

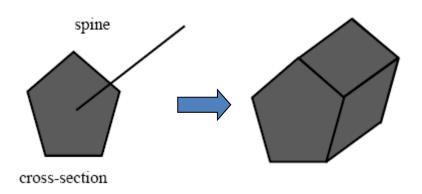
Mesh Editing

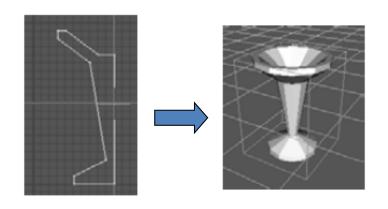
Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Building Shapes — 1

- From zero
 - Create a shape by extrusion or revolution



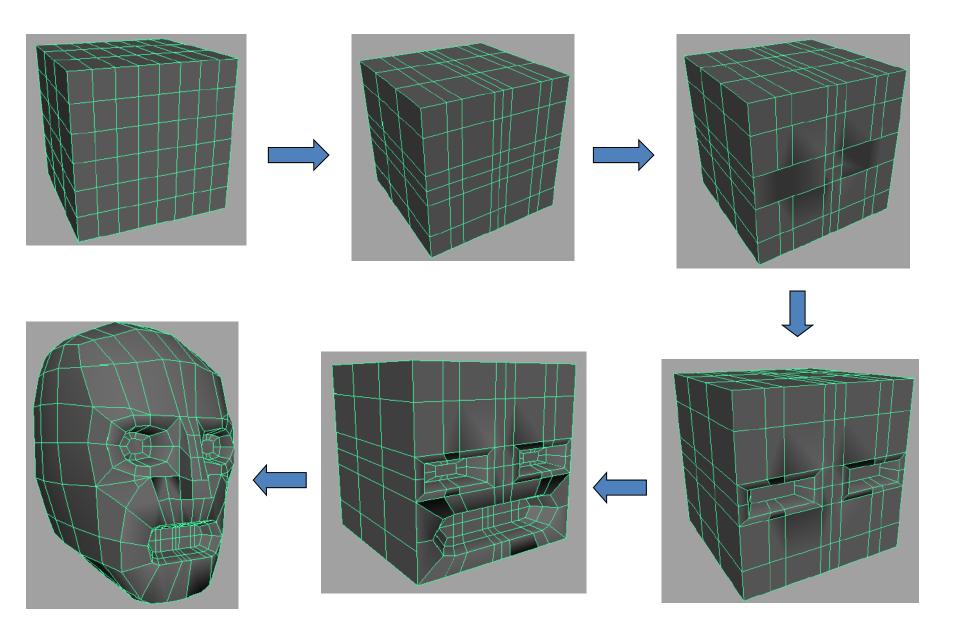


Extrusion (sweeping)

Revolution

Building Shapes — 2

- Selecting a base shape
 - Create a shape by extrusion or revolution
- Editing mesh
 - Selecting and editing vertices
 - Displacing areas of the mesh



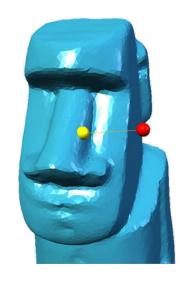
Mesh Deformation

- Mesh Editing
 - Animation
 - Modeling
 - Modeling new models via editing given models

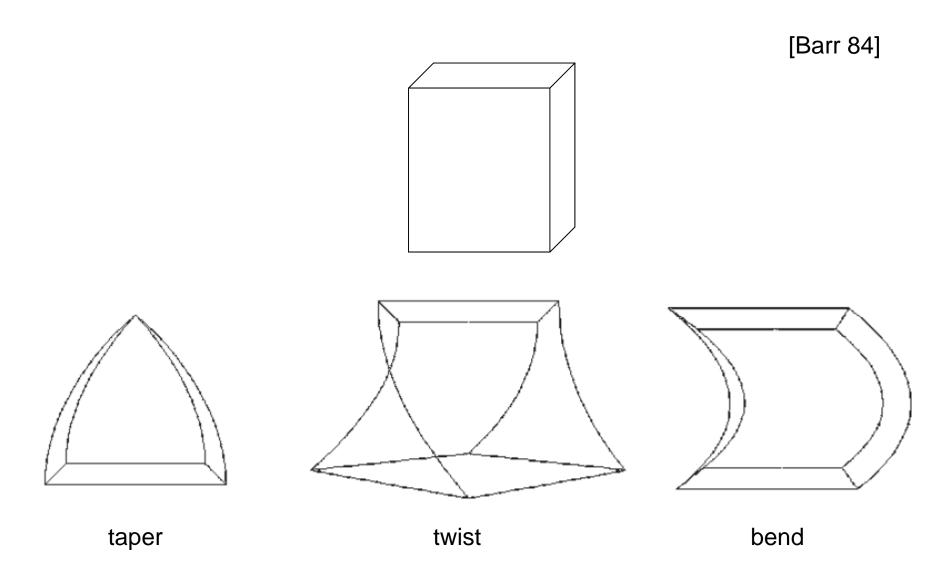
Methods

- Deform the vertex coordinates directly
 - Drag vertices
- Deform the control points
 - Bézier, NURBS
- Deform the embedded space
 - FFD, Axial deformation

Vertex Dragging



Global Deformation

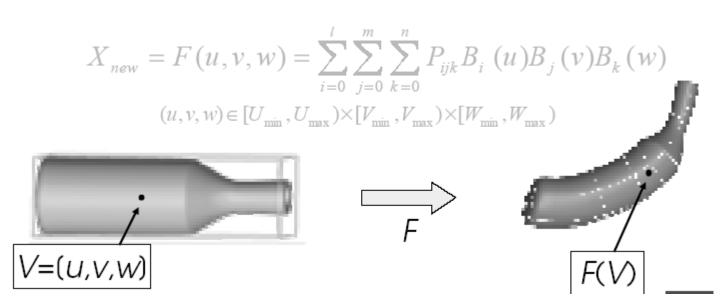


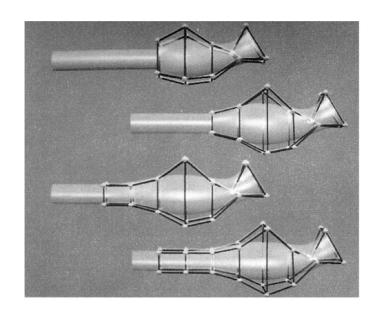
Free-form Deformation (FFD)

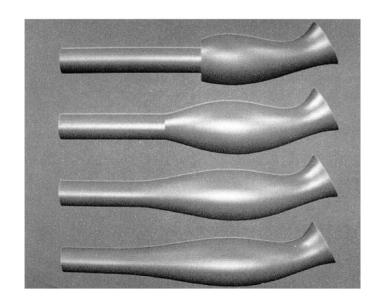
Free-form Deformation (FFD)

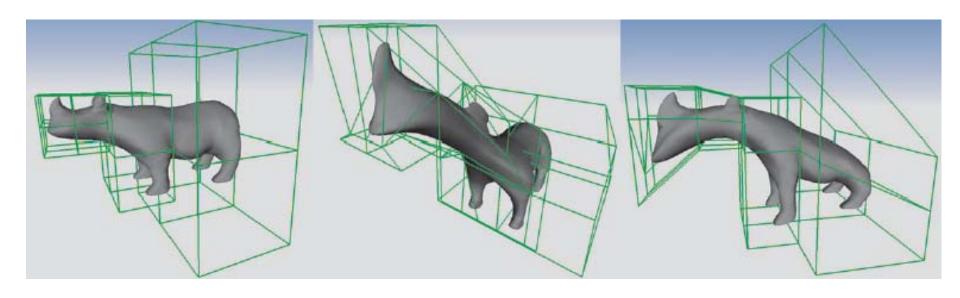
[Sederberg et al. 86]

- Embed the object into a domain that is more easily parametrized than the object.
- Advantages:
 - You can deform arbitrary objects
 - Independent of object representation



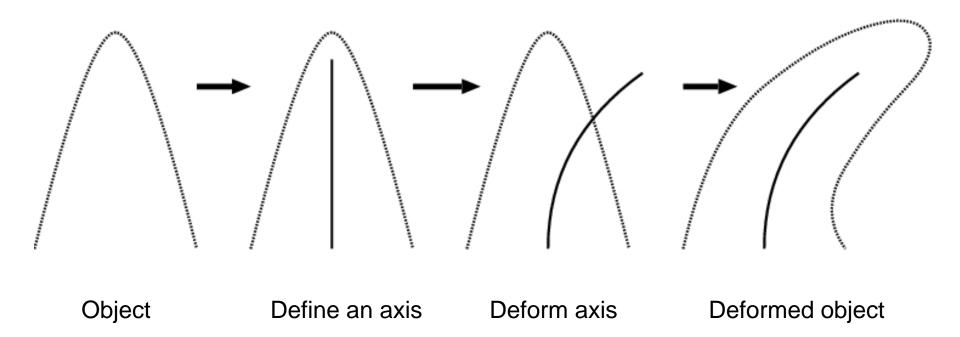




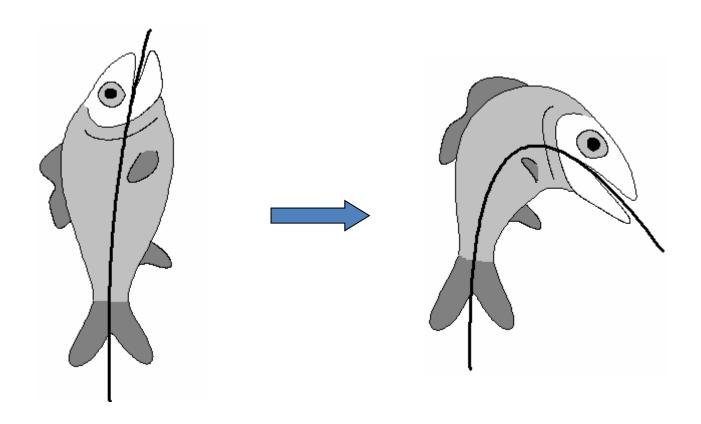


Axial Deformation (AxDf)

