

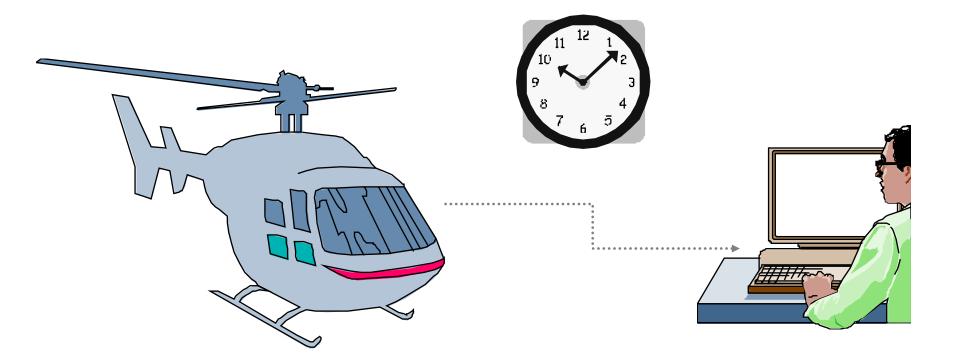
Mesh Compression

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Problem

- Delays in accessing 3D mesh models
 - Online games, viewer, search engine...



Motivation

Bandwidth

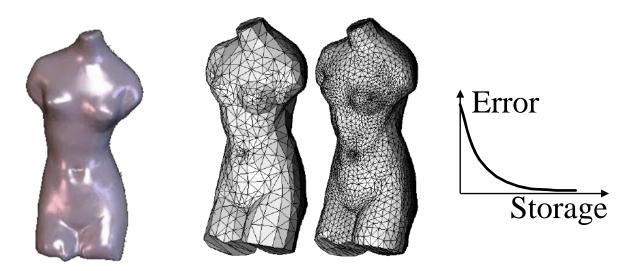
 Communicate large complex & highly detailed 3D models through low-bandwidth connection (e.g. VRML over the Internet)

Storage

Store large & complex 3D models (e.g. 3D scanner output)

Storage size depends on

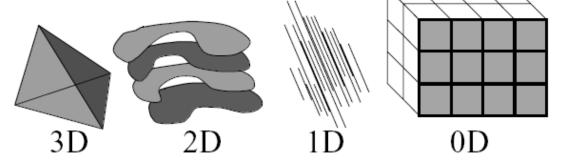
- The shape, topology, and attributes of the model
- Choice of representation
- Acceptable accuracy loss
- Compression used



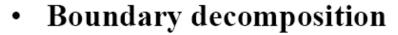
Representations of 3D Models

(Regularly) spaced samples: 3D primitives

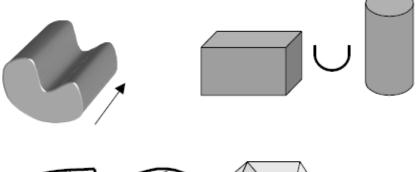
- Volume decomposition
 - Tetrahedra
 - Extrusions (slices, rays)
 - Voxels (octrees)

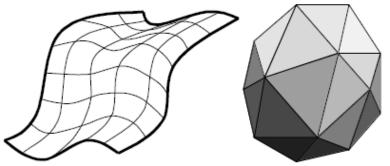


- Procedural (constructive) representations
 - CSG, R-sets
 - Sweeps, Minkowski sums

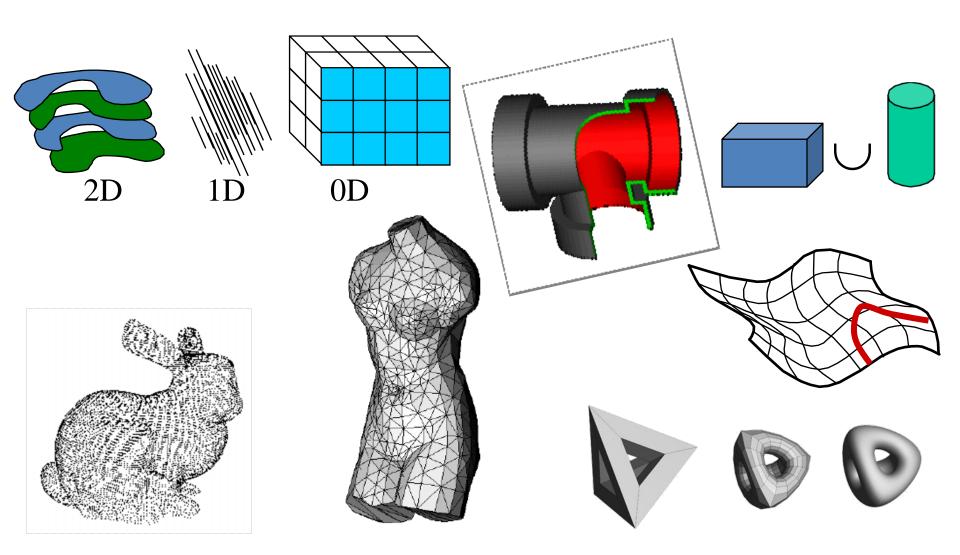


- Parametric patches
- Triangles, polygons, quads



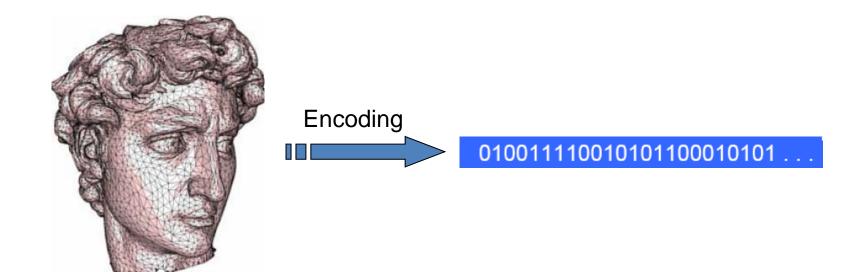


Storage size depends on representation



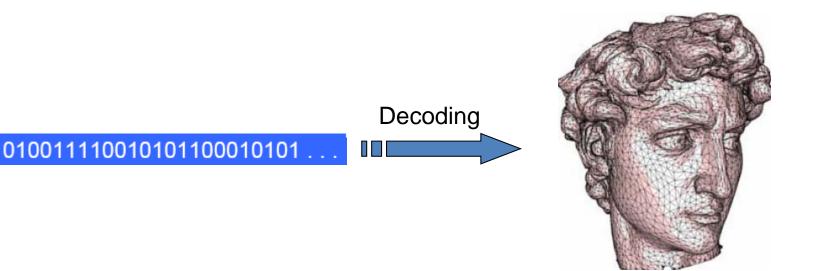
Mesh Encoding

- Input: 3D triangular mesh
 - Assumed to be orientable manifold
- Output: bit stream
 - -010011110010101100010101...



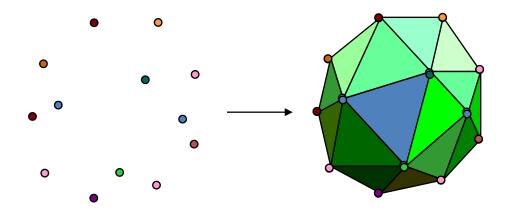
Mesh Decoding

- Input
 - Bit stream
- Output
 - Reconstruction of original 3D triangular mesh

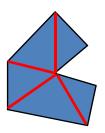


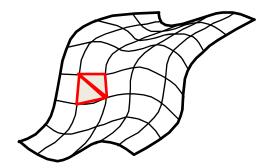
Why triangles and tetrahedra?

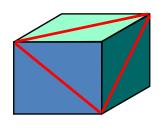
Triangles and **tetrahedra** are the simplest ways of specifying how **irregular point-samples** and associated values (color, density...) should be **interpolated** to approximate (non-homogeneous) sets.



Other representations may be easily triangulated/tetrahedralized.







Representing Triangle and Tetrahedra Meshes

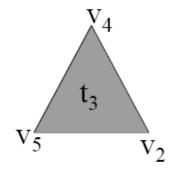
Vertices and values:

3x16+k bits/vertex

vertex 1	X	У	Z	c
vertex 2	X	У	Z	c
vertex 3	X	у	Z	c

Triangle/vertex incidence: 3xlog₂(V) bits/triangle

Triangle 1	1	2	3
Triangle 2	3	2	4
Triangle 3	4	2	5
Triangle 4	7	5	6
Triangle 5	6	5	8
Triangle 6	8	5	1



Tetrahedron/vertex incidence:

4xlog₂(V) bits/tetrahedron

Tetrahedron 1	1	2	3	4
Tetrahedron 2	3	2	4	6
Tetrahedron 3	4	2	5	8
Tetrahedron 4	7	5	6	2
Tetrahedron 5	6	5	8	4
Tetrahedron 6	8	5	1	5
	$\overline{}$			
Tetrahedron 7	1	2	3	6
Tetrahedron 7 Tetrahedron 8	1	2	3 4	6 5
	1 3 4	2 2	3 4 5	6 5 2
Tetrahedron 8	3	2 2	4	6 5 2
Tetrahedron 8	3	2 2 5	4	6 5 2

 $T \sim 6.5V$

Connectivity dominates storage cost!

Bandwidth Requirements for Triangular Meshes

- Naïve representation of a triangle mesh
 - Each triangle is represented by 3 vertices
 - Each vertex is represented by 3 coordinates
 - Each coordinate is represented by a float
- Total storage = 576 bits per vertex (bpv) for geoemtry
 - 3x3x32 bits per triangle
 - Twice as many triangles as vertices
- Not counting colors, normals, textures, motions

Two Parts for 3D Meshes

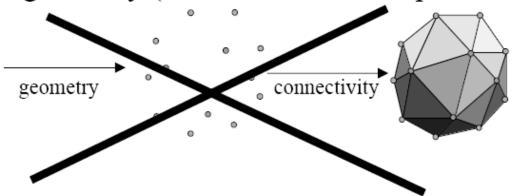
- Geometry
 - Coordinates of the vertices
 - -vxyz
- Connectivity
 - How the vertices connect with each other
 - fijk
- T = 2V

Mesh Compression

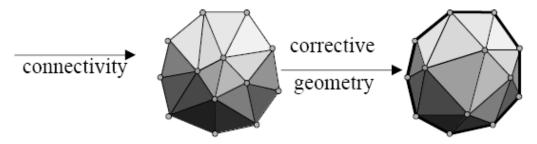
- Geometry encoding
- Connectivity encoding
- Which one should be done first?

Must Decode Connectivity First

Cannot use geometry to estimate connectivity, because connectivity is used to **predict** geometry (see vertex-data compression section).



Must develop connectivity compression methods independent of the vertex locations.



