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Problem

e Delays in accessing 3D mesh models

— Online games, viewer, search engine...




Motivation

e Bandwidth

— Communicate large complex & highly detailed 3D
models through low-bandwidth connection (e.g.
VRML over the Internet)

e Storage

— Store large & complex 3D models (e.g. 3D scanner
output)



Storage size depends on

The shape, topology, and attributes of the model
Choice of representation

Acceptable accuracy loss
Compression used

 Error
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Representations of 3D Models

(Regularly) spaced samples: 3D primitives

* Volume decomposition NN
— Tetrahedra \\\
— Extrusions (slices, rays) .a \\\\\\
— Voxels (octrees) \
3D 2D 1D 0D

* Procedural (constructive) representations

— (CS@G, R-sets
— Sweeps. Minkowski sums i N\

 Boundary decomposition

— Parametric patches

— Triangles. polygons. quads




Storage size depends on
representation
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Mesh Encoding

e [nput: 3D triangular mesh
— Assumed to be orientable manifold

e Output: bit stream
—010011110010101100010101 ...

010011110010101100010101 . ..




Mesh Decoding

* |nput
— Bit stream
 Output

— Reconstruction of original 3D triangular mesh

Decoding

010011110010101100010101 . ..




Why triangles and tetrahedra?

Triangles and tetrahedra are the simplest ways of specifying how
Irregular point-samples and associated values (color, density...)
should be interpolated to approximate (non-homogeneous) sets.
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Other representations may be easily triangulated/tetrahedralized.

e 7




Representing Triangle and
Tetrahedra Meshes

Vertices and values: Tetrahedron/vertex incidence:
3x16+k bits/vertex 4xlog,(V) bits/tetrahedron
Tetrahedron1 | ] | 2| 3| 4
vertex 1 X y Z|C Tetrahedron 2 3121416
vertex 2 s y Z|C Tetrahedron 3 |4 | 2| §| 8
vertex 3 | X y Z|C Tetrahedrond |7 | 56| 2
Tetrahedron 5 |G | 5| & 4
Triangle/vertex incidence: fewahedion6 181 S| 1) S
7 PU PN, Tetrahedron 7 316
3xlog,(V) bits/triangle sahedeon7 11121 316
| . = Tetrahedron 8 312141 5
Tr-lmlgllel % 2|3 V4 Tetrahedron9 |4 | 2| 5| 2
Trangle 2 / _ S
B =2t T~6.50
HAnge = - t Tetrahedron 17 |G| 5] 8| |
Trangle 4 | 7| 516 3 _{
Tetrahedron 18 |8 [5]] |2
Tnangle 5 |G | 5] & \%- v
Trangle 6 | 8 | 5 ] i 2

Connectivity dominates storage cost!
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Bandwidth Requirements for
Triangular Meshes

* Nalve representation of a triangle mesh

— Each triangle is represented by 3 vertices

* Each vertex is represented by 3 coordinates
— Each coordinate is represented by a float

* Total storage = 576 bits per vertex (bpv) for
geoemtry
— 3x3x32 bits per triangle
— Twice as many triangles as vertices

* Not counting colors, normals, textures, motions



Two Parts for 3D Meshes

e Geometry
— Coordinates of the vertices
—VXYVYZ

 Connectivity

— How the vertices connect with each other
—fijk
e T=2V



Mesh Compression

e Geometry encoding
 Connectivity encoding
 Which one should be done first?



Must Decode Connectivity First

Cannot use geometry to estimate connectivity, because connectivity
1s used to predict geometry (see vertex-data compression section).

geometry connectivity

Must develop connectivity compression methods independent of the
vertex locations.