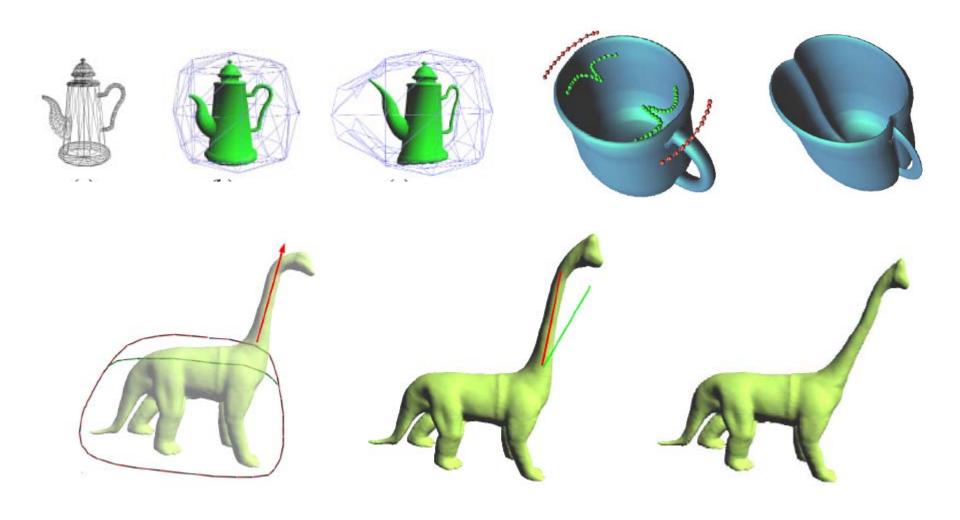
[1994]



AxDf

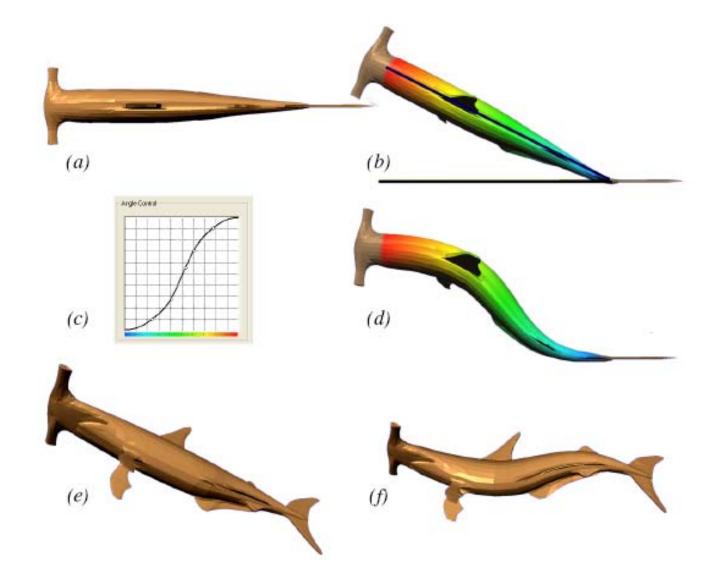


FFD via Sketching



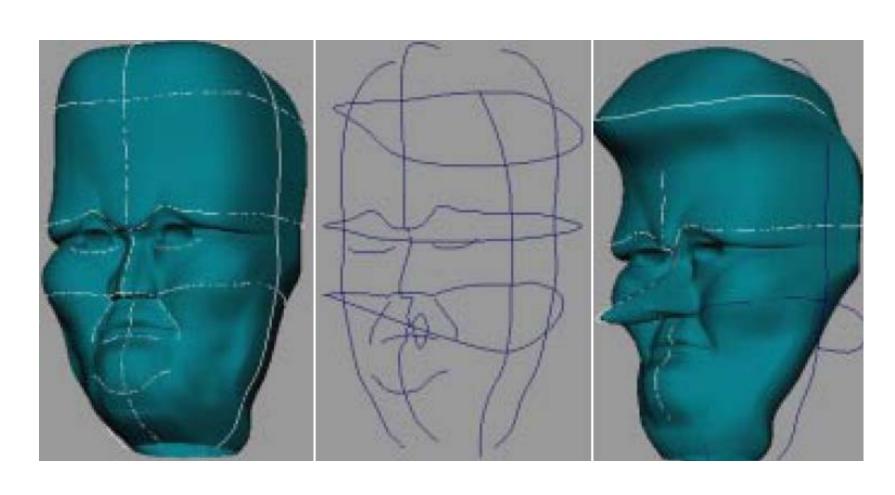
Sketching Deformations

[2005]



Wires

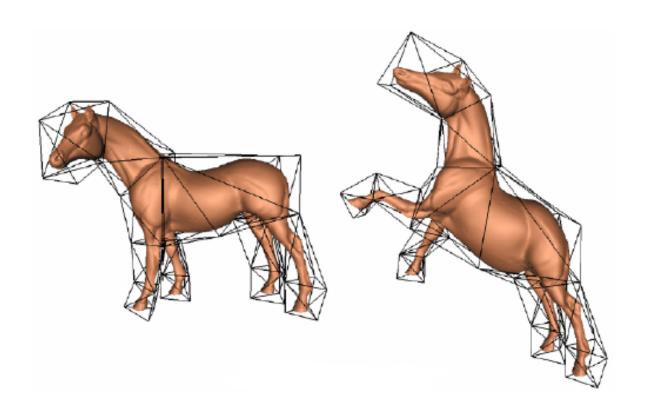
[1999]



Mean Value Coordinates

• Extended barycentric coordinates

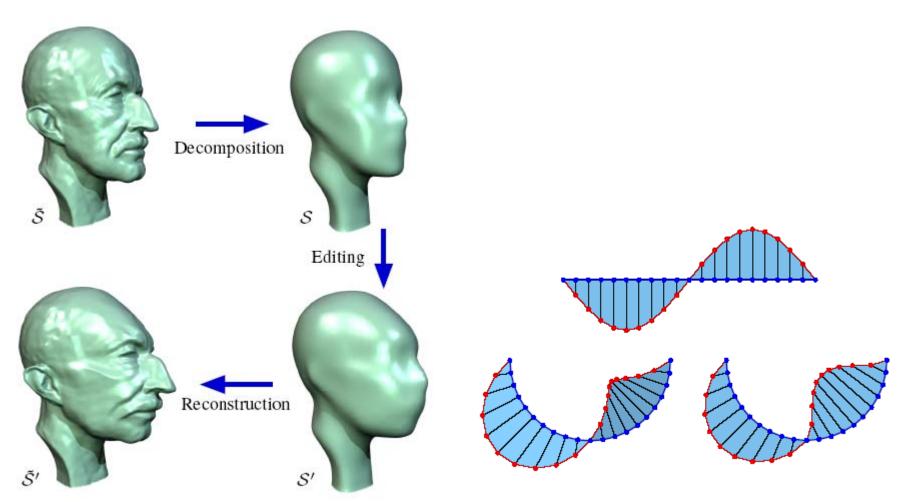
[2005]

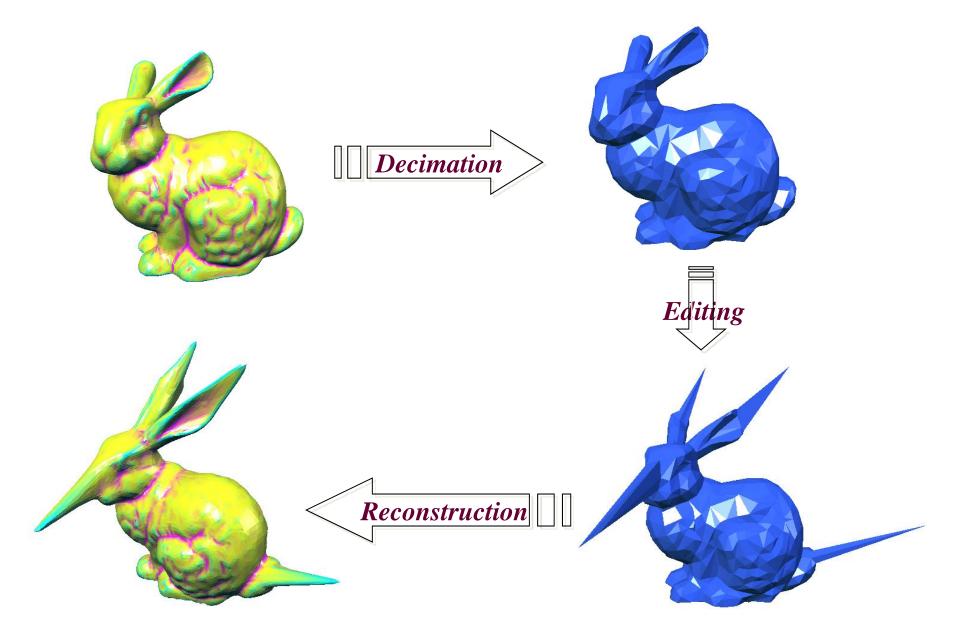


Multiresolution Editing

Multiresolution Editing

[2003]





Discrete Differential Coordinates

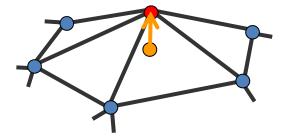
Detail Preserving Representation

Differential Coordinates

- Represent local detail at each surface point
 - better describe the shape
- Linear transition from global to differential
- Useful for operations on surfaces where surface details are important

What's are Details?

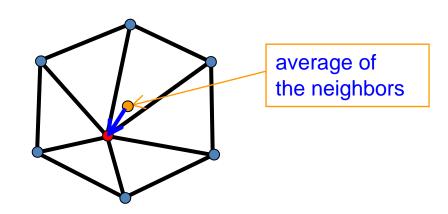
- Detail = surface smooth (surface)
- Smoothing = averaging



Differential Coordinates

 Differential coordinates are defined by the discrete Laplacian operator:

$$\delta_i = v_i - \sum_{j \in N(i)} w_j v_j$$



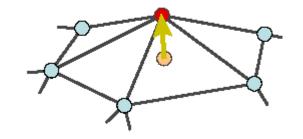
What's the Difference?