Two Categories

- Single resolution
 - Edge breaker, Topological surgery...
 - not transmission friendly.
- Multi resolution
 - CPM, PFS, VD...
 - transmission friendly

Discussions

Compression Theory

Coding Techniques

Coding Techniques

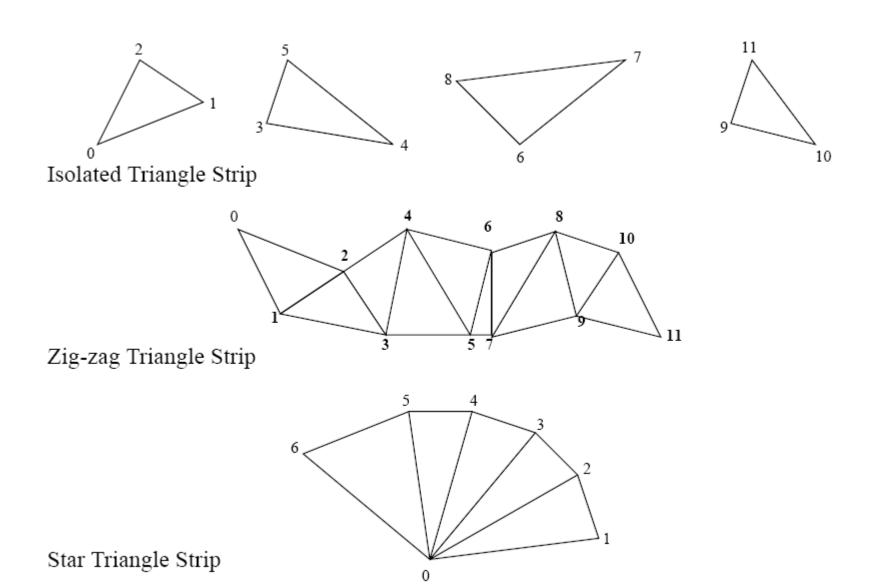
- RLE: Run Length Encoding
- LZW coding
- Huffman coding
- Arithmetic coding

Connectivity Encoding

Connectivity Compression: An Old Problem

- Use vertex permutation to encode incidence
 - Denny, Sohler: Encoding a triangulation as a permutation of its point set, CCCG, 97
- Compression of the connectivity graph (planar triangle graph)
 - Itai,Rodeh: Representation of graphs, Acta Informatica, 82
 - Turan: On the succinct representation of graphs, Discrete Applied Math, 84
 - Naor: Succinct representation of general unlabeled graphs, Discrete Applied Math, 90
 - Keeler, Westbrook: Short encoding of planar graphs and maps, Discrete Applied Math, 93
 - Deering: Geometry Compression, Siggraph, 95
 - Taubin, Rossignac: Geometric compression through topological surgery, ACM ToG, 98
 - Taubin, Horn, Lazarus, Rossignac: Geometry coding and VRML, Proc. IEEE, 98
 - Touma, Gotsman: Triangle Mesh Compression, GI, 98
 - Gumbold, Straßer: Realtime Compression of Triangle Mesh Connectivity, Siggraph, 98
 - Rossignac: Edgebreaker: Compressing the incidence graph of triangle meshes, TVCG, 99
 - Rossignac, Szymczak: Wrap&Zip: Linear decompression of triangle meshes, CGTA, 99
 - Szymczak, Rossignac: Grow&Fold: Compression of tetrahedral meshes, ACM SM, 99
- Compressed inverse of progressive simplification steps or batches
 - Hoppe: Progressive meshes, Siggraph, 96
 - Taubin, Gueziec, Horn, Lazarus: Progressive forest split compression, Siggraph, 98
 - Pajarola, Rossignac: Compressed Progressive Meshes, IEEE TVCG99
 - Pajarola, Szymczak, Rossignac: ImplantSpray: Compressed Tetrahedral Meshes, VIS 99

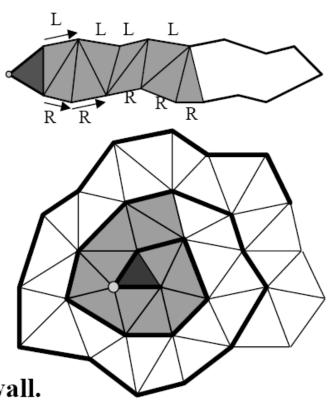
Simple Triangle Strips



Case 1: Spiraling Walls and Corridors

Given the left and right boundaries of a triangle strip (**corridor**), we need T (left/right) bits to encode its triangulation. ex: LRRLLRLRR

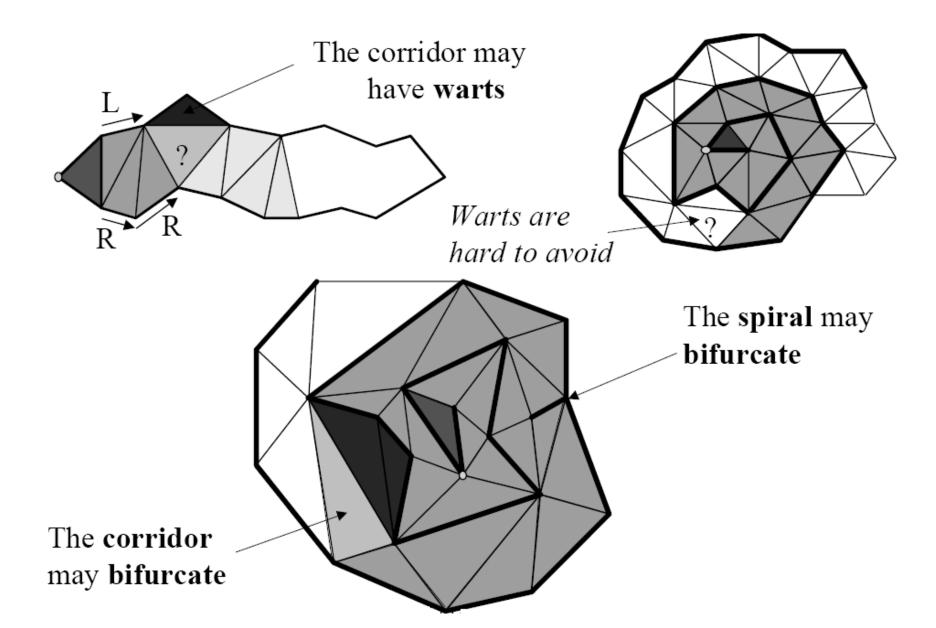
Connecting vertices into a single spiral (Hamiltonian walk) defines the left and the right boundaries (walls) of a long corridor.



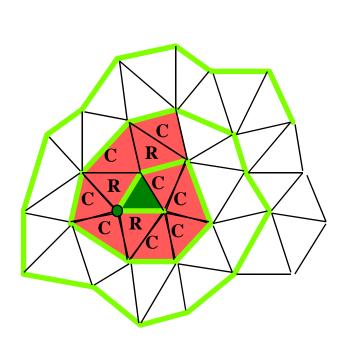
Store vertices in their order along the wall.

(Can use former vertices to predict location of new ones.) Encode **connectivity** using only **1** (left/right) **bit per triangle**!

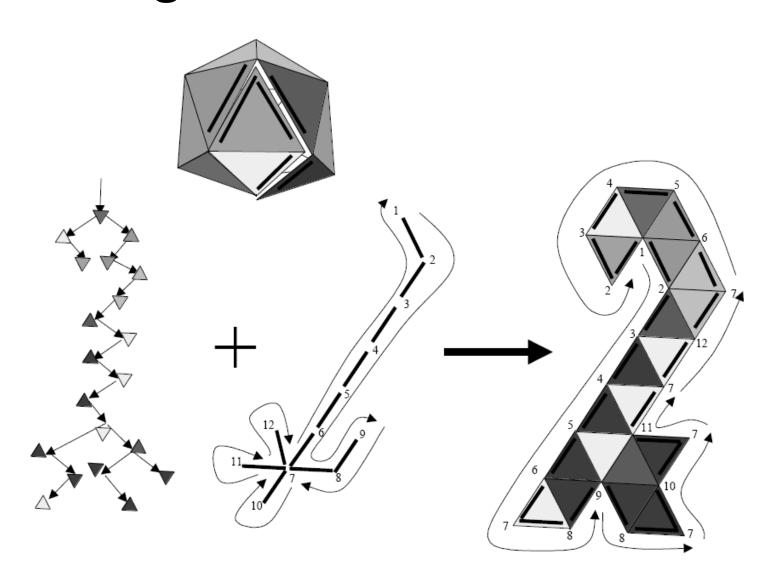
Problem



Example



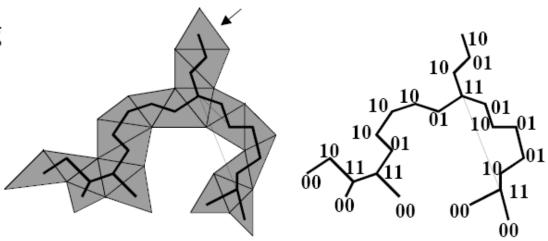
Case 2: Triangle-tree & vertex-tree

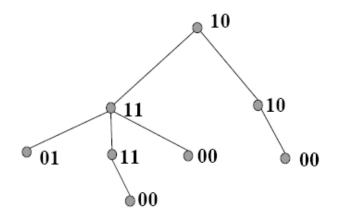


3T bit encoding

The triangle spanning tree may be encoded using 2T bits:

- ·has-left-child
- ·has-right-child

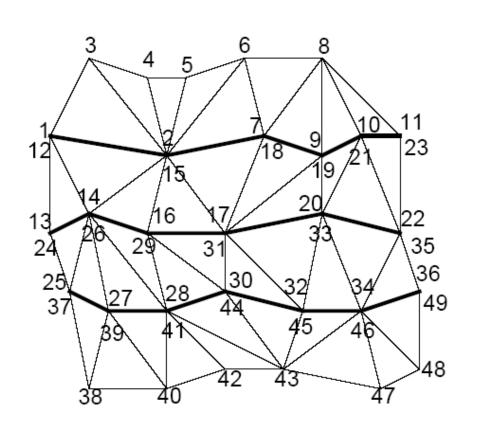


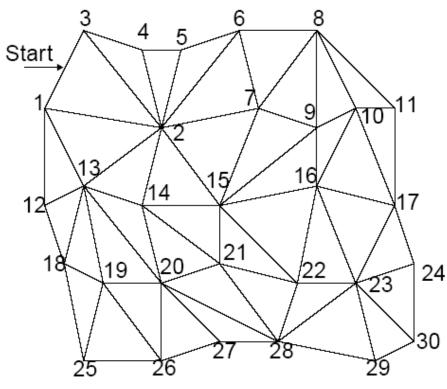


A vertex spanning tree may be encoded using 2V bits (= 1T bits):

- ·has-children
- has-right-sibling

Generalized Triangle Strip & Generalized Triangle Mesh





Case Study: Valence-based Codes

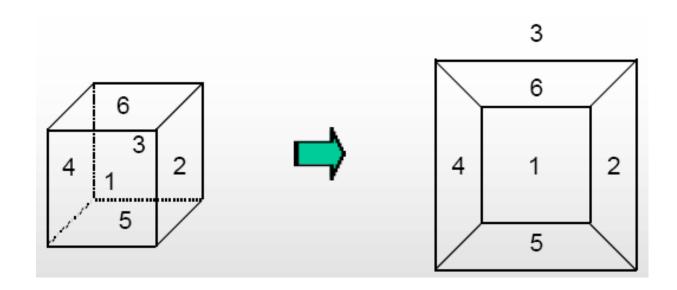
Touma C. and Gotsman C.

