

Mesh Simplification

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Problems

- High resolution meshes becoming increasingly available
 - 3D active scanners
 - Computer vision methods
 - Meshes extracted from volumetric data
 - Terrain data

Motivation

- Reduce information content
- Accelerate rendering
- Improved sampling
- Multi-resolution models

69451 faces 35947 vertices

871414 faces 437645 vertices

1087716 faces 543652 vertices

1765388 faces 882954 vertices

Simplification Examples

Simplification Applications

- Level-of-detail modeling
 - Generate a family of models for the same object with different polygon counts
 - Select the appropriate model based on estimates of the object's projected size
- Simulation proxies
 - Run the simulation on a simplified model
 - Interpolate results across a more complicated model to be used for rendering

Trad

- Size
- Error

Level of Detail (LOD)

- Refined mesh for close objects
- Simplified mesh for far

Performance Requirements

Offline

- Generate model at given level(s) of detail
- Focus on quality

Real-time

- Generate model at given level(s) of detail
- Focus on speed
- Requires preprocessing
- Time/space/quality tradeoff

Quality

Classification

- Topology-preserving vs. topology-modifying
- Refinement-based vs. decimation-based
 - Refinement = top-down: e.g., subdivision
 - Decimation-based = bottom-up up most common for meshes with irregular connectivity (unstructured)
- Local vs. global. If local,
 - Which decimation operator?
 - Vertices, edges, or faces, what to remove and in what order?
 - Computation of new vertex/edge/face locations

Classification

- Fidelity-based or budget-based—remember?
- What fidelity measure to use?
 - Object-space: view-independent; several approaches
 - Image-space: view-dependent; this is what matters
 - Perceptual concerns: not fully understood, at least in computer graphics
 - Guaranteed error bound?

Topology-Preserving Simplification

- Limits drastic simplification if genus of the model is high
- Solution: also simplify mesh topology – e.g., fill those holes

Simplifying Mesh Topology

■ How can this be done? – hole collapsing? – that is one idea ...

Comparison

- Topology-preserving
 - Better visual fidelity with less change to the mesh
 - Smoother transitions between levels small changes
 - Limits drastic simplification when topology is complex
 - Cannot merge small objects
 - Mostly deal with 2D manifold mesh, but not all acquired models are manifolds due to noise in data
- Topology-modifying
 - Can have more drastic simplification e.g., fill holes
 - Poorer visual fidelity and popping when filling a hole

Algorithms

- Vertex Removal/Decimation
- Edge Collapse
- Appearance-Preserving Simplification

Methodology

- Sequence of local operations
 - Involve near neighbors only small patch affected in each operation
 - Each operation introduces error
 - Find and apply operation which introduces the least error

Simplification Operations (1)

- Decimation
 - Vertex removal:
 - v ← v-1
 - f ← f-2
- Remaining vertices subset of original vertex set

Simplification Operations (2)

- Decimation
 - Edge collapse
 - v ← v-1
 - f ← f-2
- Vertices may move

Simplification Operations (3)

- Decimation
 - Triangle collapse
 - v ← v-2
 - f ← f-4
- Vertices may move

Simplification Operations (4)

- Contraction
 - Pair contraction
- Vertices may move

Simplification Operations (5)

- Contraction
 - Cluster contraction (set of vertices)
- Vertices may move

Error Control

- Local error: Compare new patch with previous iteration
 - Fast
 - Accumulates error
 - Memory-less
- Global error: Compare new patch with original mesh
 - Slow
 - Better quality control
 - Can be used as termination condition
 - Must remember the original mesh throughout the algorithm

Local vs. Global Error

2000 faces 488 faces 488 faces

1. Local Simplification Strategies

The Basic Algorithm

- Repeat
 - Select the element with minimal error
 - Perform simplification operation (remove/contract)
 - Update error (local/global)
- Until mesh size / quality is achieved

Simplification Error Metrics

- Measures
 - Distance to plane
 - Curvature
- Usually approximated
 - Average plane
 - Discrete curvature

Implementation Details

- Vertices/Edges/Faces data structure
 - Easy access from each element to neighboring elements
- Use priority queue (e.g. heap)
 - Fast access to element with minimal error
 - Fast update

1.1 Vertex Removal Algorithm

Mesh Decimation

[Schroeder et al 92]

Algorithm Overview

Simplification operation:
 Vertex removal

 Error metric: Distance to average plane

 May preserve mesh features (creases)