Absolute Coordinate

$$v_i = (x_i, y_i, z_i)$$

• Relative Coordinate

$$v_i = \sum_{j \in N(i)} w_j v_j + \delta_i$$



Weighting Schemes

Uniform weight (geometry oblivious)

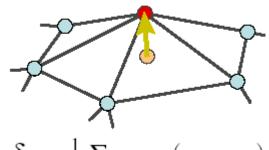
$$w_i = 1$$

Cotangent weight (geometry aware)

$$w_i = (\cot \alpha + \cot \beta)$$

Normalization

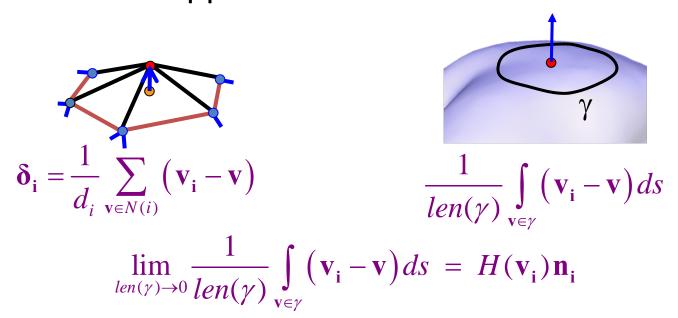
$$w_j = \frac{w_j}{\sum_j w_j}$$



$$\delta_i = \frac{1}{d_i} \sum_{j \in N(i)} (\mathbf{v}_i - \mathbf{v}_j)$$

Geometric Meaning

- DCs represent the local detail / local shape description
 - The direction approximates the normal
 - The size approximates the mean curvature



Laplacian Matrix

• The transition between the δ and xyz is linear:

$$A_{ij} = \begin{cases} 1 & i \in N(j) \\ 0 & otherwise \end{cases}$$

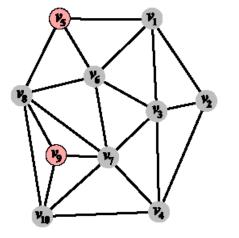
$$L = I - D^{-1}A$$

$$A_{ij} = \begin{cases} d_i & i = j \\ 0 & otherwise \end{cases}$$

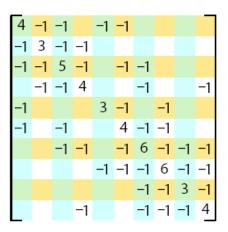
Reconstruction

- From relative coordinates to absolute coordinates.
- Solving a sparse linear system

$$Lv = \delta$$



The mesh

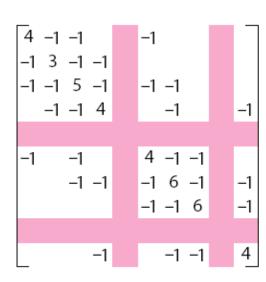


The symmetric Laplacian L_s

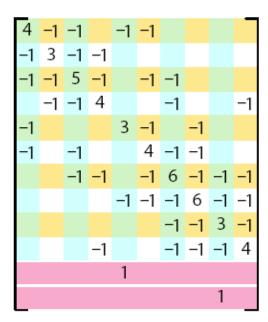
Reconstruction

Soft constraints

$$L^{T}Lv = L^{T}\delta$$



Invertible Laplacian



2-anchor \tilde{L}

Variational Viewpoint

Laplacian Approximation

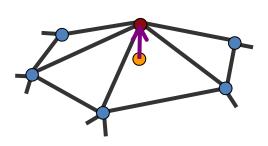
$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \left(\|L\mathbf{x} - \delta^{(x)}\|^2 + \sum_{j \in C} \omega^2 \|x_j - c_j\|^2 \right).$$

Gradient Approximation

$$\min_{\phi} \int \int_{\Omega} \|\nabla \phi - \mathbf{w}\|^2 dA,$$

Laplacian matrix

• The transition between the δ and xyz is linear:



$$\boldsymbol{\delta}_{i} = \sum_{j \in N(i)} w_{ij} \left(\mathbf{v}_{i} - \mathbf{v}_{j} \right)$$

$$\mathbf{L} \qquad \mathbf{v_x} = \mathbf{\delta_x}$$

$$\mathbf{L} \qquad \mathbf{v_y} = \mathbf{\delta_y}$$

Basic properties

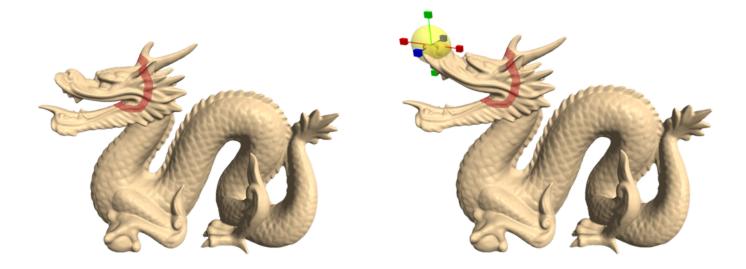
- Rank(L) = n-c (n-1 for connected meshes)
- We can reconstruct the xyz geometry from delta up to translation

$$L\mathbf{x} = \mathbf{\delta}$$

Laplacian Mesh Editing

Laplacian Editing

- Local detail representation enables detail preservation through various modeling tasks
- Representation with sparse matrices
- Efficient linear surface reconstruction



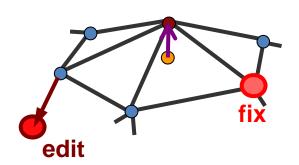
Editing framework

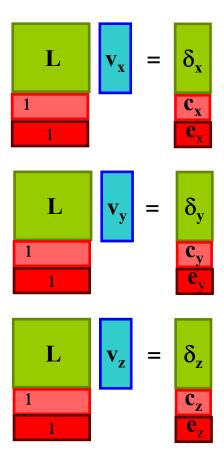
- The spatial constraints will serve as modeling constraints
- Reconstruct the surface every time the modeling constraints are changed

Detail constraints: $L\mathbf{x} = \mathbf{\delta}$

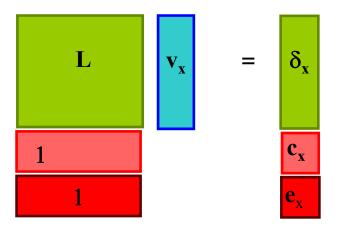
Modeling constraints: $x_j = c_j, \quad j \in \{j_1, j_2, \dots j_k\}$

Reconstruction



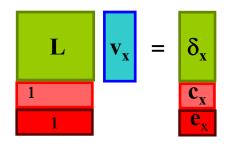


Reconstruction



$$\left\|\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \left(\left\| L\mathbf{x} - \boldsymbol{\delta}_{x} \right\|^{2} + \sum_{s=1}^{k} \left| x_{k} - c_{k} \right|^{2} \right) \right\|$$

Reconstruction



$$A x = b$$

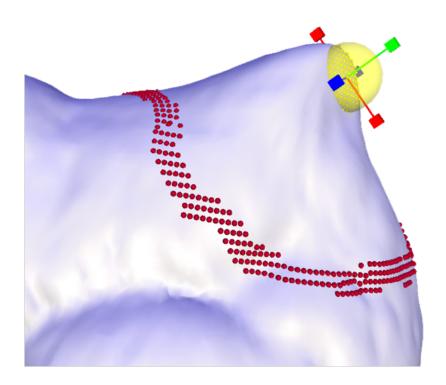
Normal Equations:

$$A^{T}A \times = A^{T}b$$

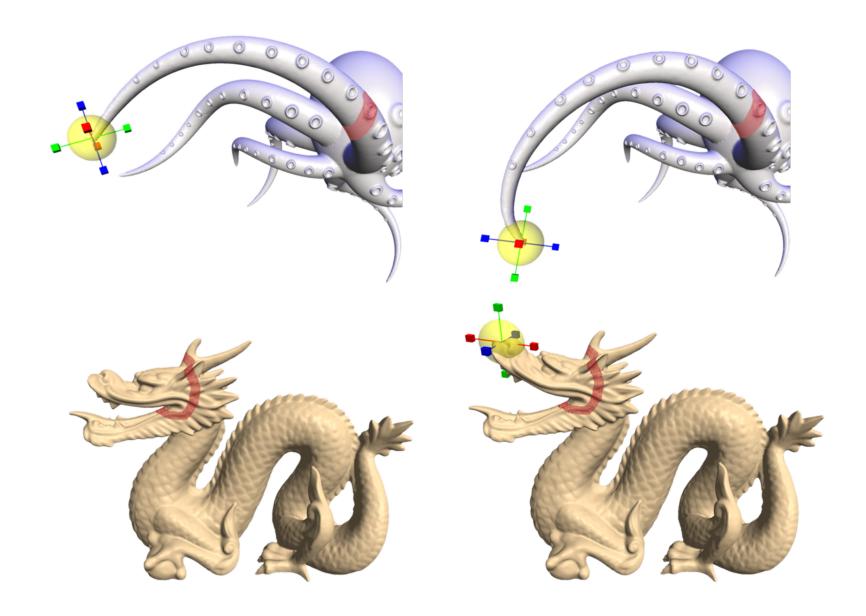
$$X = (A^{T}A)^{-1} A^{T}b$$
compute
once

User Interfaces

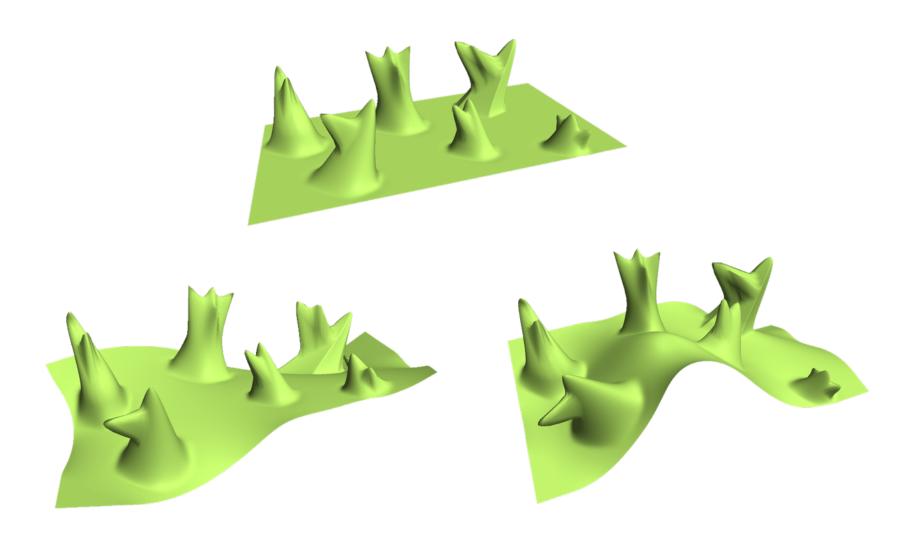
- ROI is bounded by a belt (static anchors)
- Manipulation through handle(s)



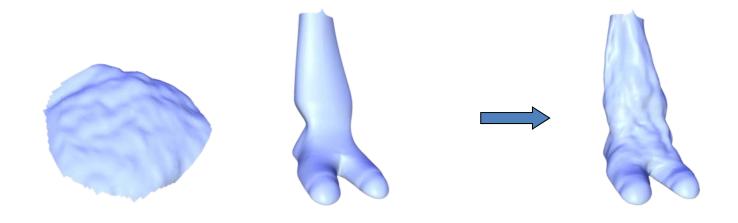
Results



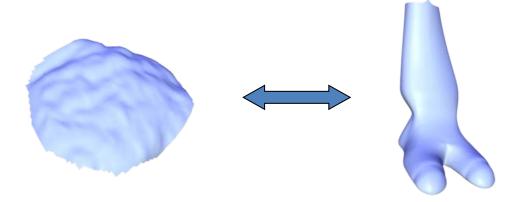
Results



 "Peel" the coating of one surface and transfer to another



• Correspondence:

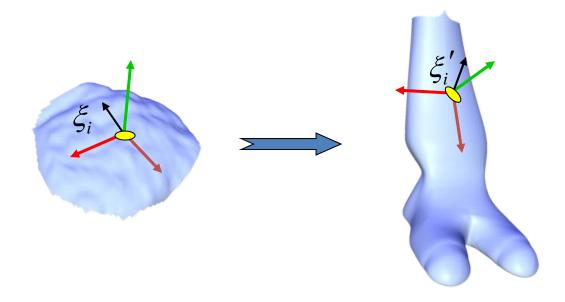


 Parameterization onto a common domain and elastic warp to align the features, if needed

Detail peeling:

$$\xi_i = \delta_i - \tilde{\delta}_i$$

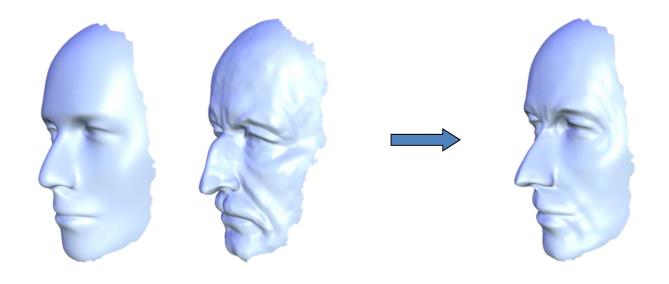
Changing local frames:



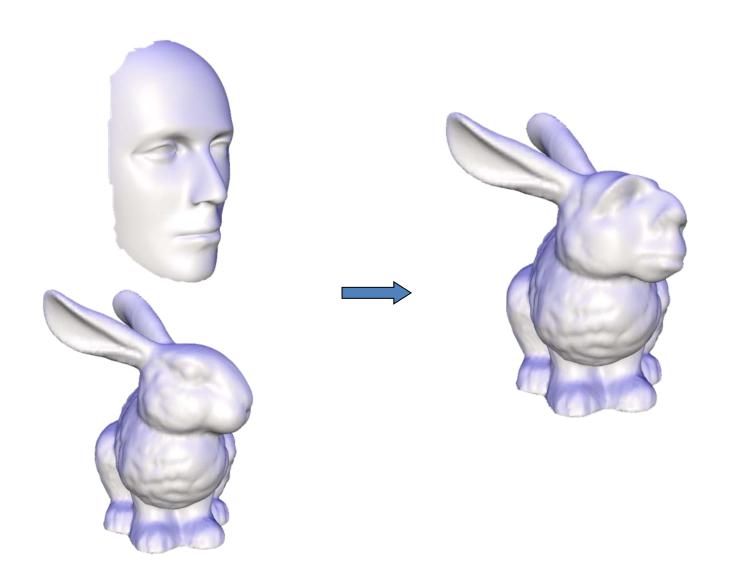
• Reconstruction of target surface from: δ_{target}

$$\delta_{\text{target}} = \delta_i' + \xi_i'$$

Examples

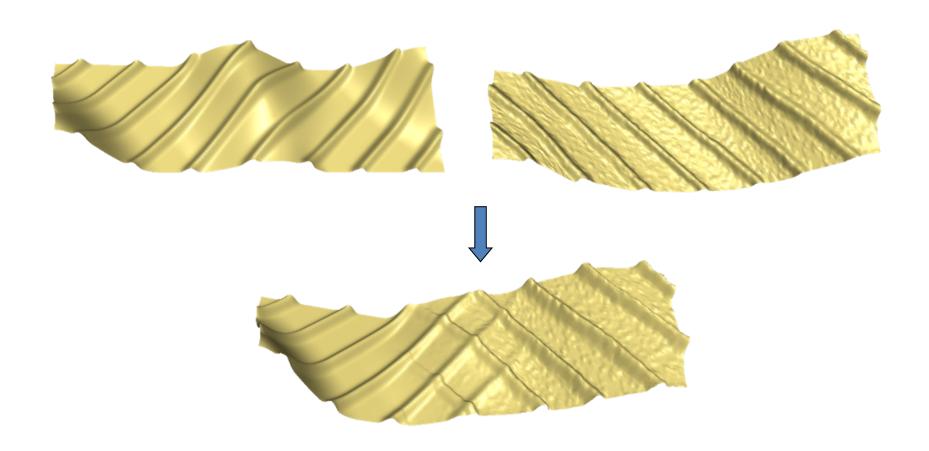


Examples



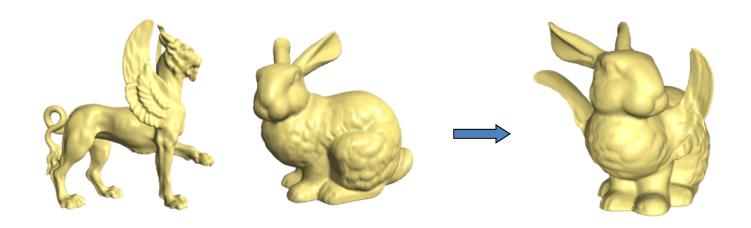
Mixing Laplacians

• Taking weighted average of δ_i and δ_i



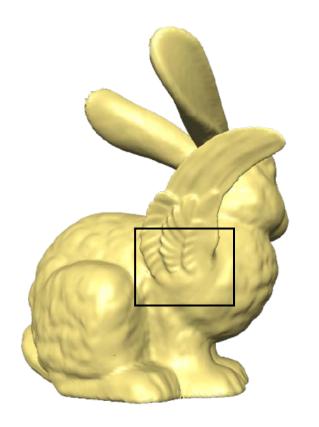
Mesh transplanting

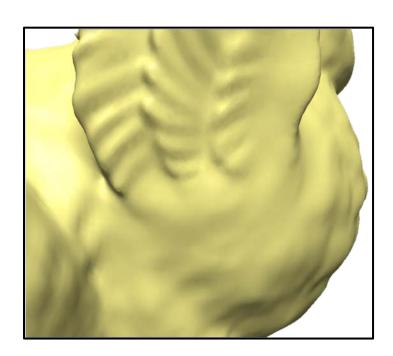
- The user defines
 - Part to transplant
 - Where to transplant
 - Spatial orientation and scale
- Topological stitching
- Geometrical stitching via Laplacian mixing



Mesh transplanting

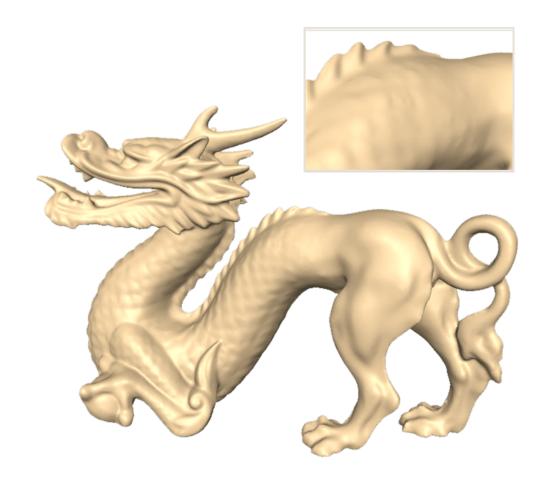
Details gradually change in the transition area





Mesh transplanting

 Details gradually change in the transition area



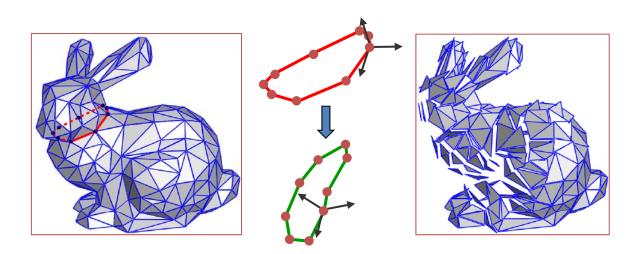
Invariance — solutions

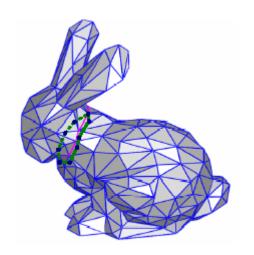
- Explicit transformation of the differential coordinates prior to surface reconstruction
 - Lipman, Sorkine, Cohen-Or, Levin, Rössl and Seidel [SMI 04],
 "Differential Coordinates for Interactive Mesh Editing",
 - Estimation of rotations from naive reconstruction
 - Yu, Zhou, Xu, Shi, Bao, Guo and Shum [SIGGRAPH 04],
 "Mesh Editing With Poisson-Based Gradient Field Manipulation",
 - Propagation of handle transformation to the rest of the ROI using geodesic distances
 - Zayer, Rössl, Karni and Seidel [EG 05],
 "Harmonic Guidance for Surface Deformation",
 - Propagation of handle transformation to the rest of the ROI using harmonic functions

Poisson Mesh Editing

"Mesh Editing With Poisson-Based Gradient Field Manipulation", Yu et al. 04

- The representation: the gradients of the functions
 X, Y, Z on each triangle of the mesh
- Deformation: propagate the transformation of the handle onto the ROI using geodesic distances





Poisson editing — images

Inspiration: Poisson Image Editing [Pérez et al. 03]

Reconstruct a function from its gradients via the Poisson equation:

$$\arg \min_{f} \int_{\Omega} \|\nabla f - \mathbf{w}\|^{2}, \quad \text{s.t.} \quad f|_{\partial \Omega} = f^{*}|_{\partial \Omega}$$

$$\Delta f = \text{div } \mathbf{w} \quad \text{with} \quad f|_{\partial \Omega} = f^{*}|_{\partial \Omega}$$

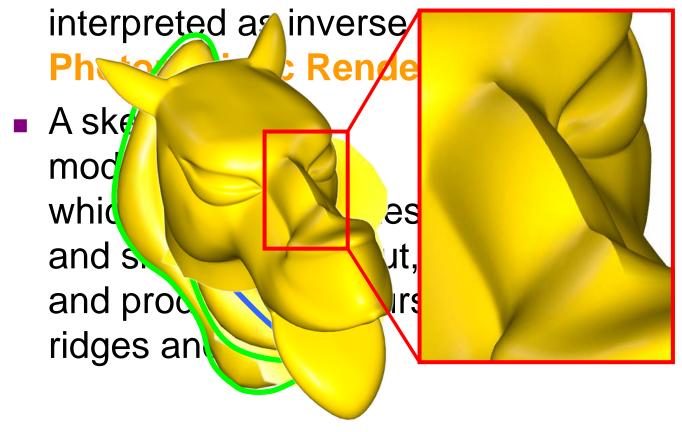
Silhouette Sketch-based Editing

[Siggraph 05]