Triangle Mesh Compression.

Graphics Interface 1998

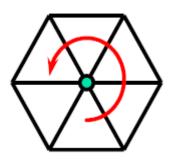
Key Principle

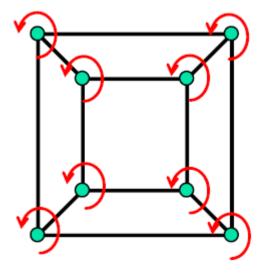
 A genus-0 manifold mesh is topologically equivalent to a planar graph.



Key Principle (cont.)

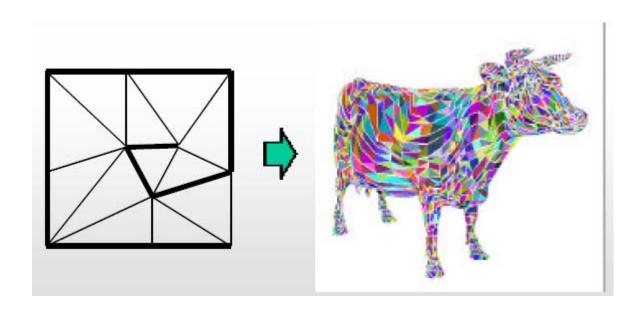
 In any planar graph edges incident on any vertex may be ordered consistently counterclockwise





Mesh Travesal

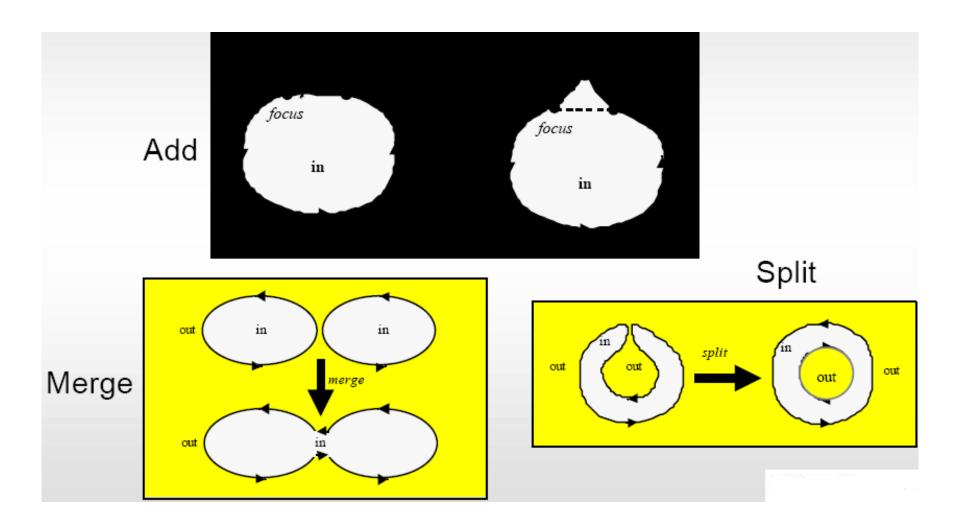
 The mesh vertices may be ordered in a set of winding paths that traverse the mesh.



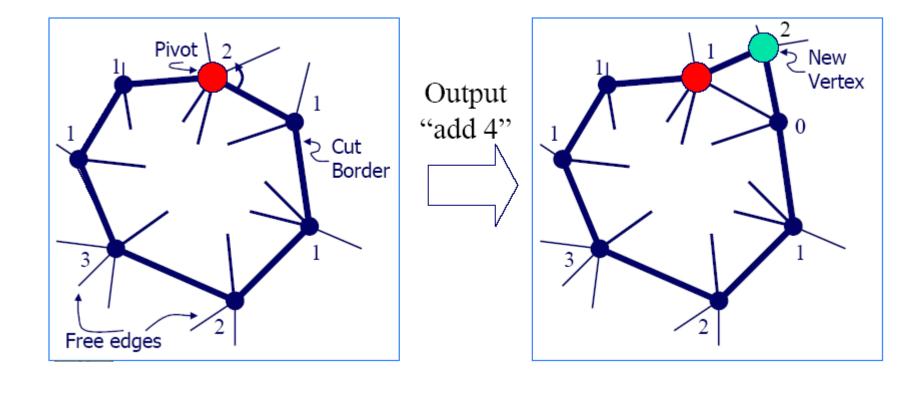
Code Words

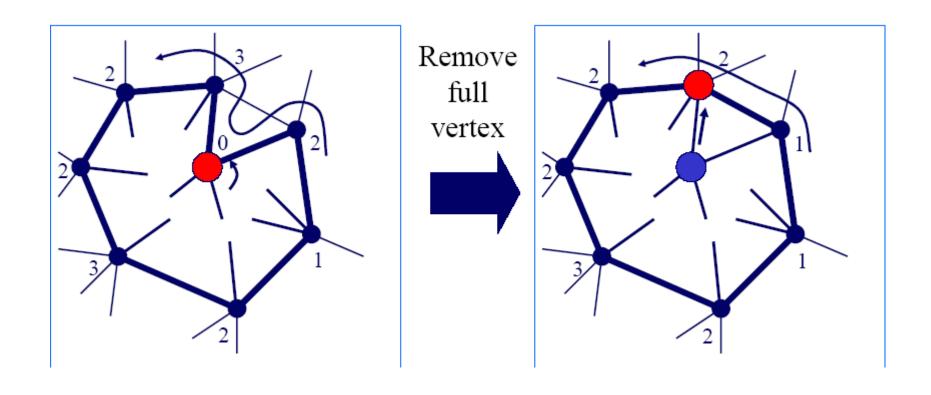
- The topology may be encoded with :
 - add <degree>
 - split <offset>
 - merge <offset>

 and then entropy encoded (Huffman, runlength).

