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Problems

 High resolution meshes becoming increasingly
available
— 3D active scanners
— Computer vision methods
— Meshes extracted from volumetric data
— Terrain data



Motivation

 Reduce information content
* Accelerate rendering
 Improved sampling
 Multi-resolution models

69451 faces 871414 faces 1087716 faces 1765388 faces
35947 vertices 4370645 vertices 543652 vertices 882954 vertices




Simplification Examples

69.451 polys 2,502 polys 251 polys 76 polys




Simplification Applications

e Level-of-detail modeling

— Generate a family of models for the same object with
different polygon counts

— Select the appropriate model based on estimates of the
object's projected size
e Simulation proxies
— Run the simulation on a simplified model

— Interpolate results across a more complicated model to be
used for rendering
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Mesh Simplification



Level of Detail (LOD)

 Refined mesh for close objects
e Simplified mesh for far




Performance Requirements

e Offline

— Generate model at given level(s) of detail
— Focus on quality

e Real-time
— Generate model at given level(s) of detail
— Focus on speed
— Requires preprocessing
— Time/space/quality tradeoff



Quality

M" (12,946 faces)

1,070 faces PM (200 faces) PM (1,000 faces)



Classification

 Topology-preserving vs. topology-modifying
e Refinement-based vs. decimation-based

— Refinement = top-down: e.g., subdivision

— Decimation-based = bottom-up up — most common for
meshes with irregular connectivity (unstructured)

e Local vs. global. If local,
— Which decimation operator?

— Vertices, edges, or faces, what to remove and in what
order?

— Computation of new vertex/edge/face locations



Classification

* Fidelity-based or budget-based— remember?

 What fidelity measure to use?
— Object-space: view-independent; several approaches
— Image-space: view-dependent; this is what matters

— Perceptual concerns: not fully understood, at least in
computer graphics

— Guaranteed error bound?



Topology-Preserving

Simplification
. . . )
s Limits drastic 1418 G 1,504
simplification if 4,736 triangles P
genus of the VI

model is high ._ 2,630

m Solution: also
simplify mesh
topology — e.g.,
fill those holes




Simplifying Mesh
Topology

m How can this be done? — hole collapsing? — that
IS one idea ...



Comparison

m [opology-preserving
m Better visual fidelity with less change to the mesh
m Smoother transitions between levels — small changes
m Limits drastic simplification when topology is complex
m Cannot merge small objects

m Mostly deal with 2D manifold mesh, but not all
acquired models are manifolds due to noise in data

m [opology-modifying
m Can have more drastic simplification — e.g., fill holes
m Poorer visual fidelity and popping when filling a hole



Algorithms

* Vertex Removal/Decimation
e Edge Collapse
 Appearance-Preserving Simplification



Methodology

e Sequence of local operations

— Involve near neighbors - only small patch
affected in each operation

— Each operation introduces error

— Find and apply operation which introduces the
least error




Simplification Operations (1)

e Decimation

— Vertex removal:
e v&v-1l
o« f&f2

e Remaining vertices - subset of original vertex set




Simplification Operations (2)

e Decimation

— Edge collapse
e v&v-l
o f&f-2

* Vertices may move




Simplification Operations (3)

e Decimation

— Triangle collapse
° V<& v-2
o f& -4

* Vertices may move




Simplification Operations (4)

e Contraction

— Pair contraction

* Vertices may move



Simplification Operations (5)

 Contraction
— Cluster contraction (set of vertices)

* Vertices may move




Error Control

e Local error: Compare new patch with previous
iteration
— Fast
— Accumulates error
— Memory-less

* Global error: Compare new patch with original
mesh
— Slow
— Better quality control
— Can be used as termination condition

— Must remember the original mesh throughout the
algorithm



Local vs. Global Error

2000 faces 488 faces 488 faces



1. Local Simplification Strategies



The Basic Algorithm

* Repeat
— Select the element with minimal error

— Perform simplification operation
(remove/contract)