Ideas and Contributions

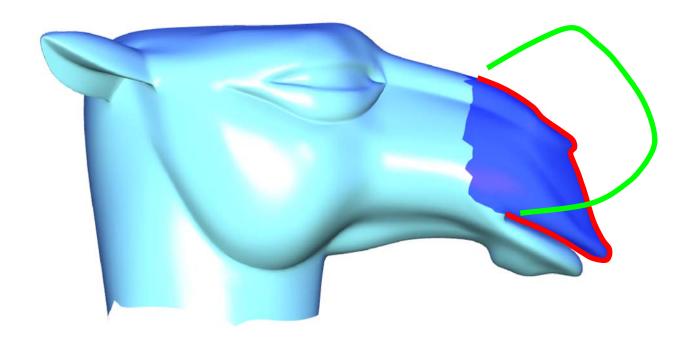
Silhouette sketching

Sketchensketshappe can be



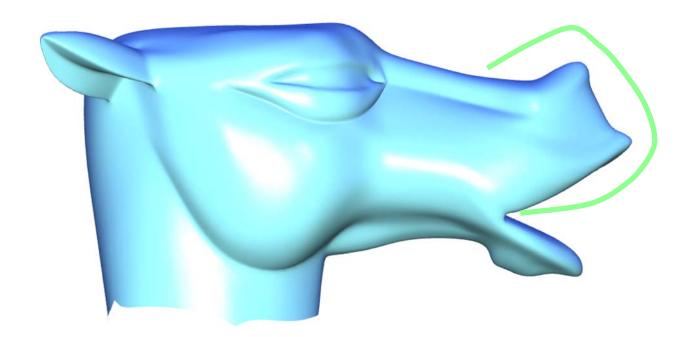
Silhouette Sketching

- Approximate sketching
 - Balance weighting between detail and positional constraints



Silhouette Sketching

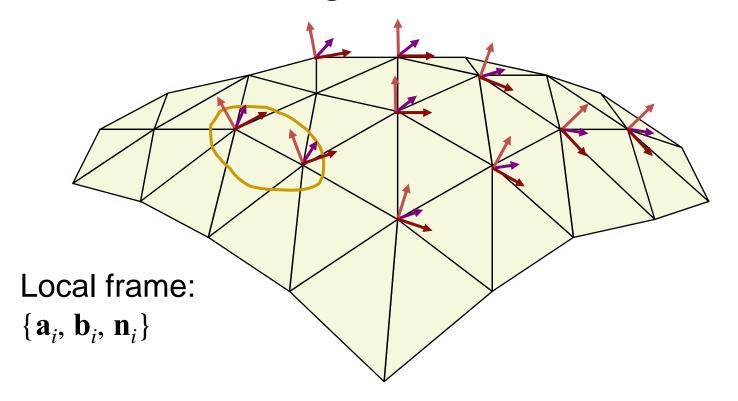
- Approximate sketching
 - Balance weighting between detail and positional constraints



Linear Rotation-invariant Coordinates

[Siggraph 05]

- Keep a local frame at each vertex
- Prescribe changes to some selected frames



- Encode the differences between adjacent frames
- Solve for the new frames in least-squares sense

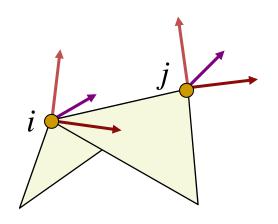
$$\mathbf{a}_{i} - \mathbf{a}_{j} = \mathbf{\alpha}_{1} \mathbf{a}_{i} + \mathbf{\alpha}_{2} \mathbf{b}_{i} + \mathbf{\alpha}_{3} \mathbf{n}_{i}$$

$$\mathbf{b}_{i} - \mathbf{b}_{j} = \mathbf{\beta}_{1} \mathbf{a}_{i} + \mathbf{\beta}_{2} \mathbf{b}_{i} + \mathbf{\beta}_{3} \mathbf{n}_{i}$$

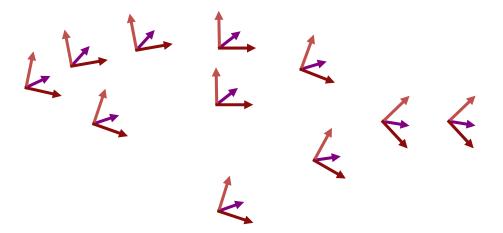
$$\mathbf{n}_{i} - \mathbf{n}_{j} = \mathbf{\gamma}_{1} \mathbf{a}_{i} + \mathbf{\gamma}_{2} \mathbf{b}_{i} + \mathbf{\gamma}_{3} \mathbf{n}_{i}$$

$$\cdots \cdots$$

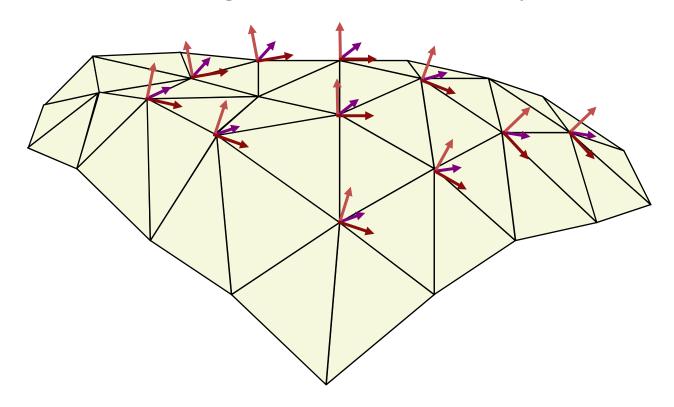
$$constraints$$



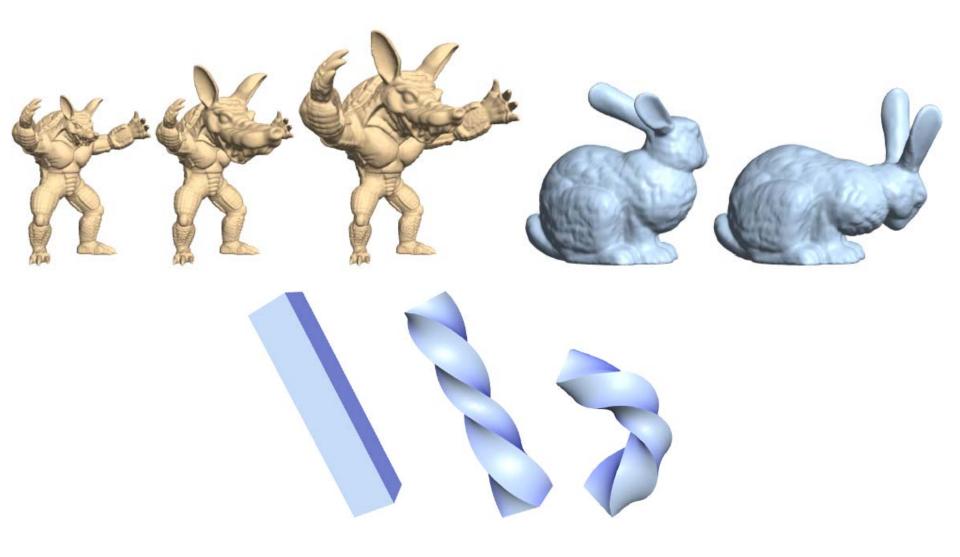
- Reconstruction:
 - After having the frames, solve for positions



- Reconstruction:
 - After having the frames, solve for positions



Results



A Fast Multigrid Algorithm for Mesh Deformation

Siggraph 2006

Basic Model

- Two-pass pipeline
 - Local Frame Update

R. Zayer, C. Rossl, Z. Karni and H. P. Seidel. *Harmonic Guidance for Surface Deformation*. EG2005.

- Vertex Position Update
 - Y. Lipman, O. Sorkine, D. Levin and D. Cohen-Or. *Linear rotation-invariant coordinates for meshes*. Siggraph2005.
- Multigrid Computation Method

Computation

First Pass

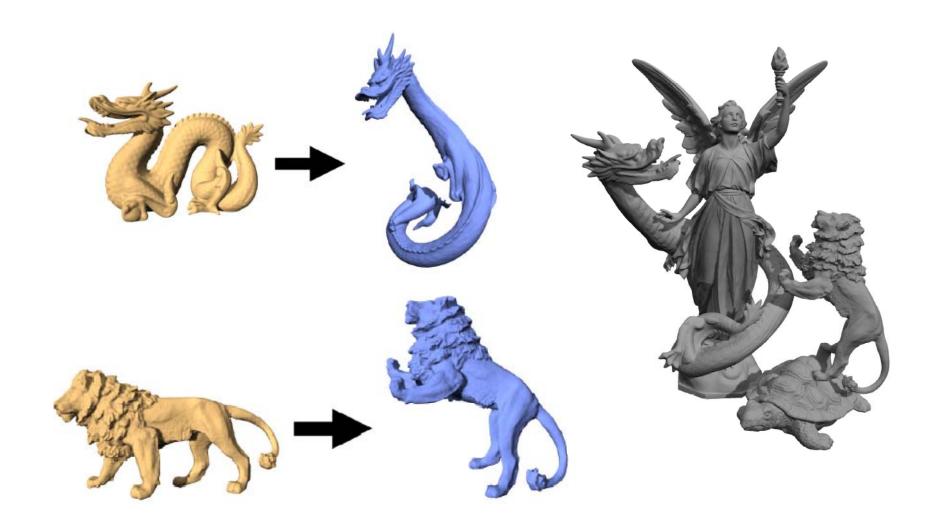
$$\nabla^2 h = 0 \Longrightarrow Lh = 0$$

Second Pass

$$\sum_{j \in N(i)} w_{ji}(\mathbf{x}_j - \mathbf{x}_i) = -\sum_{j \in N(i)} w_{ji} \mathbf{d}_{ji}$$