. corrective
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Two Categories

e Single resolution
— Edge breaker, Topological surgery...
— not transmission friendly.

e Multi resolution

— CPM, PFS, VD...
— transmission friendly



Discussions



Compression Theory

Coding Techniques



Coding Techniques

RLE: Run Length Encoding
/W coding
Huffman coding

Arithmetic coding



Connectivity Encoding



Connectivity Compression:
An Old Problem

* Use vertex permutation to encode incidence

Denny.Sohler: Encoding a triangulation as a permutation of its point set, CCCG. 97

* Compression of the connectivity graph (planar triangle graph)

Itai.Rodeh: Representation of graphs, Acta Informatica, 82

Turan: On the succinct representation of graphs, Discrete Applied Math, 84

Naor: Succinct representation of general unlabeled graphs, Discrete Applied Math, 90
Keeler,Westbrook: Short encoding of planar graphs and maps, Discrete Applied Math, 93
Deering: Geometry Compression. Siggraph. 95

Taubin,Rossignac: Geometric compression through topological surgery, ACM ToG, 98
Taubin,Horn.Lazarus,Rossignac: Geometry coding and VRML, Proc. IEEE, 98
Touma,Gotsman: Triangle Mesh Compression, GI. 98

Gumbold.Stralier: Realtime Compression of Triangle Mesh Connectivity, Siggraph, 98
Rossignac: Edgebreaker: Compressing the incidence graph of triangle meshes, TVCG, 99
Rossignac.Szymczak: Wrap&Zip: Linear decompression of triangle meshes, CGTA. 99
Szymczak Rossignac: Grow&Fold: Compression of tetrahedral meshes, ACM SM. 99

* Compressed inverse of progressive simplification steps or batches

Hoppe: Progressive meshes, Siggraph. 96

Taubin,Gueziec,Horn. Lazarus: Progressive forest split compression, Siggraph, 98
Pajarola,Rossignac: Compressed Progressive Meshes, IEEE TVCG99
Pajarola,Szymczak.Rossignac: ImplantSpray: Compressed Tetrahedral Meshes, VIS 99



Simple Triangle Strips
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Case 1:
Spiraling Walls and Corridors

Given the left and right boundaries
of a triangle strip (corridor), we
need T (left/right) bits to encode 1ts
triangulation. ex: LRRLLRLRR

Connecting vertices into a single
spiral (Hamiltonian walk) defines
the left and the right boundaries
(walls) of a long corridor.

Store vertices in their order along the wall.
(Can use former vertices to predict location of new ones.)
Encode connectivity using only 1 (left/right) bit per triangle !



Problem

The corridor may
have warts

Warts are
hard to avoid

The spiral may
bifurcate

The corridor
may bifurcate




Example




Case 2:
Triangle-tree & vertex-tree




3T bit encoding

The triangle spanning
tree may be encoded
using 2T bits:
*has-left-child
*has-right-child

10
A vertex spanning tree may be
Al 10 encoded using 2V bits (= 1T bits):
_ T A .
o1 11 00 % 00 *has-children
00 *has-right-sibling



Generalized Triangle Strip &
Generalized Triangle Mesh




Case Study:
Valence-based Codes

Touma C. and Gotsman C.
Triangle Mesh Compression.
Graphics Interface 1998



Key Principle

* A genus-0 manifold mesh is topologically
equivalent to a planar graph.

3
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Key Principle (cont.)

* In any planar graph edges incident on any
vertex may be ordered consistently counter-
clockwise

VA




Mesh Travesal

* The mesh vertices may be ordered in a set of
winding paths that traverse the mesh.




Code Words

* The topology may be encoded with :
— add <degree>
— split <offset>
— merge <offset>

e and then entropy encoded (Huffman, run-
length).



Merge

Topology Codewords

Split

split
out out ' out




Topology Codewords

e Cut-border expansion: add <valence>

‘a New
Vertex

| Output
“add 4”

"&Cut
Border :>

Free edges




Topology Codewords

Remove
full

vertex

=)




Topology Codewords

e split <offset>

Output
“split 6

=

Second
Cut
Border




Topology Codewords

Before Add
dummy
vertices

-

Close
mesh




Example




Encoding

boundary




Encoding

Dummy vertex




Encoding

7/

Add 6; Add 7; Add 4;



Encoding




Encoding

Add 4;



Encoding




Encoding

Add 8;



Encoding

Add 5;



Encoding

Add 5;
(focus full)



Encoding




Encoding




Encoding

Add 4;



Encoding

Add 5;



Encoding

Split 5;



Encoding




Encoding

Add 4;



Encoding

Vs

Add 4;
(focus full)



Encoding




Encoding

NS/

Add dummy 6;



Encoding




Encoding

N

Add 4;
(focus full)



Encoding

A

(focus full)



Encoding




Encoding




The Code

 For regular meshes (constant degree),
spectacular compression ratios may be
achieved.



