

Data Acquisition

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Getting Meshes from Real Objects

Getting Meshes from Real Objects

- Many models used in Graphics are obtained from real objects
 - Well known Stanford bunny model

Reverse Engineering

Real Object

CAD/Graphics Model

Build new object

Data Acquisition

Structure of Data

Scan Conversion

- Main phases
 - Sensing capture raw data
 - Point set
 - Boundary contours
 - Voxels
 - Conversion to polygonal model
- Followed by
 - Surface reconstruction
 - Mesh improvement
 - Simplification
 - Smoothing

Different Acquisition Systems

- Volumetric scanning
- Photogrammetry
- Range scanning

2.1 Volume Scanning

Build voxel structure by scanning slices

CT MRI

Volume Scanning

Build voxel structure by scanning slices

2.2 Photogrammetry

Reconstruction from photographs

http://www.debevec.org/campanile

Photogrammetry

Reconstruction from a series of photos (video)

2.3 Range Scanning

Reconstruction from point cloud

Physical real model

Acquired point cloud

Reconstructed model

Range Scanning Systems

Passive: stereo matching

Range Scanning Systems

Active: structured light acquisition

Range Scanning Systems

Active: laser scanning

Examples of Scan Systems

Range Scanning

- Active systems are superior
- Accurate calibration is crucial
- Multiple scans required for complex objects
 - scan path planning
 - scan registration
- Scans are incomplete and noisy
 - model repair, hole filling
 - smoothing for noise removal

Range Scanning: Reconstruction

Set of raw scans

Reconstructed model

Sensors

- Scanner types
 - Laser
 - Imaging (2D/3D)
 - Probing
 - Mixed

Sensing Technologies - Probing

- Probing
 - position probe on object
 - record the location
- Output
 - point cloud data
- Problematic
 - Labour intensive
 - Error prone

Sensing Technologies - Imaging

- Capture multiple 2D images
- Use image processing tools to create initial geometry data
- Requirements
 - Many cameras
 - Specific locations

3D Imaging

- Wave based sensors
 - Ultrasound
 - Magnetic Resonance Imaging (MRI)
 - X-Ray
 - Computed Tomography (CT)
- Alternative slice object, take photographs of slices
- Outputs
 - volumetric data (voxels)
 - contour lines (use imaging techniques)

Range Scanners

- Laser/Optical range scanner provides 2D array of depth data
- Some capture color (texture)
- Multiple views for complete object scan:
 - Rotate object
 - Rotate sensor
- Output point set

Model Generation

- Generate mesh
 - Point set
 - Graphics
 - CAD
 - Contours
 - Medical Imaging
 - Voxels
 - Medical Imaging

- Direct processing
 - 2D Images
 - Vision
 - Voxels
 - Visualization

Contours

- Stack contours
- Triangulate "strips" between contours

Note: contour topology can change

Voxels

- Define iso-surfaces (between data values)
- Triangulate iso-surface
 - Marching Cubes

Triangulating Point Clouds

- General Idea
 - Connect neighboring points into triangles

Issues

- Connectivity manifold? connected?
- Efficiency (David 32GIGA)

Surface Reconstruction

- Parametric approaches
 - Neighborhood searching
 - RBF approximation
 - Delaunay triangulation
- Implicit approaches
 - Distance field
 - Level set
 - Marching cube

Limitation

- Acquire only visible portions
- Sensitivity to surface properties
- Confused by interreflections

Challenges

- Geometry acquisition
 - Alignment
 - Error controls
- Properties acquisition
 - Texture
 - Color
 - BRDF
 - BTF

Recap: Digital Media

Acquisition of Dynamic Objects

3D Animation Scanner

- New technology
 - Record 3D video
 - Active research area
- Ultimate goal
 - 3D movie making
 - New creative perspectives

Photo: P. Jenke, WSI/GRIS Tübingen

What is Depth Image (DI)?

- A pair of aligned maps
 - a texture map I: gives the color of all visible points
 - a depth map D: gives the distance to each visible point

Time-of-flight (ToF) Camera

- A camera system that creates distance data with help of the time-of-flight (TOF) principle
 - Light pulses
 - Can measure depth scans at video rate
- Relatively new devices
 - Become more popular (for everyday users)

FOTONIC-B70 by Fotonic

SwissRanger 4000 by MESA Imaging

PMD[vision] CamCube by PMDTechnologies

USB-powered TOF camera out of the European ARTTS project

Range image with height measurements

Provide 2.5D structure of the scene

Advantages

- A single depth image
 - Provide 2.5D structure of the scene
- A set of depth images
 - Might provide hole-free 3D scene

Set of Depth Images

• 3D modeling of scene

Problems with Depth Images

- Pros
 - Not only 2D image (2.5D)
 - Easy acquisition
- Cons
 - Substantial sensor level of random noise
 - low quality data
 - Non-trivial systematic bias

New Trends: Dynamic Geometry Data

- Time-of-flight (ToF) Camera
- Microsoft Kinects

Introduction to Kinect

Project Natal

- Play game without controller
 - Use your body!
- Proposed in 2009

Microsoft Kinect + XBOX 360

- Released in Nov. 4, 2010
 - Cheap: only 150 USD
- A controller-free gaming system
- Sales 8 million in its first 60 days
 - Breaks Guinness World Records

成本仅56美元

原理

- 2009年微软收购了以色列3DV公司,让人们以为Natal的技术是源自3DV的TOF(time of flight)
- 2010年4月,另一家以色列公司PrimeSense确认 为微软提供了其light coding的三维测量技术, 并应用于Project Natal
- 不同于TOF或者结构光测量技术,light coding使用连续的照明(而非脉冲),不需要特制的感光芯片,而只需要普通的CMOS感光芯片,这让方案的成本大大降低

原理

• 当激光穿透毛玻璃后形成随机衍射斑点,这些散斑(laser speckle)具有高度的随机性,而且会随着距离的不同变换图案。空间中任意两处散斑图案都不同

• Light coding打出了一个具有三维纵深的"体编码",只要看物体表面的散斑图案,就可以知道这个物体在什么位置

性能参数

• 水平视角: 57度 垂直视角: 43度

物理倾斜范围: ±27度

景深镜头感应距离: 1.2-3.5米(实测0.5-9米)

Z方向精度: 1厘米

- 深度图像分辨率640x480; 16位色深; 30fps 彩色图像分辨率640x480; 32位色深; 30fps
- 骨骼跟踪系统最多识别6人 可同时动作捕捉2人 每个动作捕捉对象上有20个捕捉点

Kinect破解应用

- 游戏 (魔兽、体感游戏)
- 人机交互(<u>手势</u>、钢琴)
- 机器人
- 监控
- 运动捕捉(测试、应用)
- 三维重建(场景、人体)
-

Kinect Data

- Low resolution 640x480
- Very noisy
- Human skeleton

Kinect as Scanners

Kinect fusion [Siggraph 2011 Sketch]

Scanning Human Bodies

[Cui et al., 2011]

[Anguelov et al., 2011]

Scanning Bodies using Three Kinects [IEEE VR 2012]

Kinects are popular...

More applications

Controller everywhere

Many opportunities...

Q&A