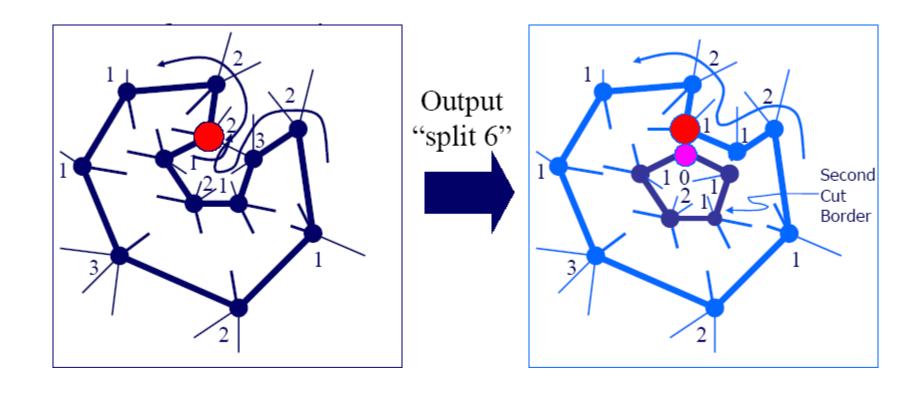


Cut-border expansion: add <valence>

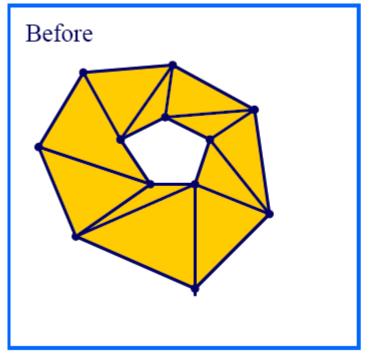




split <offset>

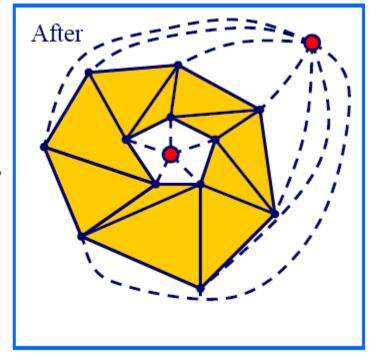


Topology Codewords

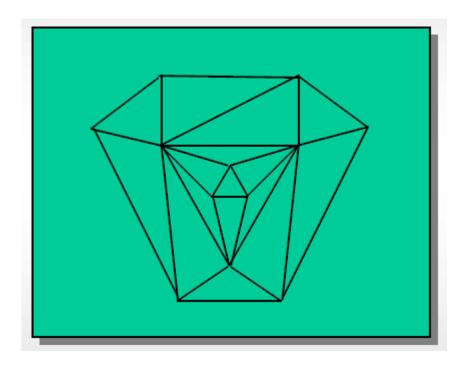


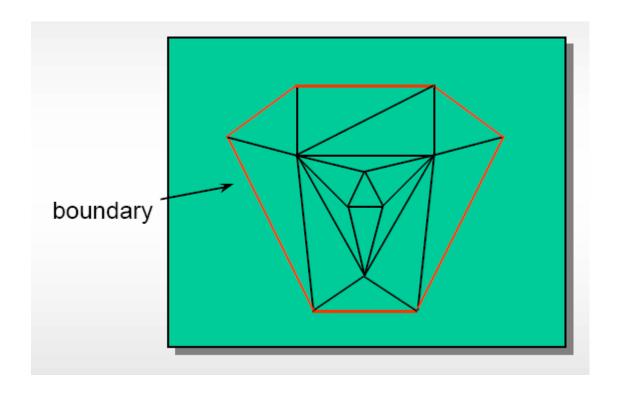
Add dummy vertices

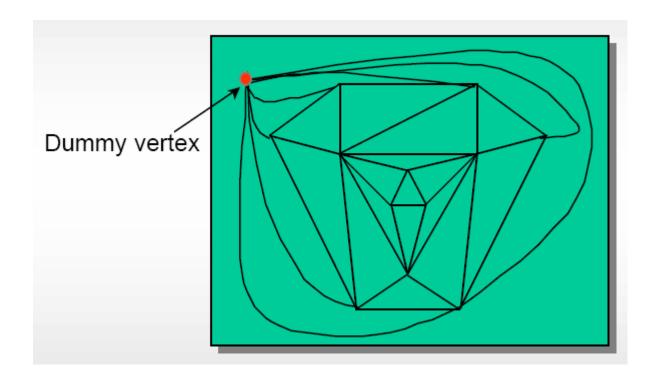
Close mesh

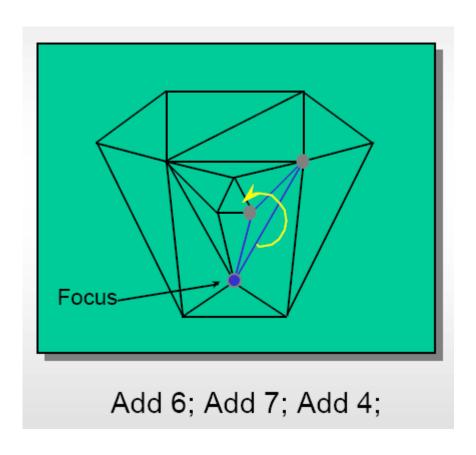


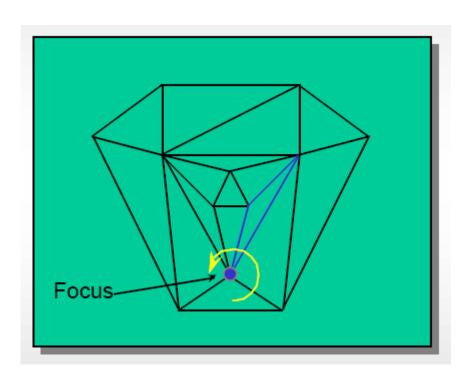
Example

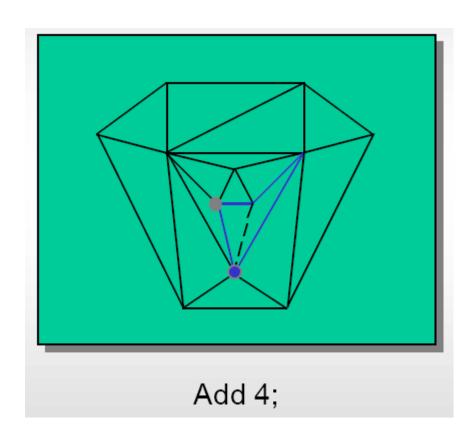


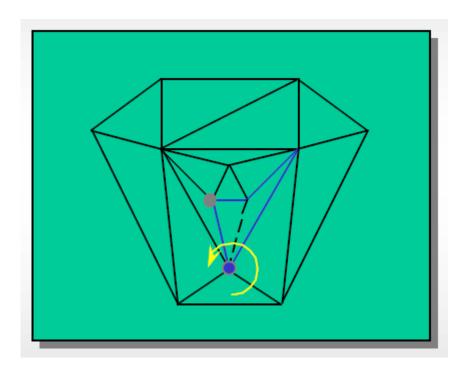


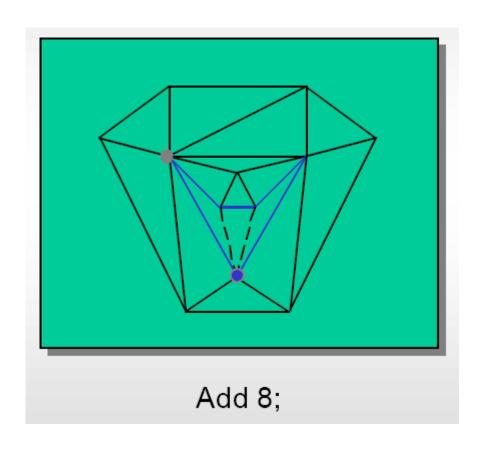


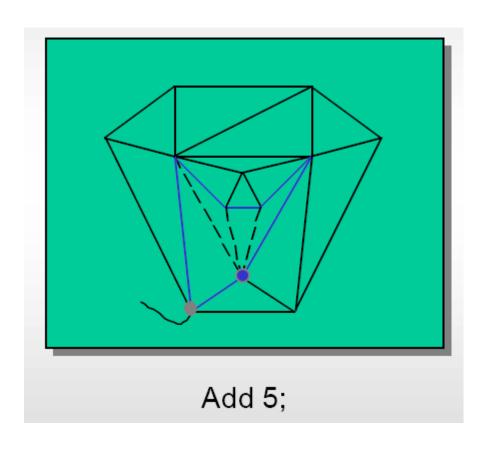


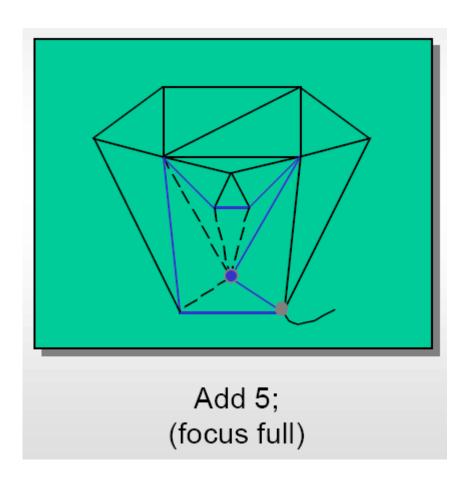


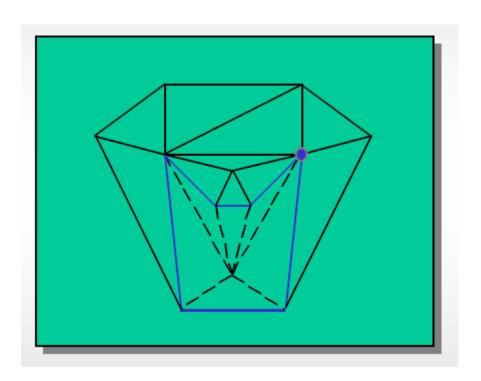


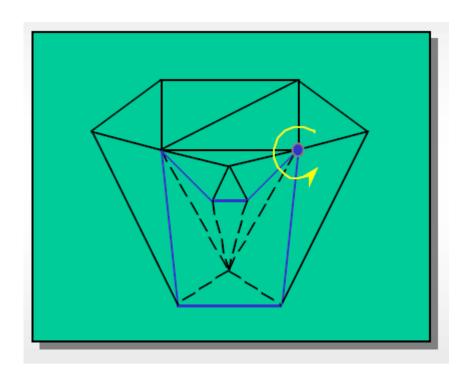


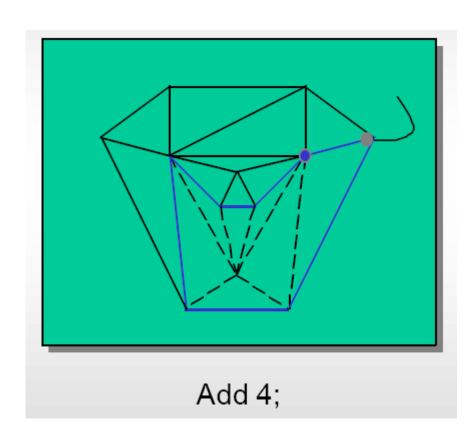


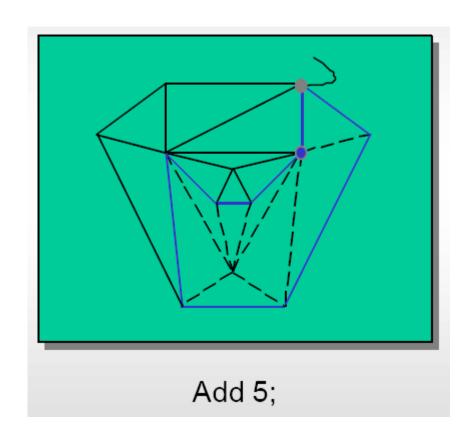


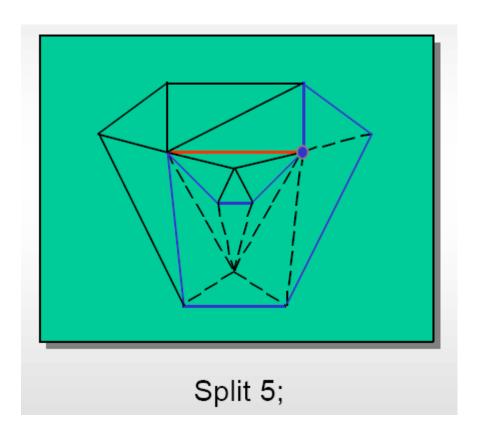