Decoding

Add 6; Add 7; Add 4;



Decoding

Add 4;



Decoding

Add 8;



Decoding

Add 5;



Decoding

Add 5;
(focus full)



Decoding




Decoding

Add 4;



Decoding

Add 5;



Decoding

Split 3;
(focus full)



Decoding




Decoding

Add 4;



Decoding

Nt/

Add 4;
(focus full)



Decoding




Decoding

Add dummy 6;
(AL full - pop AL)



Decoding

Add 4;
(focus full)



Decoding

N

(focus full)



Decoding

\WV,

(focus full)
(AL full)



Decoding




Example

1776

1000
Frequency

1500

2000




More Examples

oM

Eight. 1,536 tri. Triceratops: 5,660 tri. Cow: 5,804 tri.

Beethoven: 5,028 tri. Dodge: 16,646 tri. Starship: 8,152 tri.




Results

Model #iri. bits/tri
Eight 1,536 0.2
Triceratops 5,666 1.4
Cow 5,804 1.1
Beethoven 5,028 1.4
Dodge 16,646 0.9
Starship 8,152 0.5
Average 0.9




Performance

= Disadvantages:
= No theoretical upper bound on code length

= Advantages:

= Gives very good compression rates (approx 2
bits/vertex) on typical meshes

= Gives excellent rates on highly regular meshes



Extensions

= Merge operation required when genus > 0

= Occurs when two different cut-borders
Intersect

= Non-manifolds treated by cutting into
manifold pieces



Several Other Solutions

Deering: Generalized triangle strips
— Use buffer to avoid sending vertices more than once
— Designed for hardware decompression
Taubin&Rossignac: Topological Surgery
— Efficient encoding of vertex and triangle trees
— MPEG-4 Standard

Gumhold&Strasser: Cutborder

— Encode spiraling pattern and offsets that define bifurcations
Touma& Gotsman

— Encode vertex valence and bifurcation offsets (great for regular meshes)
Rossignac&Szymcezak&King: Edgebreaker

— No need to encode offsets of spiraling pattern

— 1.83T bits guaranteed. 1.0T bits demonstrated for large models



Discussions



Geometry Encoding



Vertex Data

sPosition: Xy z

sNormal: nx ny nz

=Color: rg b {a}

= Texture coordinates: s t {r} {q}

= (Others)



The Geometry

e Vertex coordinates (x, y, z) are
— Floating point values
— Almost unrestricted in:

* range
* precision

— Uniformly spread in 3D

e Compression exploits input redundancy
— hard to find in raw geometry data

 Lossy compression is OK!!



Quantization

= Map n values v; to k<<n values m(v;), without
losing too much information

= Quantization error: Errv.m =3 v, —m(,)|
i=1

= Find k and m such that Err(v,m) is minimized
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Quantization

= Example: rounding a set of doubles into
integers

= Applications:
= Image and voice compression
=« Voice recognition
= Color display
« Geometric compression



Example: color quantization

s Used for limited dynamic-range
displays (e.g. an 8 bit display can
display only 256 different colors)

quantization to 4 colors

= Reducing number of colors

= Choosing set of representative
colors (colormap or palette)

= Map rest of colors to them

s Usually uses 256 colors



Representatives

* How to choose representative colors?
— Fixed representatives, image independent - fast
— Image content dependent — slow

* Which image colors mapped to which
representatives?
— Nearest representative - slow

— By space partitioning - fast



Color quantization examples




Uniform Quantization

Quantization space
partitioned into equal sized
regions (e.qg. grid) — fixed
representatives

® @ @ @
Input independent ﬂ'&
Some representatives may AN

be wasted N
Common way for 24->8 bit tf/.f*

color quantization: retain o e e
3+3+2 most significant bits
of R, G & B components



Non-uniform Quantization

= Quantization space partitioned according to
input data

= Goal: choosing "best” representatives
= Minimal distance error (if “distance” is defined)

3
X

X



Examples

uniform quantization image-dependent
to 4 colors quantization to 4 colors

large quantization error small quantization error



Quantization & Lossy Coding

 Quantization used as lossy coding method
when there is notion of distance between
symbols to be coded

— Coordinates

— Colors

— Normals

— Not good for characters



Lloyd algorithm for VQ

= Given £, finds best & representatives

s [terative method: (v, — representatives)
« fori=1to k do { v, € random point }

= While (v; still moves)
= S € closest data points to v,
» V. € centroid of S, (sum of S, coordinates / |S;|)



Lloyd algorithm - example




Lloyd algorithm (cont.)