Multigrid Method

Examples



Performance

Deformation for large meshes

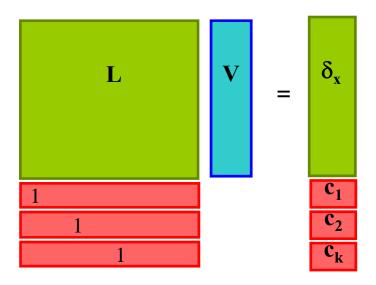
		SPRING	DINO	CAMEL	FELINE	FEMALE	LUCY	DRAGON
#Free Vertices		24,188	43,494	99,588	181,292	415,619	822,204	3,447,861
UMFPACK	Factor	1.63 sec	2.72 sec	20.59 sec	37.29 sec	113.11 sec	n/a	n/a
	Substitute	0.16 sec	0.26 sec	1.04 sec	1.95 sec	5.00 sec	n/a	n/a
	Memory	52 MB	70 MB	398 MB	710 MB	1,838 MB	>2 GB	>2 GB
CHOLMOD	Factor	0.43 sec	0.83 sec	5.48 sec	12.20 sec	31.9 sec	69.32 sec	n/a
	Substitute	0.03 sec	0.05 sec	0.15 sec	0.30 sec	0.78 sec	1.36 sec	n/a
	Memory	26 MB	35 MB	139 MB	292 MB	695 MB	1,311 MB	>2 GB
TAUCS	Factor	0.60 sec	1.04 sec	4.70 sec	10.46 sec	25.90 sec	57.65 sec	n/a
	Substitute	0.09 sec	0.16 sec	0.57 sec	1.197 sec	2.63 sec	5.35 sec	n/a
	Memory	25 MB	41 MB	139 MB	277 MB	643 MB	1,190 MB	>2 GB
Trilinos ML	Setup	0.15 sec	0.34 sec	0.57 sec	1.06 sec	2.63 sec	4.87 sec	12.60 sec
	Solve	0.57 sec	2.19 sec	5.37 sec	9.15 sec	24.00 sec	47.22 sec	148.80 sec
	Memory	15 MB	21 MB	52 MB	87 MB	200 MB	388 MB	1,080 MB
Our Multigrid	Setup	0.06 sec	0.16 sec	0.13 sec	0.24 sec	0.58 sec	0.94 sec	2.64 sec
	Solve	0.19 sec	0.39 sec	0.89 sec	1.99 sec	4.19 sec	8.47 sec	39.70 sec
#Levels /	#V-cycles	3 / 3	4 / 4	4 / 4	5 / 6	5 / 6	6 / 7	9 / 8
	Memory	10 MB	16 MB	31 MB	56 MB	119 MB	232 MB	740 MB

Shape From Connectivity

Shape from connectivity

"Least-squares Meshes", Sorkine and Cohen-Or 04

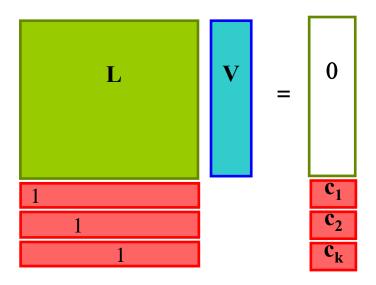
- What if we reduce delta information to zero?
- Can we still reconstruct some geometry?



Shape from connectivity

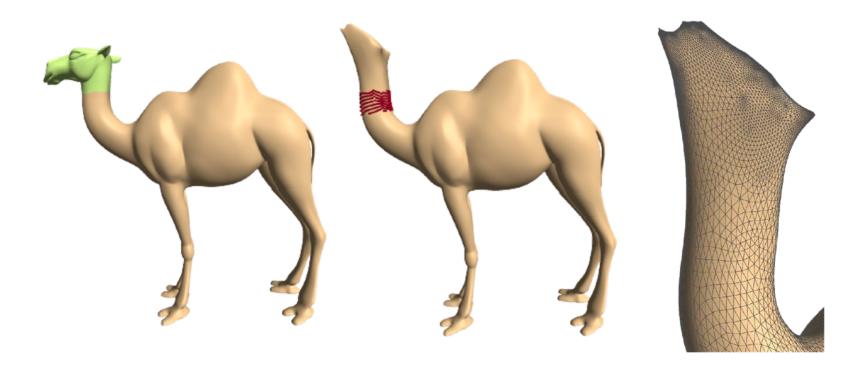
"Least-squares Meshes", Sorkine and Cohen-Or 04

- What if we reduce delta information to zero?
- Can we still reconstruct some geometry?



Geometry hidden in connectivity

"Least-squares Meshes", Sorkine and Cohen-Or 04



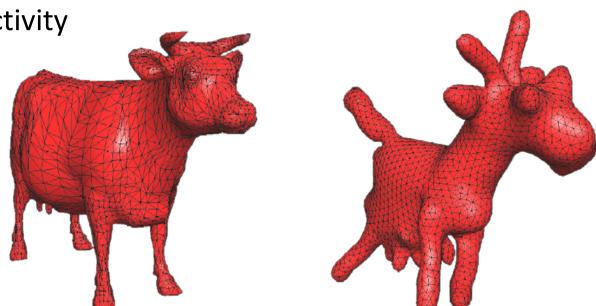
There is geometry in connectivity

Connectivity Shapes

"Connectivity Shapes", Gumhold and Gotsman 01

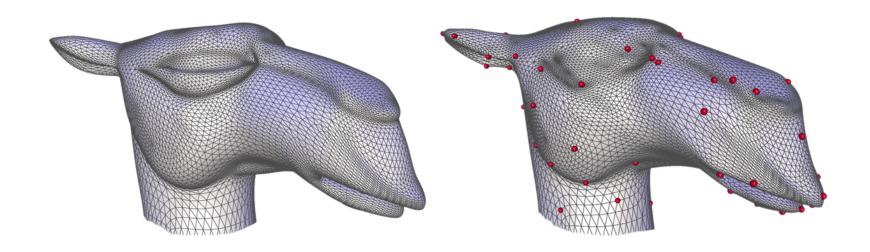
- Connectivity has geometric information in it
- Isenburg et al. showed how to get a shape from connectivity by assuming uniform edge length and smoothness

Non-linear optimization process to get shape from connectivity



Least-squares Meshes

- Enrich the connectivity by sparse set of control points with geometry
- Solve a linear least-squares problem to reconstruct the geometry of all vertices (the approximated shape)



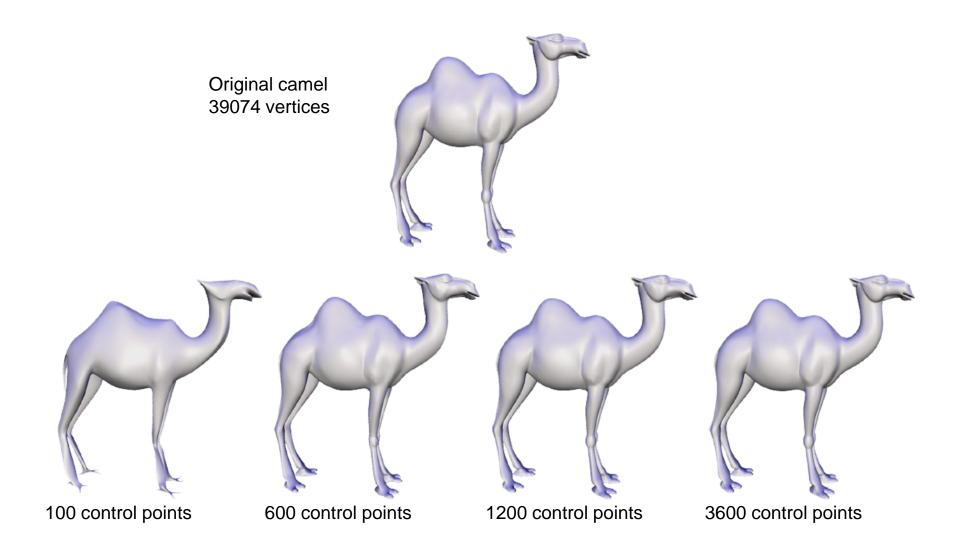
Selecting the control points

- Random selection
 - Faster, but less effective approximation
- Greedy approach
 - Place one-by-one at vertices with highest reconstruction error
 - Fast update procedure for the system inverse matrix