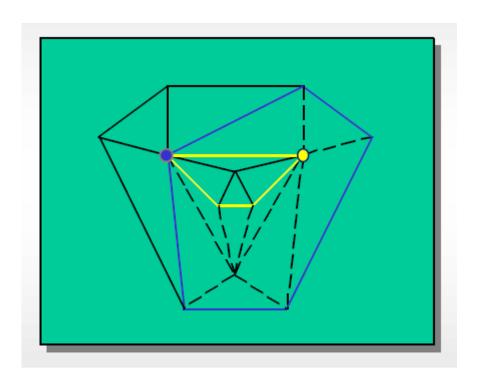


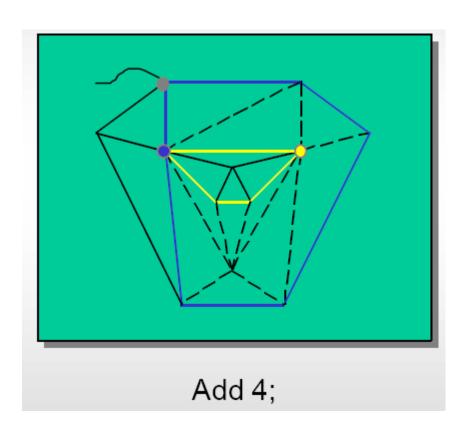


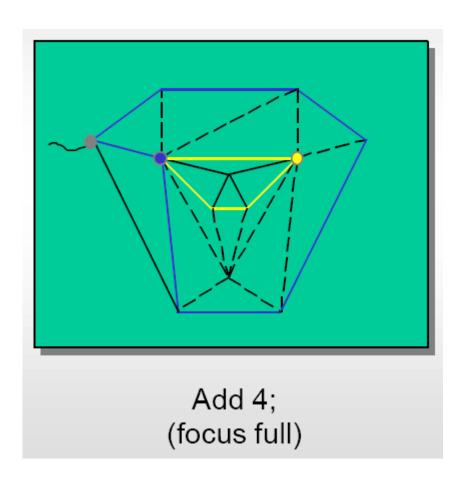


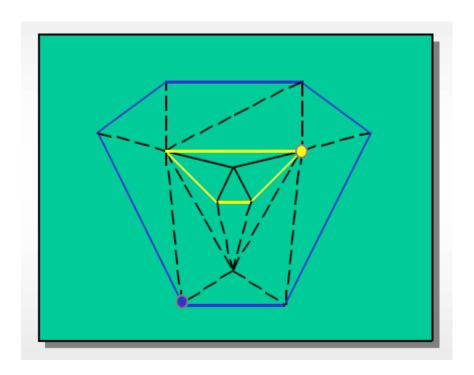


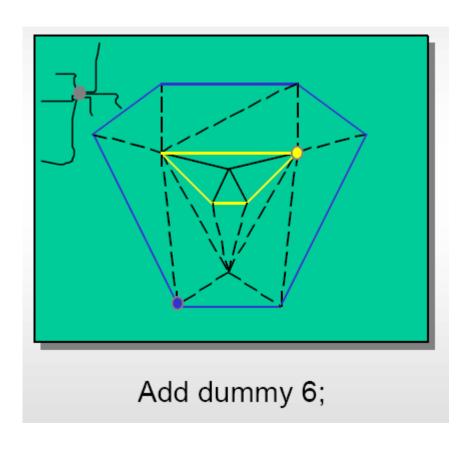


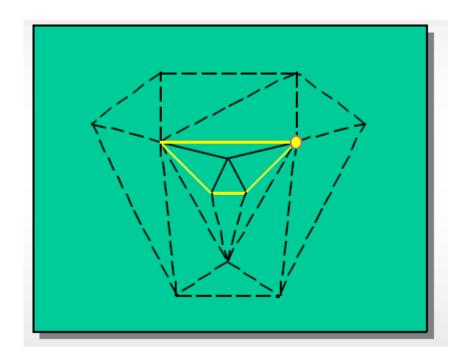


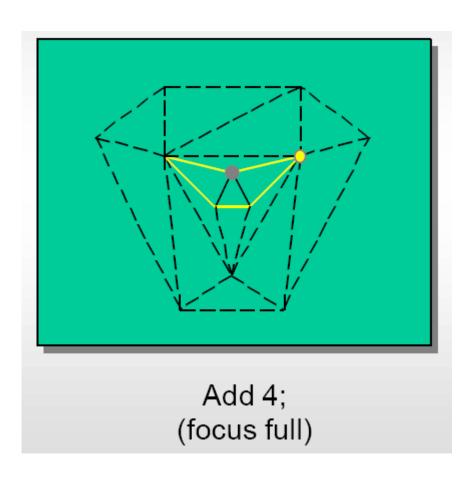


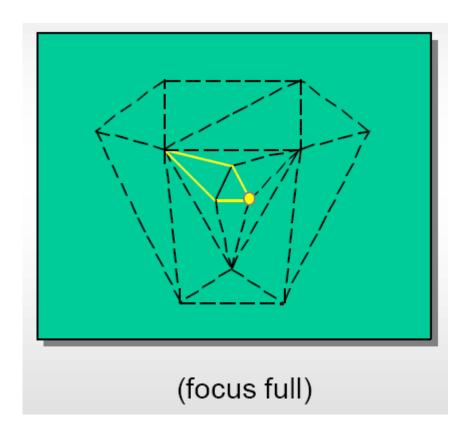


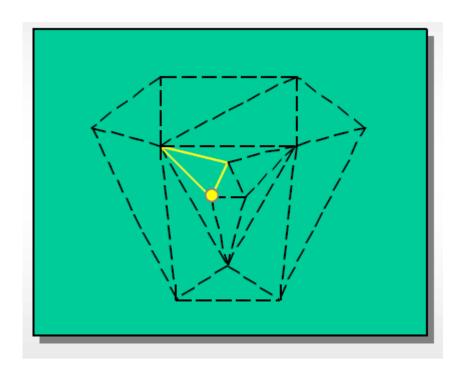


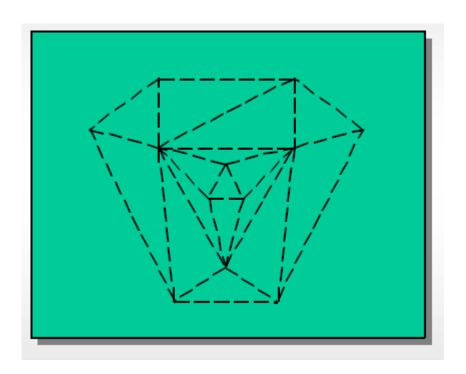








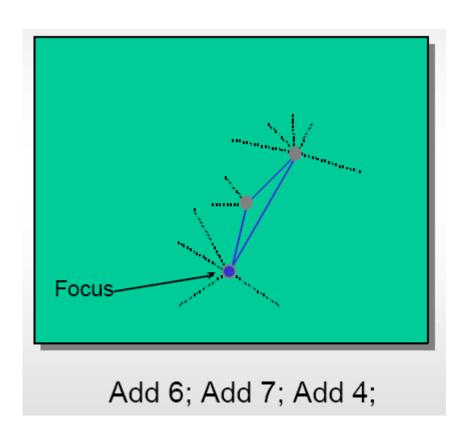


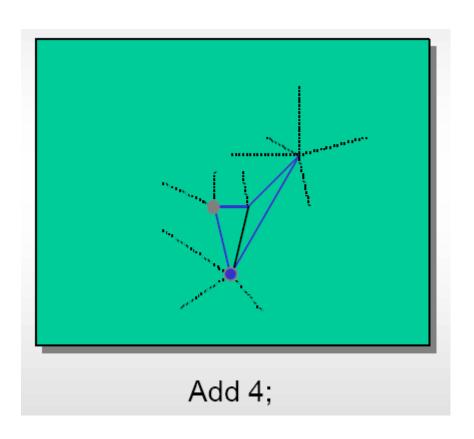


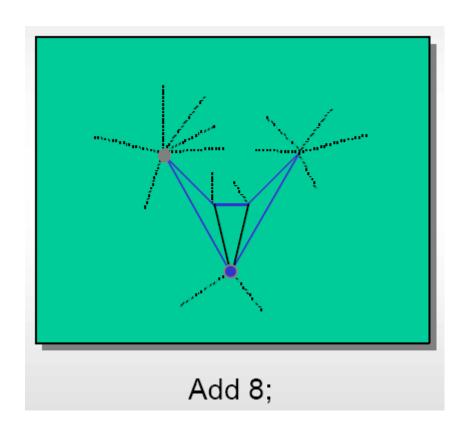
The Code

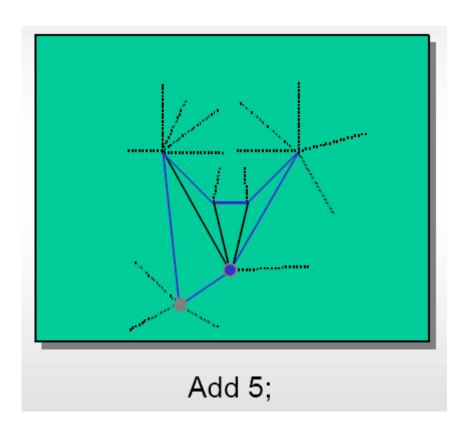
```
Add 6; Add 7; Add 4; Add 4; Add 8;
Add 5; Add 5; Add 4; Add 5; Split 5;
Add 4; Add 4; Add Dummy 6; Add 4;
```

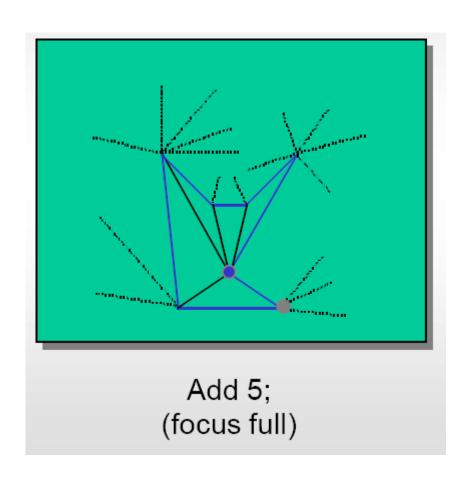
 For regular meshes (constant degree), spectacular compression ratios may be achieved.