= At each iteration, find S. using Voronoi diagram (with
v, as sites)

= VQ problem in general is NP-Complete (finding BEST
representatives). Lloyd algorithm generates the
optimal solution but is very slow.

= What if k is not given?
« Initialize k € 2
« Perform Lloyd algorithm
=« While quantization error is too big do:
=« kK € k+1
= Perform Lloyd algorithm



Median cut quantization

Median cut alg. - heuristic approximation to
optimal (Lloyd) VQ solution



Median cut (cont.)

m while (num of cells<k) do

= Split each cell into half vertically/horizontally
alternately, according to number of sites

= Choose representatives for each cell:
= Geometric cell center
= Centroid of sites in cell (better results)



Median cut (cont.)
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Uniform vs. median cut

original - 256
colors

8 colors

uniform median cut




Uniform geometry quantization

= Coordinates can be considered integers in a
finite range after quantization

= Quantization is done on the data bounding
box/cube intervals

= Geometry quantization to » bits:
= All integer values in [0, 27-1] can be used

= Scale/transform coordinates to be maximal over
given range

= Quantize each coordinate (rounding to nearest
integer)



Uniform geometry quantization -
results

8 bits / vertex

6 bits / vertex




Prediction
— History Repeats Itself

= Linear 2D predictor:

V..
\Q\,ﬁ"“ V
d e —
d
= Prediction rule: vi-l -vi-2 = p-v;-1

or: p =2v-l-v-2

= Prediction error: e = v. -p



Using Predicted Geometry

(v, v, V5 ...) - vertex coordinates
(e;e,¢ ) - prediction errors

Naive geometry coding: v, v, v; ...

2

Coding using prediction: v, v, e;e, es ...

Decoding: v, v,
v, = 2vi-l-vi-2+e 122

1



Good Prediction Reduces Entropy

0
Distribution of prediction errors



Surface-Based Prediction

»~ New
Vertex

Predicted
vertex

Output “add 4
(Ax,Ay,Az)”

‘i Cut
Border -

L —

Free edges




Parallelogram Prediction

= Use the connectivity to
i A predict the geometry:
V= Va TV; =V,
= (-1, 1, 1) in barycentric
coords
o Can be applied to

“‘ réva
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Some Results

Raw quantized data = 10 bits/coord = 30 bits/vertex

Model vertices line parallelogram ratio
predictor
Eight 766 18.8 14.0 1.3
Triceratops 3100 18.4 14 1 1.3
Cow 3078 18.9 14.6 1.3
Beethoven 2847 22.1 17.3 1.3
Dodge 10466 19.8 124 1.6
Starship 4468 19.2 13.2 1.5

Average 19.6 14.3 14



Other Predictive Patterns

y- contlnuatlon Parallelogram

(021

(2,0, -1)
X-continuation



Predictor Traversal Optimization

e Parallelogram predictor assumes mesh is
ocally planar and regular

 Problem: Fails on meshes with sharp corners
and creases

e Solution: Optimize face traversal to achieve
good predictors




Alternate Normal
Representation

Y




Complexity of a shape =
Storage/Error curve

So

"Mplific, .
P Hieatioy, € quq
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Storage
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Error of the approximating model
Curve depends on representation and compression scheme used
Estimate E; = K/T



Progressive Compression
- Compressed Successive Upgrades

Compression

A 4

Crude model I

Decompression

H‘%@H

‘Slmpliﬁcatmn 2 ' Simplification 1

) Compression Compression
Y
I upgrade 1 I | upgrade 2
Decompression Decompression

upgrade '

——

upgrade



Problems

Higher compression ratio
Random access

Loss of bits



Resources

e Siggraph 2000 Course #38
e Research papers
* |nternet



Discussions
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