— Update error (local/global)
e Until mesh size / quality is achieved



Simplification Error Metrics

= Measures
= Distance to plane
« Curvature

= Usually approximated

= Average plane
= Discrete curvature Yo/ 21




Implementation Details

e Vertices/Edges/Faces data structure

— Easy access from each element to neighboring
elements

e Use priority queue (e.g. heap)
— Fast access to element with minimal error
— Fast update



1.1 Vertex Removal Algorithm

Mesh Decimation
[Schroeder et al 92]



Algorithm Overview

= Simplification operation:
Vertex removal —

= Error metric: Distance to
average plane

= May preserve mesh
features (creases)




Algorithm Outline

Characterize local topology/geometry
Classify vertices as removable or not
Repeat

= Remove vertex

« [riangulate resulting hole

» Update error of affected vertices

Until reduction goal is met



Characterizing Local
Topology/Geometry

% %
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A -
/ h
Complex Corner




Decimation Criterion

s E, . — user defined parameter

= Simple vertex:

= Distance of vertex to the face loop average
plane < Ey;ax

= Boundary vertices:

= Distance of the vertex to the new boundary
edge < Ey(ax

Distance

Mesh Simplification



Triangulating the Hole

= Vertex removal produces non-planar loop
= Split loop recursively
= Split plane orthogonal to the average plane

= Control aspect ratio

= Triangulation may fail
= Vertex is not removed

-------------------------




Pros and Cons

e Pros:
— Efficient

— Simple to implement and use
* Few input parameters to control quality

— Reasonable approximation

— Works on very large meshes

— Preserves topology

— Vertices are a subset of the original mesh

e Cons:
— Erroris not bounded
— Local error evaluation causes error to accumulate



1.2 Edge Collapse Algorithm

Edge Contraction
[Hoppe el al 93]



Edge Collapse

General edge collapse

-

Half-edge collapse (does not introduce new vertices)

-



Edge Collapse

e Currently the most popular technique

— Hoppe, Garland—Heckbert, Lindstrom-Turk,
Ronfard-Rossighac, Guéziec, and several others

— simpler operation than vertex removal
— well-defined on any simplicial complex



Algorithm Overview

= Simplification operation:
Pair contraction

= Error metric:
distance, pseudo-global

= Simplifies also topology




Distance Metric: Quadrics

= Choose point closest to
set of planes (triangles)

= Sum of squared
distances to set of t
planes is quadratic =
has a minimum




The Quadric Error Metric
|Garland & Heckbert 1997]

e Given a plane, we can define a quadric Q
Q=(A,b,c)=(nn",dn,d?)
measuring squared distance to the plane as

Q(v)=v'Av+2b'v+c

a? ab ac|x X

Qv)=[x y z]ab b* bc|y|+2[ad bd cd]y|+d’
ac bc c* |z z




The Quadric Error Metric

e Sum of quadrics represents set of planes

Yo+ - 3= 2e v
* Each vertex has an associated quadric

— Error(v;) = Q; (v})
— Sum quadrics when contracting (v,v;) >V
— Cost of contraction is Q(v’)

Q=0Q,+Q, = (A, +Aj,bi +bj,ci +Cj)



The Quadric Error Metric

 Sum of endpoint quadrics determines v’
— Fixed placement: select v, or v,
— Optimal placement: choose v' minimizing Q(v’)
VO(V)=0=Vv'=—-A"D
— Fixed placement is faster but lower quality
— But it also gives smaller progressive meshes
— Fallback to fixed placement if A is non-invertible



Contracting Two Vertices

= Goal: Given edge e = (1, 1), find
contracted

v = (x,),2) that minimizes A(V):

OAJOX = OAJoy = 0AJoz = 0

= Solve system of linear normal equations:
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If no solution - select the edge midpoint



A Simple Example:
Contraction & "Planes" in 2D

* Lines defined by neighboring segments
— Determine position of new vertex
— Error iso-contours shown on right

Original After 1 Step



Visualizing Quadrics

e Quadric
isosurfaces

— Are ellipsoids
(maybe degenerate)

— Centered around
vertices

— Characterize shape

— Stretch in least-
curved directions




Selecting Valid Pairs for
Contraction

= Edges:
{(vy,V,) : (V1V5) is in the mesh}

= Close vertices:
{(vy, Vo) t | |vi-Vyl| < T}

» Threshold T is input parameter



Algorithm

= Compute Qy for all the mesh vertices
= Identify all valid pairs

= Compute for each valid pair (v, 1,) the
contracted vertex vand its error A(V)