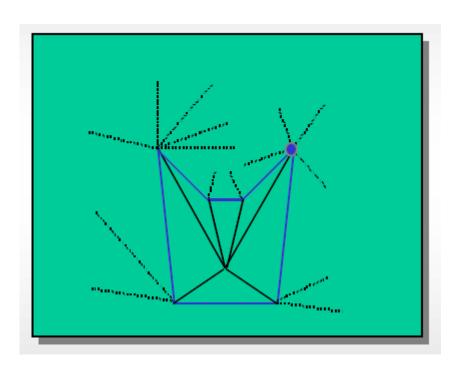


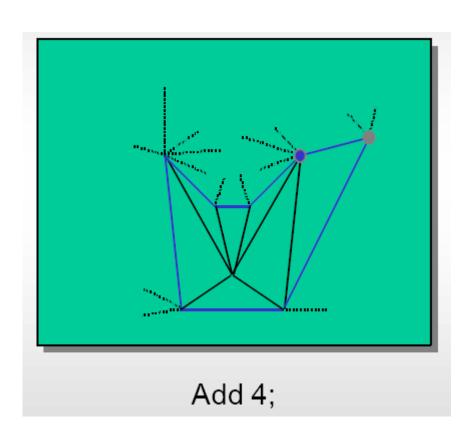


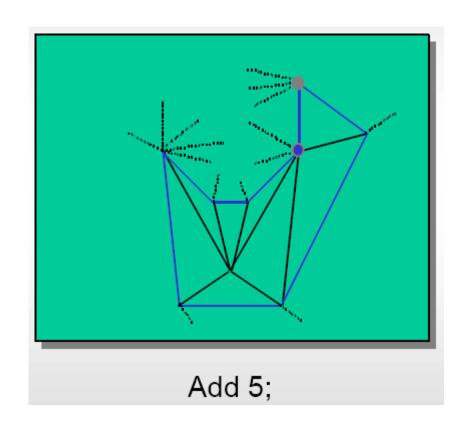


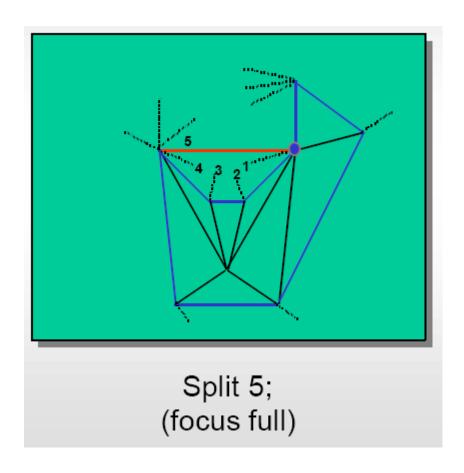


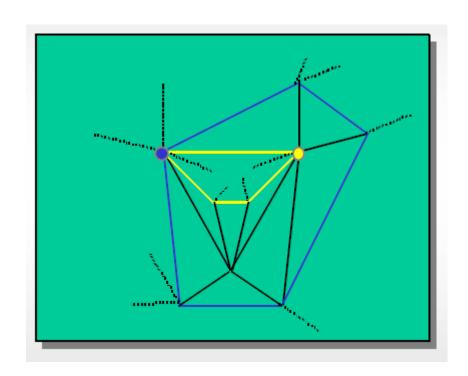


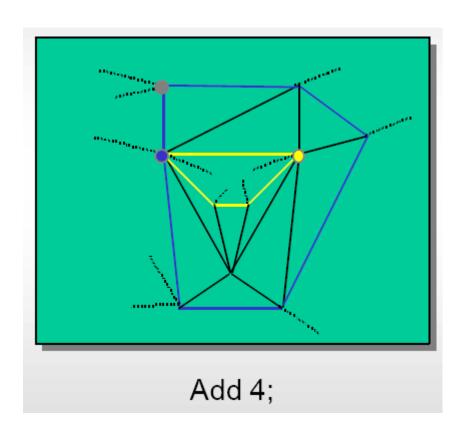


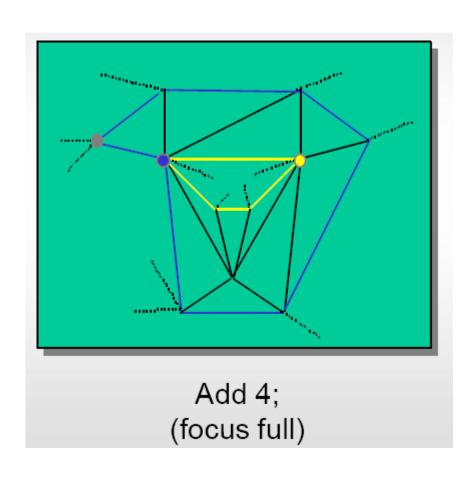


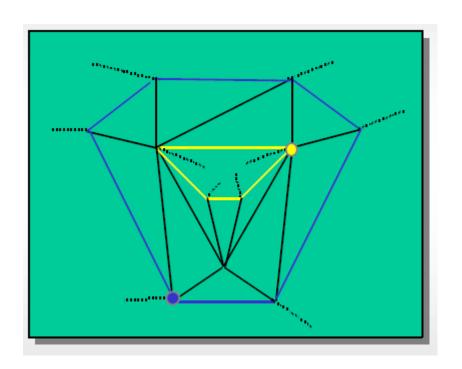


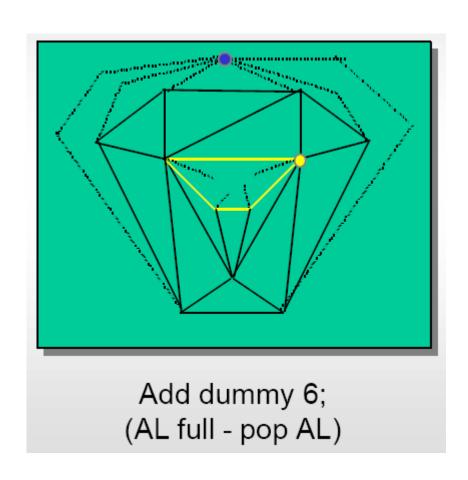


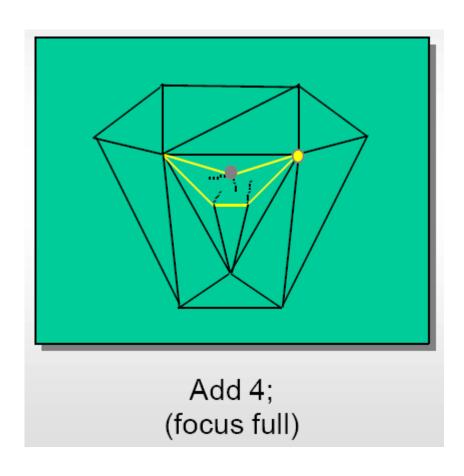


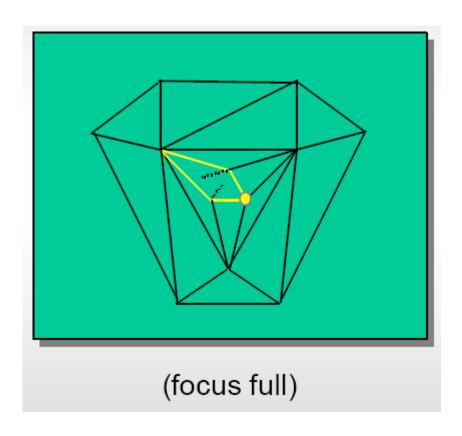


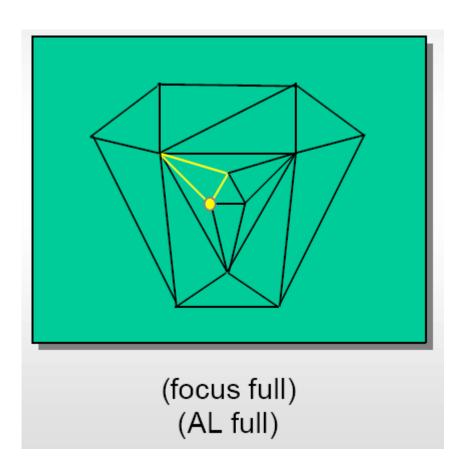


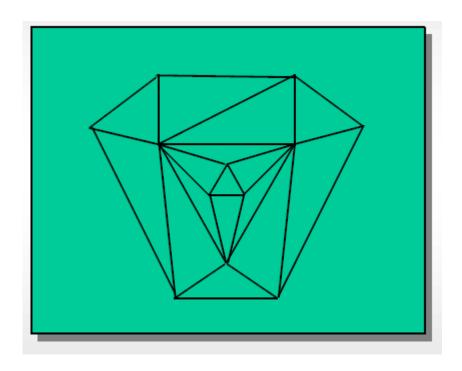




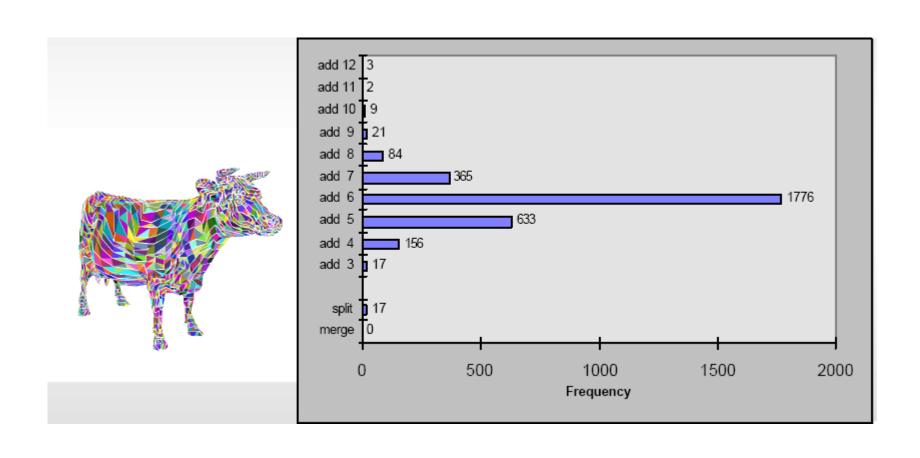




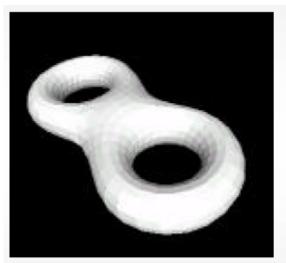




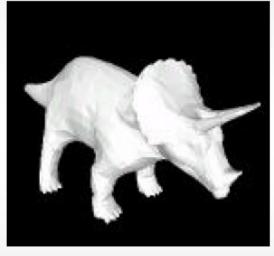
Example



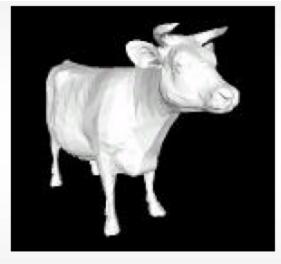
More Examples



Eight. 1,536 tri.

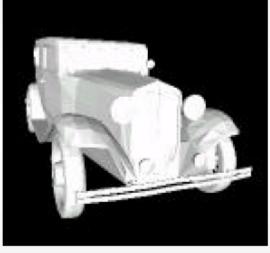


Triceratops: 5,660 tri.

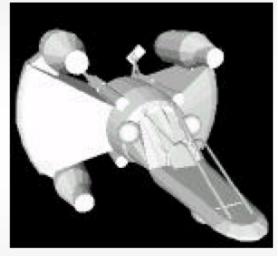


Cow: 5,804 tri.

Beethoven: 5,028 tri.



Dodge: 16,646 tri.



Starship: 8,152 tri.

Results

Model	#tri.	bits/tri
Eight	1,536	0.2
Triceratops	5,666	1.4
Cow	5,804	1.1
Beethoven	5,028	1.4
Dodge	16,646	0.9
Starship	8,152	0.5
Average		0.9

Performance

- Disadvantages:
 - No theoretical upper bound on code length
- Advantages:
 - Gives very good compression rates (approx 2 bits/vertex) on typical meshes
 - Gives excellent rates on highly regular meshes

Extensions

- Merge operation required when genus > 0
 - Occurs when two different cut-borders intersect

 Non-manifolds treated by cutting into manifold pieces

Several Other Solutions

Deering: Generalized triangle strips

- Use buffer to avoid sending vertices more than once
- Designed for hardware decompression

Taubin&Rossignac: Topological Surgery

- Efficient encoding of vertex and triangle trees
- MPEG-4 Standard

Gumhold&Strasser: Cutborder

Encode spiraling pattern and offsets that define bifurcations

Touma&Gotsman

Encode vertex valence and bifurcation offsets (great for regular meshes)

Rossignac&Szymczak&King: Edgebreaker

- No need to encode offsets of spiraling pattern
- 1.83T bits guaranteed, 1.0T bits demonstrated for large models

Discussions

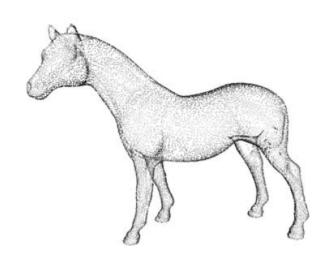
Geometry Encoding

Vertex Data

- ■Position: x y z
- ■Normal: nx ny nz
- Color: r g b {a}
- Texture coordinates: s t {r} {q}
- (Others)

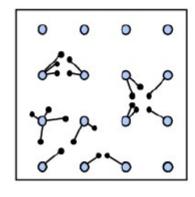
The Geometry

- Vertex coordinates (x, y, z) are
 - Floating point values
 - Almost unrestricted in:
 - range
 - precision
 - Uniformly spread in 3D
- Compression exploits input redundancy
 - hard to find in raw geometry data
- Lossy compression is OK!!