Algorithm Outline

- Characterize local topology/geometry
- Classify vertices as removable or not
- Repeat
 - Remove vertex
 - Triangulate resulting hole
 - Update error of affected vertices
- Until reduction goal is met

Characterizing Local Topology/Geometry

Decimation Criterion

- E_{MAX} user defined parameter
- Simple vertex:
 - \blacksquare Distance of vertex to the face loop average plane < $\rm E_{MAX}$
- Boundary vertices:
 - \blacksquare Distance of the vertex to the new boundary edge < $E_{\rm MAX}$

Triangulating the Hole

- Vertex removal produces non-planar loop
 - Split loop recursively
 - Split plane orthogonal to the average plane
- Control aspect ratio
- Triangulation may fail
 - Vertex is not removed

Pros and Cons

• Pros:

- Efficient
- Simple to implement and use
 - Few input parameters to control quality
- Reasonable approximation
- Works on very large meshes
- Preserves topology
- Vertices are a subset of the original mesh

• Cons:

- Error is not bounded
- Local error evaluation causes error to accumulate

1.2 Edge Collapse Algorithm

Edge Contraction [Hoppe el al 93]

Edge Collapse

General edge collapse

Half-edge collapse (does not introduce new vertices)

Edge Collapse

- Currently the most popular technique
 - Hoppe, Garland–Heckbert, Lindstrom-Turk,
 Ronfard-Rossignac, Guéziec, and several others
 - simpler operation than vertex removal
 - well-defined on any simplicial complex

Algorithm Overview

- Simplification operation:
 Pair contraction
- Error metric: distance, pseudo-global
- Simplifies also topology

Distance Metric: Quadrics

 Choose point closest to set of planes (triangles)

Sum of squared distances to set of planes is quadratic ⇒ has a minimum

The Quadric Error Metric [Garland & Heckbert 1997]

Given a plane, we can define a quadric Q

$$Q = (\mathbf{A}, \mathbf{b}, \mathbf{c}) = (\mathbf{n}\mathbf{n}^{\mathsf{T}}, d\mathbf{n}, d^2)$$

measuring squared distance to the plane as

$$Q(\mathbf{v}) = \mathbf{v}^{\mathsf{T}} \mathbf{A} \mathbf{v} + 2 \mathbf{b}^{\mathsf{T}} \mathbf{v} + \mathbf{c}$$

$$Q(\mathbf{v}) = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \\ z \end{bmatrix} + 2\begin{bmatrix} ad & bd & cd \\ y \\ z \end{bmatrix} + d^2$$

The Quadric Error Metric

Sum of quadrics represents set of planes

$$\sum_{i} (\mathbf{n}_{i}^{\mathsf{T}} \mathbf{v} + \mathbf{d}_{i})^{2} = \sum_{i} \mathbf{Q}_{i}(\mathbf{v}) = \left(\sum_{i} \mathbf{Q}_{i}\right)(\mathbf{v})$$

- Each vertex has an associated quadric
 - $-\operatorname{Error}(v_i) = Q_i(v_i)$
 - Sum quadrics when contracting $(v_i, v_j) \rightarrow v'$
 - Cost of contraction is Q(v')

$$Q = Q_i + Q_j = (\mathbf{A}_i + \mathbf{A}_j, \mathbf{b}_i + \mathbf{b}_j, \mathbf{c}_i + \mathbf{c}_j)$$

The Quadric Error Metric

- Sum of endpoint quadrics determines v'
 - Fixed placement: select v_1 or v_2
 - Optimal placement: choose v' minimizing Q(v')

$$\nabla \mathbf{Q}(\mathbf{v}') = 0 \Rightarrow \mathbf{v}' = -\mathbf{A}^{-1}\mathbf{b}$$

- Fixed placement is faster but lower quality
- But it also gives smaller progressive meshes
- Fallback to fixed placement if A is non-invertible

Contracting Two Vertices

Goal: Given edge e = (ν₁, ν₂), find contracted

$$v = (x, y, z)$$
 that minimizes $\Delta(v)$: $\partial \Delta/\partial x = \partial \Delta/\partial y = \partial \Delta/\partial z = 0$

Solve system of linear normal equations:

$$\begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ q_{21} & q_{22} & q_{23} & q_{24} \\ q_{31} & q_{32} & q_{33} & q_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix} v = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

If no solution - select the edge midpoint

A Simple Example: Contraction & "Planes" in 2D

- Lines defined by neighboring segments
 - Determine position of new vertex
 - Error iso-contours shown on right

