesh

• [Alliez et al. 2005, Tournois et al. 2009]

Summary

CVT

- best circumscribed PL approximant
- compact Voronoi cells
- more regular triangles in 2D meshing

ODT

- best inscribed PL interpolant
- compact simplices
- Less slivers in 3D meshing

Q&A