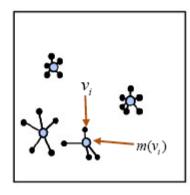


Quantization

- Map n values v_i to k<<n values m(v_i), without losing too much information
- Quantization error: $Err(v, m) = \sum_{i=1}^{n} ||v_i m(v_i)||^2$
- Find k and m such that Err(v,m) is minimized



Uniform



Non-uniform

Quantization

Example: rounding a set of doubles into integers

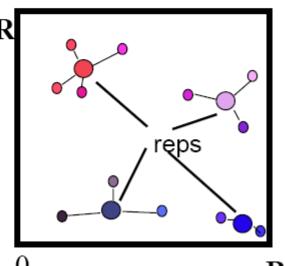
- Applications:
 - Image and voice compression
 - Voice recognition
 - Color display
 - Geometric compression

Example: color quantization

 Used for limited dynamic-range displays (e.g. an 8 bit display can display only 256 different colors)

quantization to 4 colors

- Reducing number of colors
 - Choosing set of representative colors (colormap or palette)
 - Map rest of colors to them
- Usually uses 256 colors



Representatives

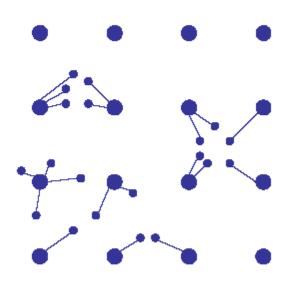
- How to choose representative colors?
 - Fixed representatives, image independent fast
 - Image content dependent slow

- Which image colors mapped to which representatives?
 - Nearest representative slow
 - By space partitioning fast

Color quantization examples

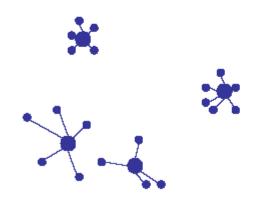
Uniform Quantization

- Quantization space partitioned into equal sized regions (e.g. grid) – fixed representatives
- Input independent
- Some representatives may be wasted
- Common way for 24->8 bit color quantization: retain 3+3+2 most significant bits of R, G & B components



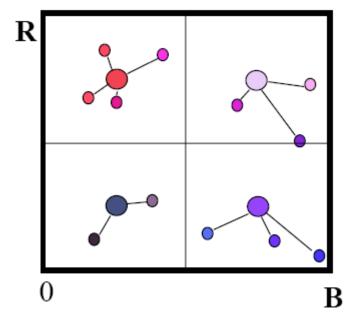
Non-uniform Quantization

- Quantization space partitioned according to input data
- Goal: choosing "best" representatives
 - Minimal distance error (if "distance" is defined)



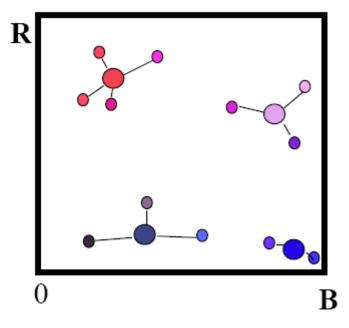
Examples

uniform quantization to 4 colors



large quantization error

image-dependent quantization to 4 colors



small quantization error

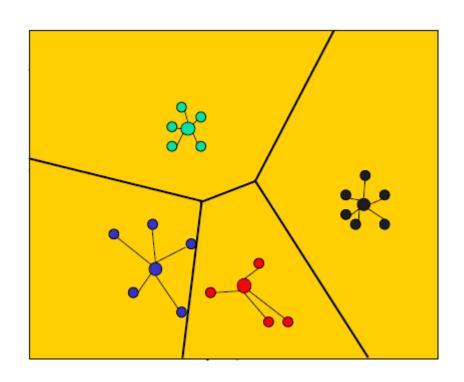
Quantization & Lossy Coding

- Quantization used as lossy coding method when there is notion of distance between symbols to be coded
 - Coordinates
 - Colors
 - Normals
 - Not good for characters

Lloyd algorithm for VQ

- Given k, finds best k representatives
- Iterative method: (v_i representatives)
 - for i=1 to k do { v_i ← random point }
 - While (v_i still moves)
 - S_i ← closest data points to v_i
 - v_i ← centroid of S_i (sum of S_i coordinates / |S_i|)

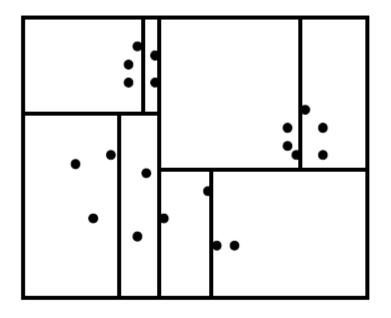
Lloyd algorithm - example



Lloyd algorithm (cont.)

- At each iteration, find S_i using Voronoi diagram (with v_i as sites)
- VQ problem in general is NP-Complete (finding BEST representatives). Lloyd algorithm generates the optimal solution but is very slow.
- What if k is not given?
 - Initialize k ← 2
 - Perform Lloyd algorithm
 - While quantization error is too big do:
 - k ← k+1
 - Perform Lloyd algorithm

Median cut quantization

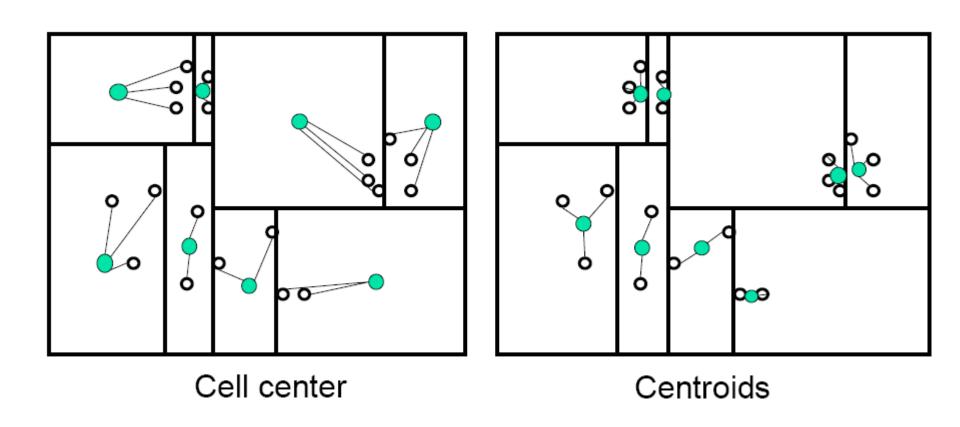


Median cut alg. - heuristic approximation to optimal (Lloyd) VQ solution

Median cut (cont.)

- while (num of cells<k) do
 - Split each cell into half vertically/horizontally alternately, according to number of sites
- Choose representatives for each cell:
 - Geometric cell center
 - Centroid of sites in cell (better results)

Median cut (cont.)



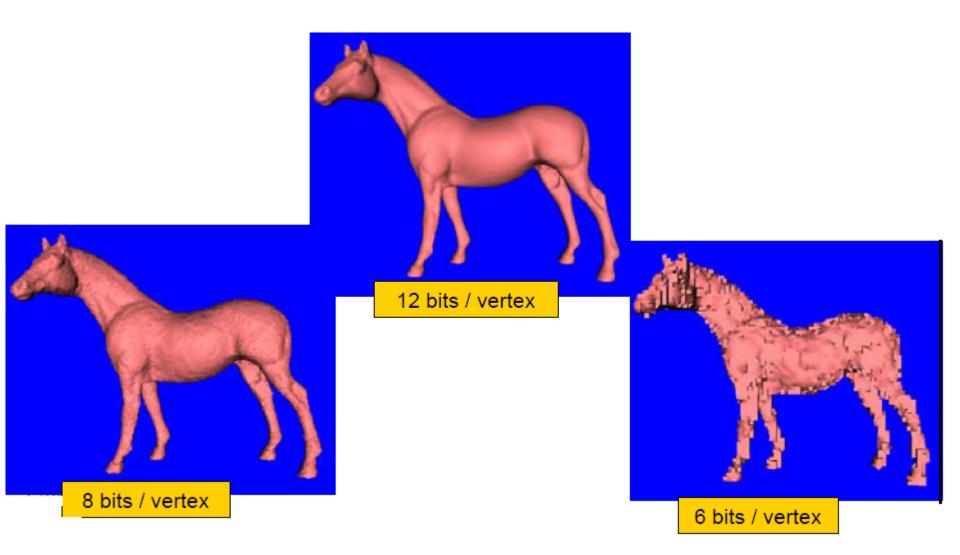
Uniform vs. median cut

original - 256 colors

Uniform geometry quantization

- Coordinates can be considered integers in a finite range after quantization
- Quantization is done on the data bounding box/cube intervals
- Geometry quantization to n bits:
 - All integer values in [0, 2ⁿ-1] can be used
 - Scale/transform coordinates to be maximal over given range
 - Quantize each coordinate (rounding to nearest integer)

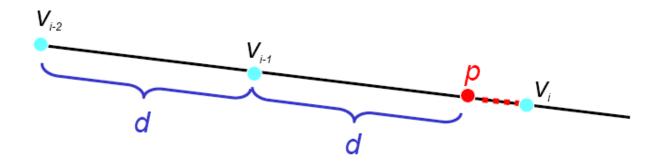
Uniform geometry quantization - results



Prediction

History Repeats Itself

Linear 2D predictor:

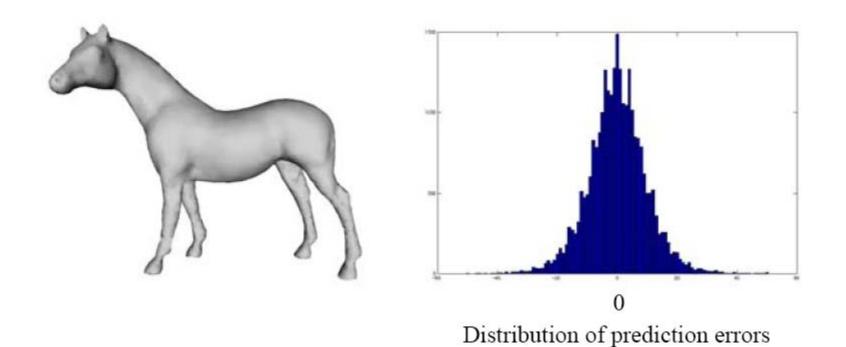


- Prediction rule: v_i -1 v_i -2 = p v_i -1 or: $p = 2 v_i$ -1 v_i -2
- Prediction error: $e_i = v_i p$