= Store all valid pairs in a priority queue
(according to A(V))

= While reduction goal not met

» Contract edge (v, 5) with the smallest error
to v

« Update the priority queue with new valid pairs



Artifacts by Edge Collapse

Detect by

looking at
change of
face normal

>

Do not
collapse
Even Laplacian
smoothing! v
—p




Examples

Original - 12,000 2,000 faces 298 faces (140 vertices)



Pros and Cons

* Pros
— Error is bounded
— Allows topology simplification
— High quality result
— Quite efficient
e Cons
— Difficulties along boundaries
— Difficulties with coplanar planes

— Introduces new vertices not present in the original
mesh



1.3 Appearance-Preserving
Simplification



Motivation

 Generalization required to handle appearance
properties
— color
— texture
— normals
— etc.



Surface Properties
as Vertex Attributes

e Each Vertex has a set of properties
— Each property has one unique value per vertex
— Attributes are linearly interpolated over faces
— Primary example: one RGB color per vertex

e Can't treat geometry & color separately
— Position and color are correlated

— Optimal position may lie off the surface
— Must synthesis new color for this position



Vertex Attributes Become Added
Dimensions

 Treat each vertex as a 6-vector [x,y,z,1,g,b]

— Assume this 6D space is Euclidean
e Of course, color space is only roughly Euclidean

— Scale xyz space to unit cube for consistency
 Triangle determines a 2-plane in 6D space

— Can measure squared distance to this plane

— Distance along all perpendicular directions
e Generalized Pythagorean Theorem



Generalized Quadric Metric

 Squared distance to 2-plance has same form:

Q(v)=Vv'Av+2b'v+c

— A: 6x6 matrix, v,b: 6-vectors c: scalar (for RGB)
— Underlying algorithm remains the same



Generalized Quadric Metric

e Common property types

Vertex Dimension
Color [XxXyzrghDb] 6Xx6 quadrics
Texture [Xy zst] 5x5 quadrics
Normal [Xy zuvw] 6Xx6 quadrics
Color+Normal [[xy zr g b uv w] |9x9 quadrics




Example

50761 triangles 1500 triangles



A Sample Textured Surface




Comparison

Simplifying geometry only Simplifying geometry + texture coordinates



2. Global Simplification Strategies



Algorithms

e Vertex Clustering
e Re-Tiling
 Mesh optimization



2.1 Vertex Clustering

e Merge all vertices within the same cell




Steps

e Partition space into cells
— grids [Rossignac-Borrel], SPpheres [Low-Tan], OCtrees, ...

 Merge all the vertices falling within a single cell
together and replace with a single representative
vertex

 Form triangles with resulting vertices that attempt to
preserve the original topology



Pros and Cons

 Advantages
— Does not require manifold models
— Can handle multiple objects
— Fast

e Disadvantages
— Low quality
— Hard to control



2.2 Mesh Re-Tiling [Turk 92]

e Re-tiling attempts to simplify as well as
improve meshing by introducing new
“uniformly spaced” vertices
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Steps

Generate random points on surface

Use a diffusion/repulsion to spread the points
out uniformly

Add new set of points to the surface and
mutually tessellate

Remove old vertices one by one yielding a
new triangulation



Geodesic Distances

e Shortest path “on the manifold” between two
points




Pros and Cons

 Advantages
— High quality triangles
— Maintains topology

e Disadvantages

— Slow
— Tends to blur sharp features (resampling)



Re-Tiling Example
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2.3 Mesh Optimization
[Hoppe et al 93]

 Frames simplification as an optimization
problem
— Minimizes some energy function

— Make simple changes to the topology of the
mesh

— Evaluate the energy before and after the
change

— Accept any change that reduces the energy



Energy Functions

e Geometric measures
e Topological measures
e Localized fits

mi

W




Basic Topological
Operations

e Edge Collapse
e Edge Split

e Edge Swap / )




Discussions
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