Visualizing Quadrics

Quadric isosurfaces

- Are ellipsoids (maybe degenerate)
- Centered around vertices
- Characterize shape
- Stretch in leastcurved directions

Selecting Valid Pairs for Contraction

Edges:

$$\{(v_1,v_2): (v_1v_2) \text{ is in the mesh}\}$$

Close vertices:

$$\{(v_1, v_2) : ||v_1 - v_2|| < T\}$$

Threshold T is input parameter

Algorithm

- Compute Q_V for all the mesh vertices
- Identify all valid pairs
- Compute for each valid pair (ν_1, ν_2) the contracted vertex ν and its error $\Delta(\nu)$
- Store all valid pairs in a priority queue (according to Δ(ν))
- While reduction goal not met
 - Contract edge (ν_1, ν_2) with the smallest error to ν
 - Update the priority queue with new valid pairs

Artifacts by Edge Collapse

Examples

Original - 12,000

2,000 faces

298 faces (140 vertices)

Pros and Cons

Pros

- Error is bounded
- Allows topology simplification
- High quality result
- Quite efficient

Cons

- Difficulties along boundaries
- Difficulties with coplanar planes
- Introduces new vertices not present in the original mesh

1.3 Appearance-Preserving Simplification

Motivation

- Generalization required to handle appearance properties
 - color
 - texture
 - normals
 - etc.

Surface Properties as Vertex Attributes

- Each Vertex has a set of properties
 - Each property has one unique value per vertex
 - Attributes are linearly interpolated over faces
 - Primary example: one RGB color per vertex
- Can't treat geometry & color separately
 - Position and color are correlated
 - Optimal position may lie off the surface
 - Must synthesis new color for this position

Vertex Attributes Become Added Dimensions

- Treat each vertex as a 6-vector [x,y,z,r,g,b]
 - Assume this 6D space is Euclidean
 - Of course, color space is only roughly Euclidean
 - Scale xyz space to unit cube for consistency
- Triangle determines a 2-plane in 6D space
 - Can measure squared distance to this plane
 - Distance along all perpendicular directions
 - Generalized Pythagorean Theorem

Generalized Quadric Metric

Squared distance to 2-plance has same form:

$$\mathbf{Q}(\mathbf{v}) = \mathbf{v}^{\mathsf{T}} \mathbf{A} \mathbf{v} + 2 \mathbf{b}^{\mathsf{T}} \mathbf{v} + \mathbf{c}$$

- A: 6x6 matrix, v,b: 6-vectors c: scalar (for RGB)
- Underlying algorithm remains the same

Generalized Quadric Metric

Common property types

	Vertex	Dimension
Color	[xyzrgb]	6x6 quadrics
Texture	[x y z s t]	5x5 quadrics
Normal	[x y z u v w]	6x6 quadrics
Color+Normal	[xyzrgbuvw]	9x9 quadrics

Example

1500 triangles

A Sample Textured Surface

Comparison

Simplifying geometry only

Simplifying geometry + texture coordinates

2. Global Simplification Strategies

Algorithms

- Vertex Clustering
- Re-Tiling
- Mesh optimization

2.1 Vertex Clustering

Merge all vertices within the same cell

Steps

- Partition space into cells
 - grids [Rossignac-Borrel], spheres [Low-Tan], octrees, ...
- Merge all the vertices falling within a single cell together and replace with a single representative vertex
- Form triangles with resulting vertices that attempt to preserve the original topology

Pros and Cons

- Advantages
 - Does not require manifold models
 - Can handle multiple objects
 - Fast
- Disadvantages
 - Low quality
 - Hard to control

2.2 Mesh Re-Tiling [Turk 92]

 Re-tiling attempts to simplify as well as improve meshing by introducing new "uniformly spaced" vertices

Steps

- Generate random points on surface
- Use a diffusion/repulsion to spread the points out uniformly
- Add new set of points to the surface and mutually tessellate
- Remove old vertices one by one yielding a new triangulation

Geodesic Distances

Shortest path "on the manifold" between two points

Pros and Cons

- Advantages
 - High quality triangles
 - Maintains topology
- Disadvantages
 - Slow
 - Tends to blur sharp features (resampling)

Re-Tiling Example

2.3 Mesh Optimization [Hoppe et al 93]

- Frames simplification as an optimization problem
 - Minimizes some energy function
 - Make simple changes to the topology of the mesh
 - Evaluate the energy before and after the change
 - Accept any change that reduces the energy

Energy Functions

- Geometric measures
- Topological measures
- Localized fits

Discussions