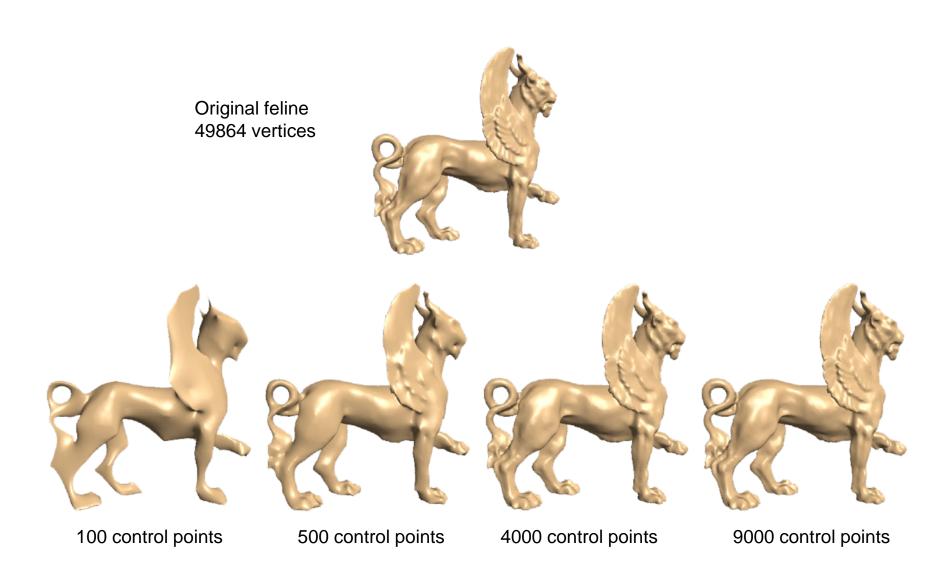
Random selection

Greedy approach

Results

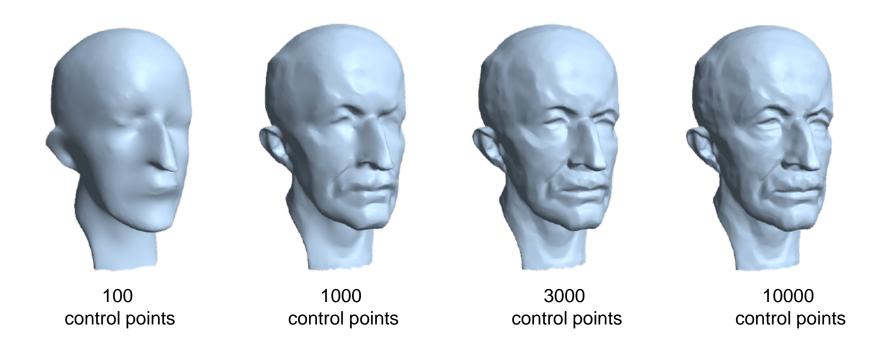


Results



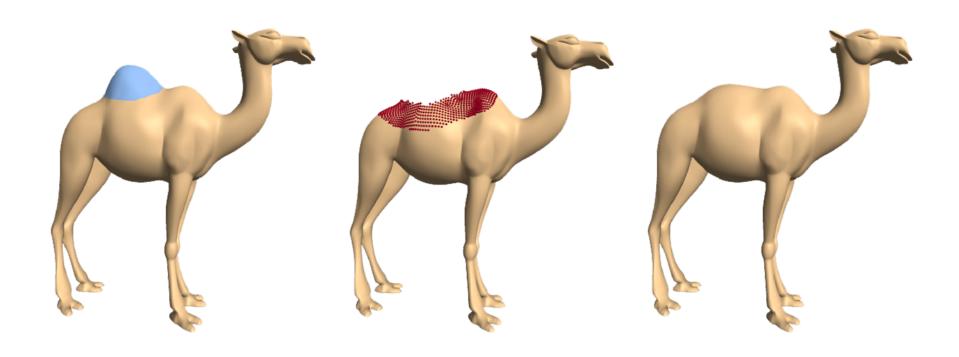
Applications

Progressive geometry compression and streaming



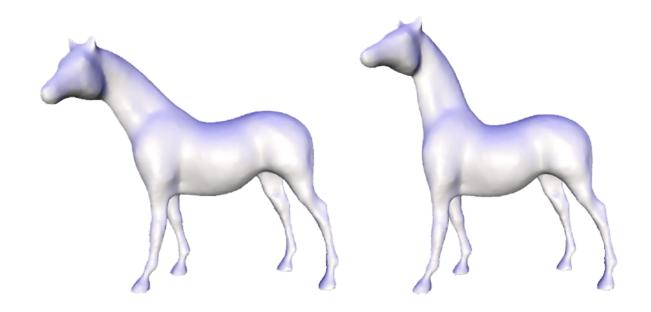
Applications

- Progressive geometry compression and streaming
- Hole filling



Applications

- Progressive geometry compression and streaming
- Hole filling
- Mesh editing



Differential Processing

- Local detail representation
- Representation with sparse matrices
- Efficient linear surface reconstruction

See:

[EG05 – Laplacian Mesh Processing]

Conclusions

- Differential coordinates represent local details
- Good for applications that wish to preserve local details
 - shape approximation
 - shape editing
- Reconstruction by linear least-squares
 - smoothly distributes the error across the domain
 - reasonably efficient

Mesh Editing Papers

FFD

- [1986, Sederberg and Parry] Free-form deformation of solid geometric models
- [1994, Lazarus et al.] Axial deformations: An intuitive deformation technique
- [2005, Juet al.] Mean value coordinates for closed triangular meshes

Multiresolution editing

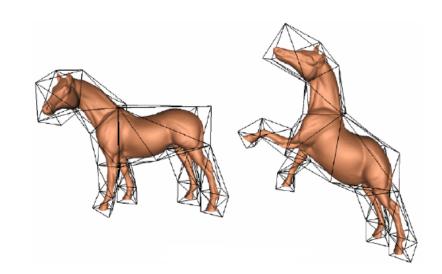
- [1995, Eck et al.] Multiresolutionanalysis of arbitrary meshes
- [1998, Kobbelt et al.] Interactive multi-resolution modeling on arbitrary meshes
- [2003, Botsch and Kobbelt] Multiresolution surface representation based on displacement volumes

Differential editing

- [2004, Yu et al.] Mesh editing with Poisson-based gradient field manipulation
- [2004, Sorkineet al.] Laplacian surface editing
- [2005, Lipman et al.] Linear rotation-invariant coordinates for meshes

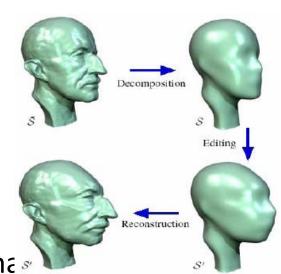
1. FFD

- Manipulating
 - Embedding object
- Pros
 - Simple and intuitive
- Cons
 - Hard to preserve details
 - Suitable for smooth objects
- Invariant variables
 - Parametric coordinates



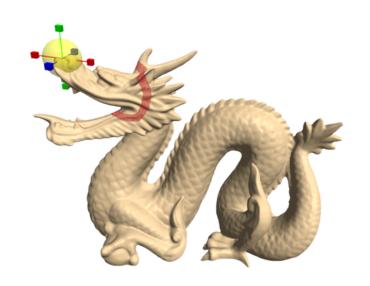
2. Multiresolution Editing

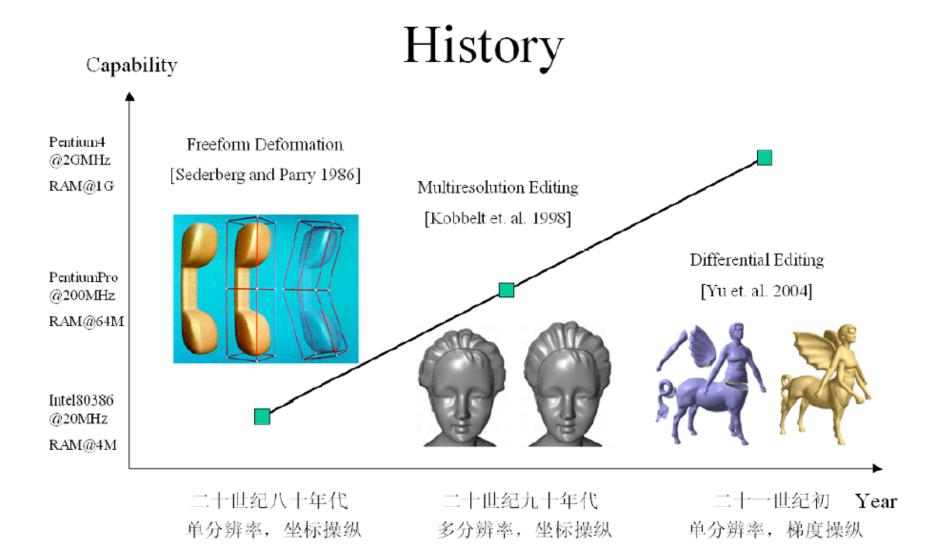
- Manipulating
 - Simplified model
- Pros
 - Preserving details, scalable
- Cons
 - Instable reconstruction for large deformage
 - Resampling problem
- Invariant variables
 - Detail information



3. Differential Editing

- Manipulating
 - Handles
- Pros
 - Preserving details
 - Enhance user interaction
- Cons
 - Much computation cost
- Invariant variables
 - Differential information





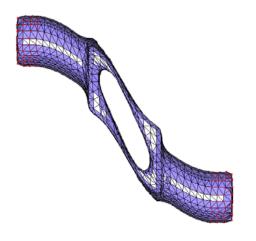
Dual Laplacian Editing

IEEE TVCG 2006

Laplacian Editing - Problems

- The LCs are encoded in global coordinate system
 - Local structures of deformed surface may be rotated or stretched
 - Minimizing changes from LCs of original mesh is not appropriate

The LCs should be properly reoriented

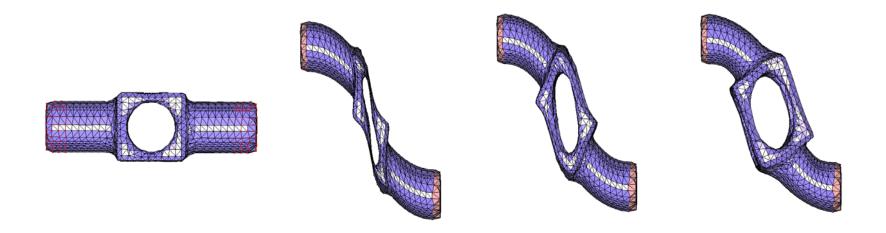


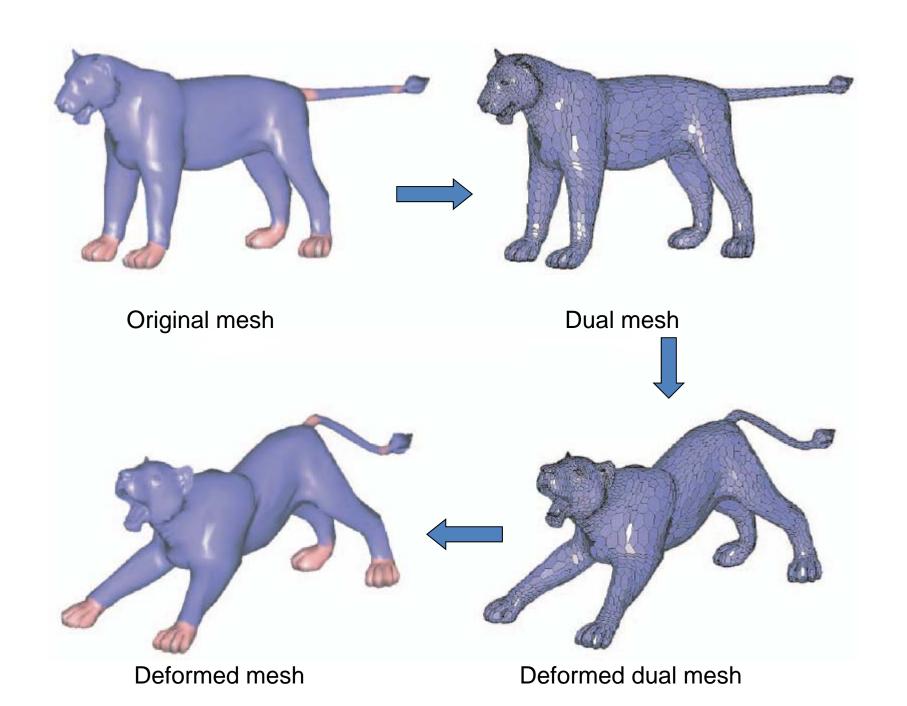
Observations

- The deformed mesh should have
 - Similar triangle shapes as the original mesh
 - Preserve parameterization information (i.e., shapes of local features)
 - Shape distortion causes undesired shearing and stretching
 - Similar local feature sizes as the original mesh
 - Preserve geometry information (i.e., sizes of local features)

Framework

- An iterative method
 - Refine vertex positions and LCs iteratively
 - Minimize parameterization error iteratively while keeping small geometry error