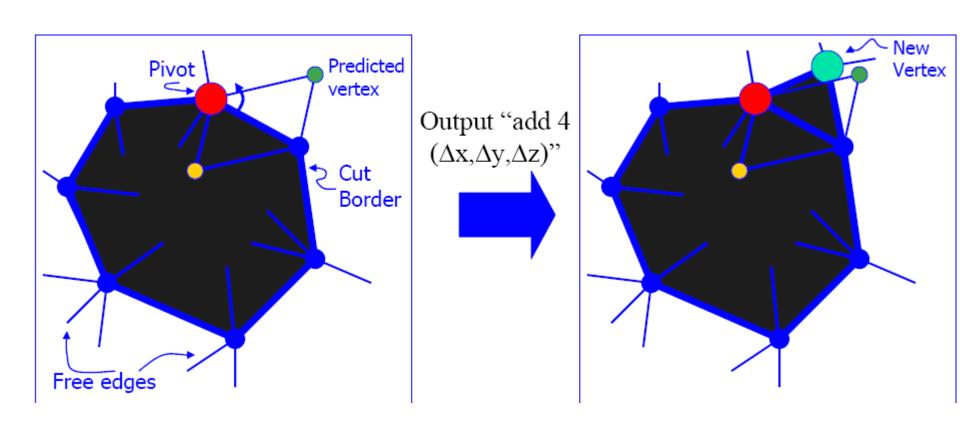
Using Predicted Geometry

- (v₁ v₂ v₃ ...) vertex coordinates
 (e₃ e₄ e₅...) prediction errors
- Naive geometry coding: v₁ v₂ v₃ ...
- Coding using prediction: v₁ v₂ e₃ e₄ e₅ ...
- Decoding: $v_1 v_2$ $v_i = 2 v_i$ -1 - v_i -2 + e_i i>2

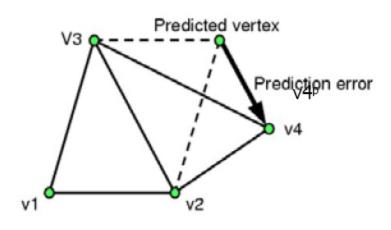
Good Prediction Reduces Entropy



Surface-Based Prediction



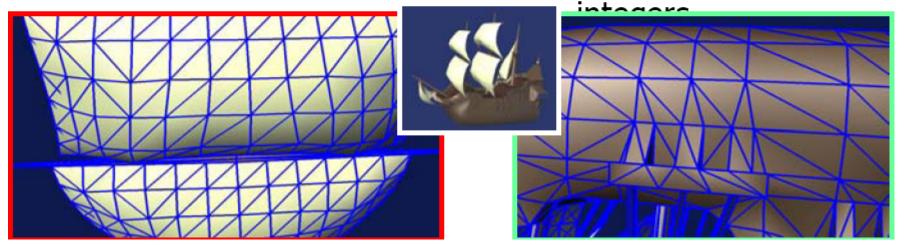
Parallelogram Prediction



Use the connectivity to predict the geometry:

$$V_{4p} = V_2 + V_3 - V_1$$

- (-1, 1, 1) in *barycentric* coords
- Can be applied to

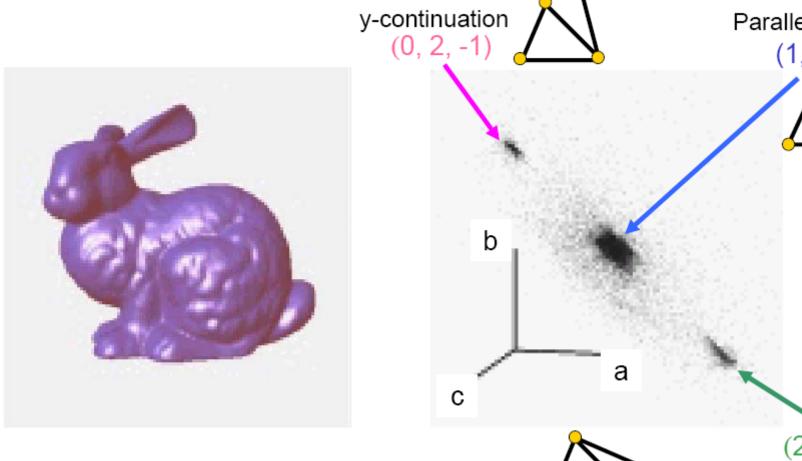


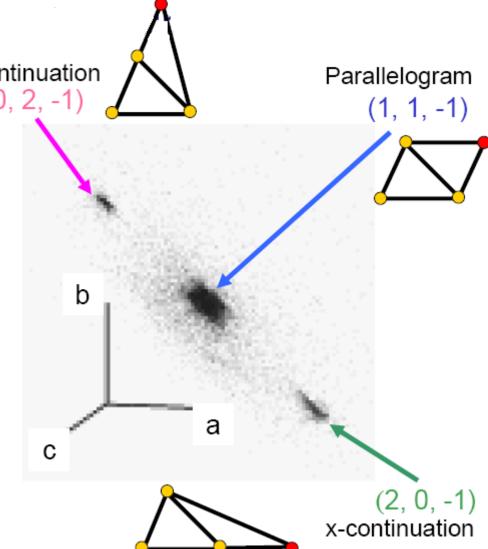
Some Results

Raw quantized data = 10 bits/coord = 30 bits/vertex

Model	vertices	line predictor	parallelogram	ratio
Eight	766	18.8	14.0	1.3
Triceratops	3100	18.4	14.1	1.3
Cow	3078	18.9	14.6	1.3
Beethoven	2847	22.7	17.3	1.3
Dodge	10466	19.8	12.4	1.6
Starship	4468	19.2	13.2	1.5
Average		19.6	14.3	1.4

Other Predictive Patterns

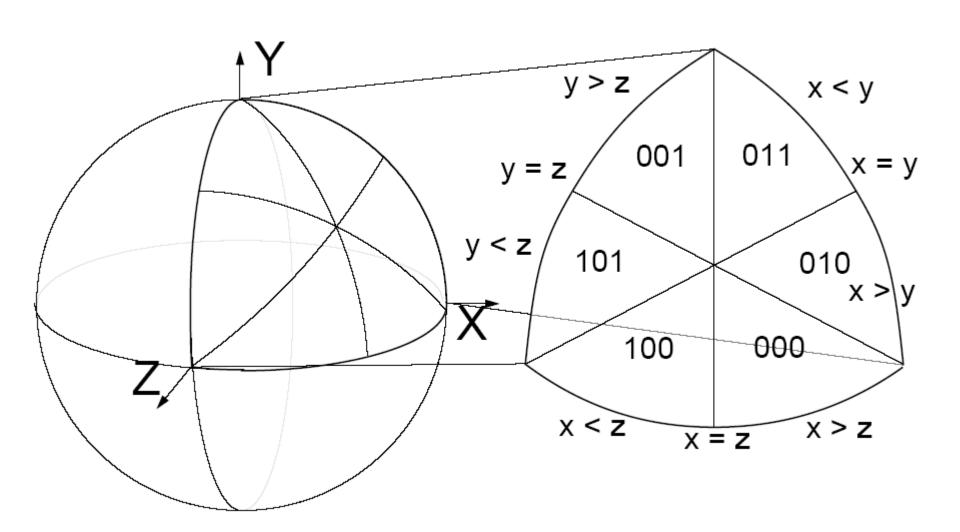




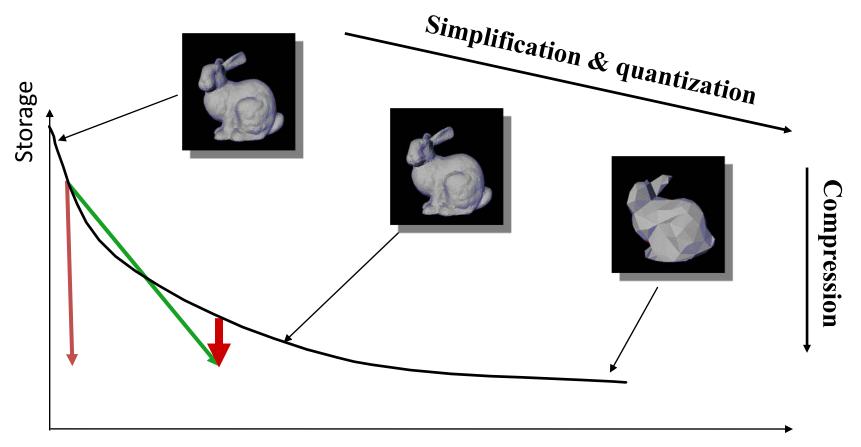
Predictor Traversal Optimization

- Parallelogram predictor assumes mesh is locally planar and regular
- Problem: Fails on meshes with sharp corners and creases
- Solution: Optimize face traversal to achieve good predictors

Alternate Normal Representation



Complexity of a shape = Storage/Error curve



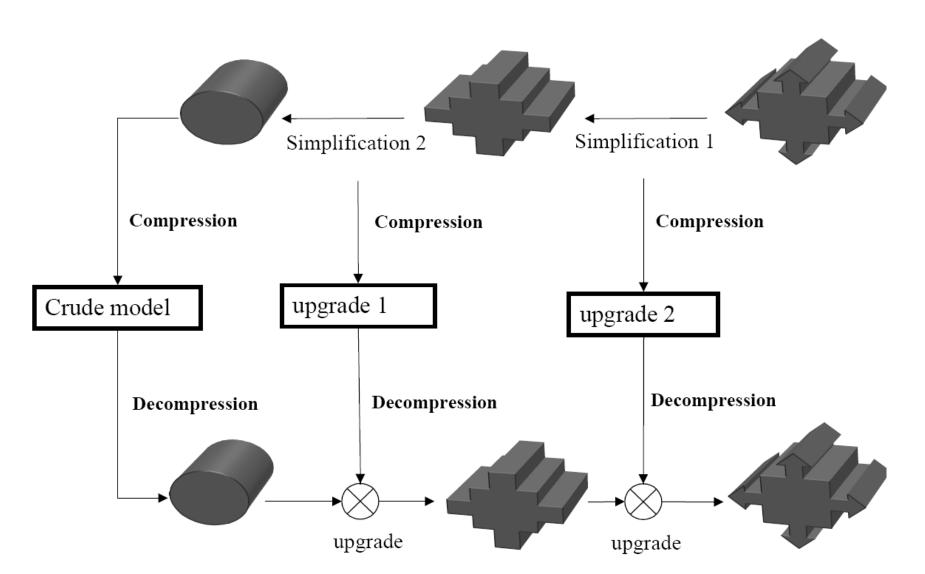
Error of the approximating model

Curve depends on representation and compression scheme used

Estimate $E_T = K/T$

Progressive Compression

- Compressed Successive Upgrades



Problems

- Higher compression ratio
- Random access
- Loss of bits

Resources

- Siggraph 2000 Course #38
- Research papers
- Internet

Discussions