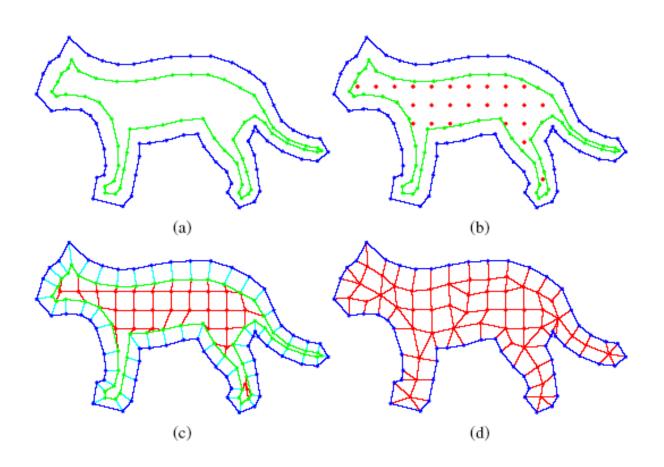


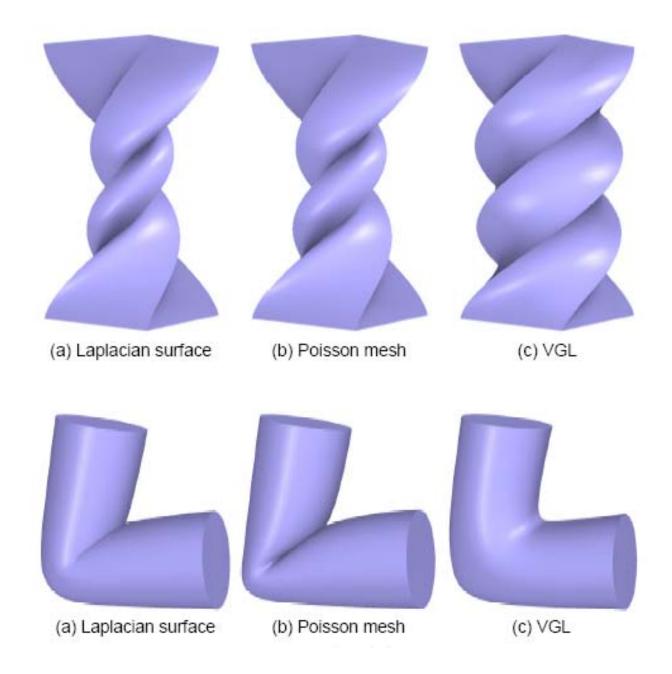
Volumetric Graph Laplacian (VGL)

3D Laplacian Editing

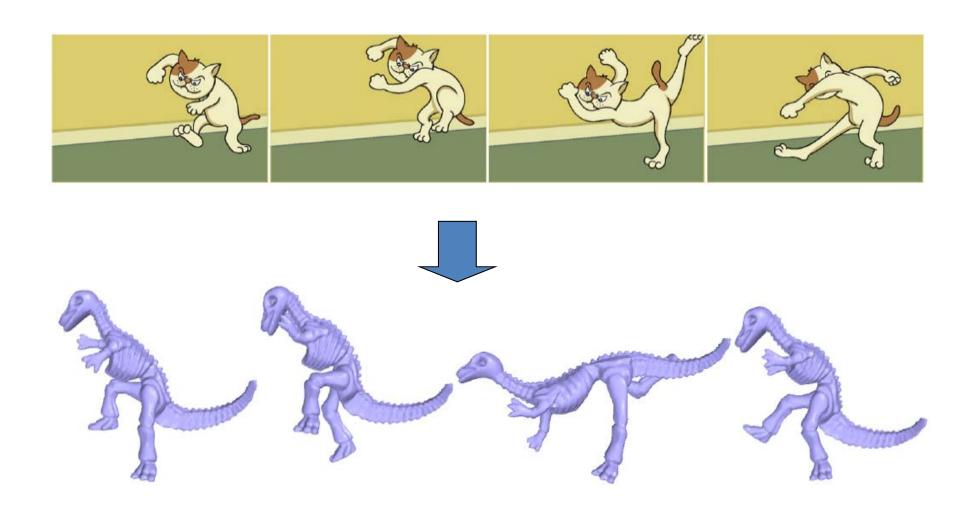
- Tetrahedral meshes
 - Hard to creat

Volumetric Gr



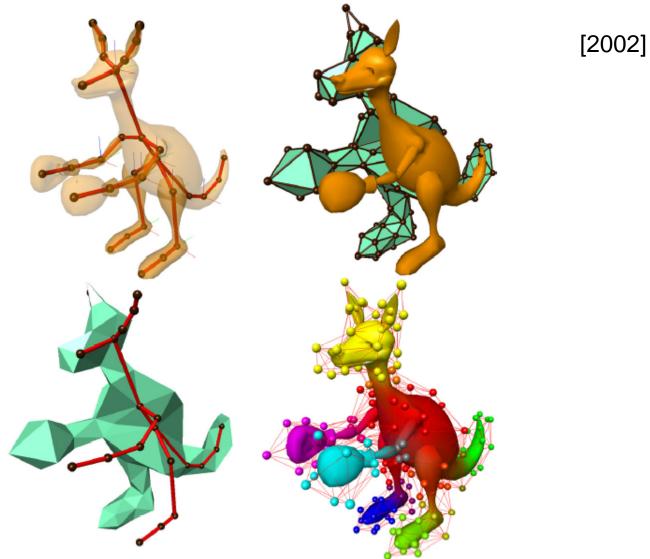


Application



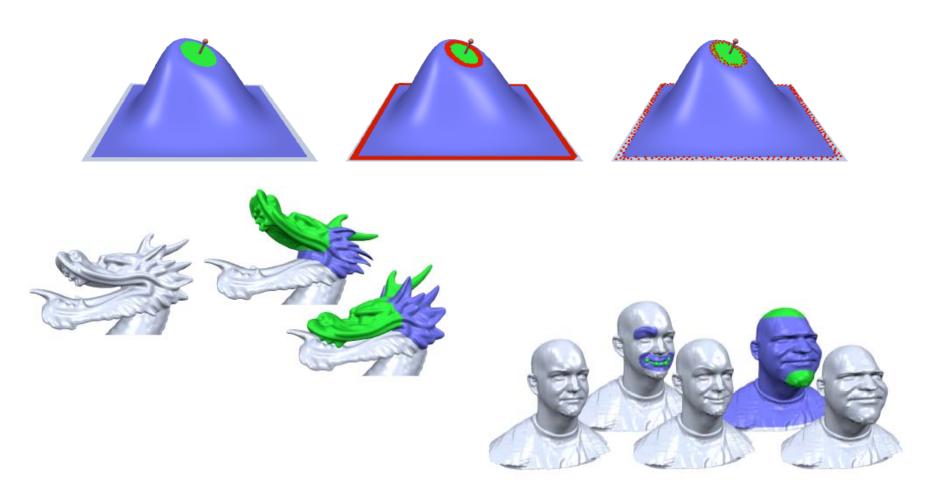
Other Approaches

Skeleton-based Deformation



RBF-based Editing

[2005]



As-rigid-as Possible Deformation

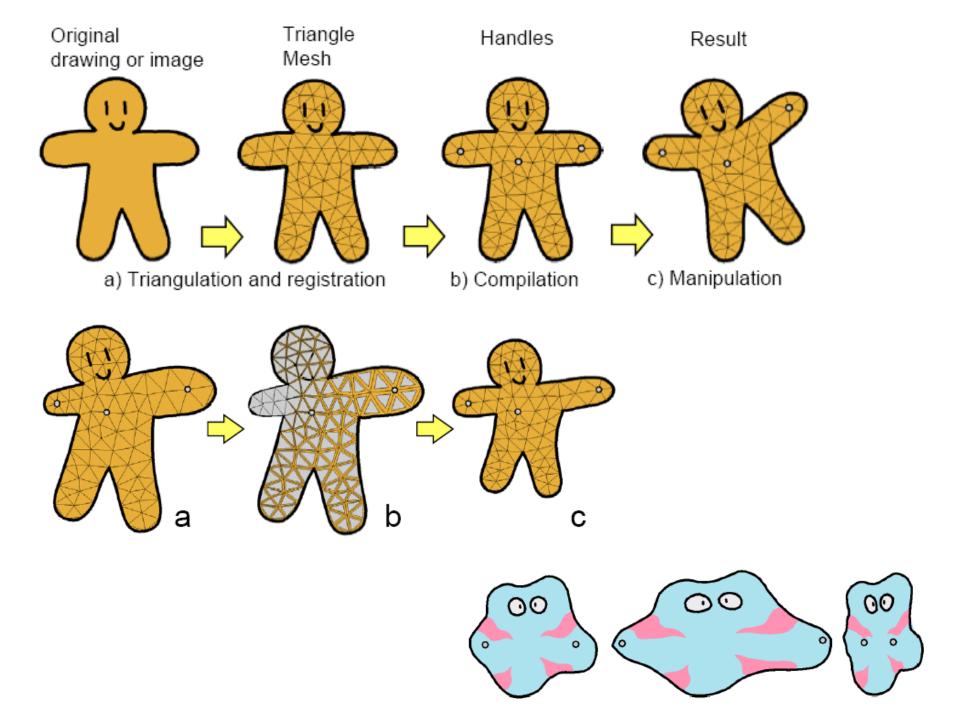
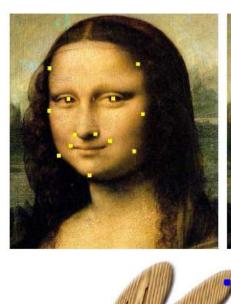
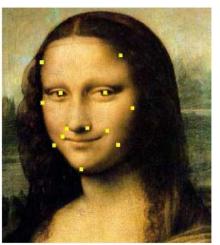
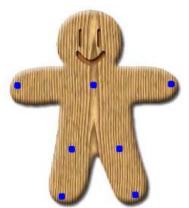


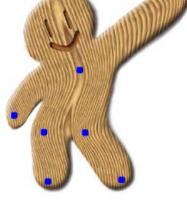
Image Deformation Using Moving Least Squares





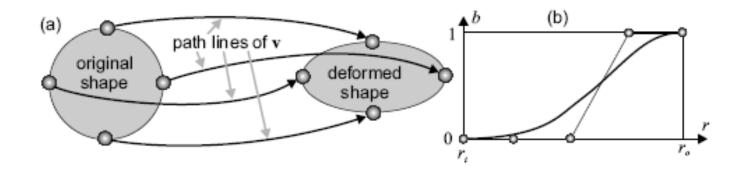






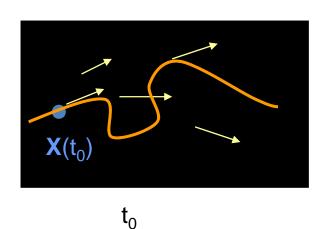
Vector Field Based Shape Deformations

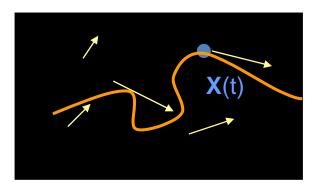
Basic Model



Moving vertex along the deformation orbit – defined by the *path lines* of a vector field v.

Path Line of Vector Field





t

Given a time-dependent vector field $\mathbf{V}(\mathbf{X}, t)$, a Path Line in space is $\mathbf{X}(t)$:

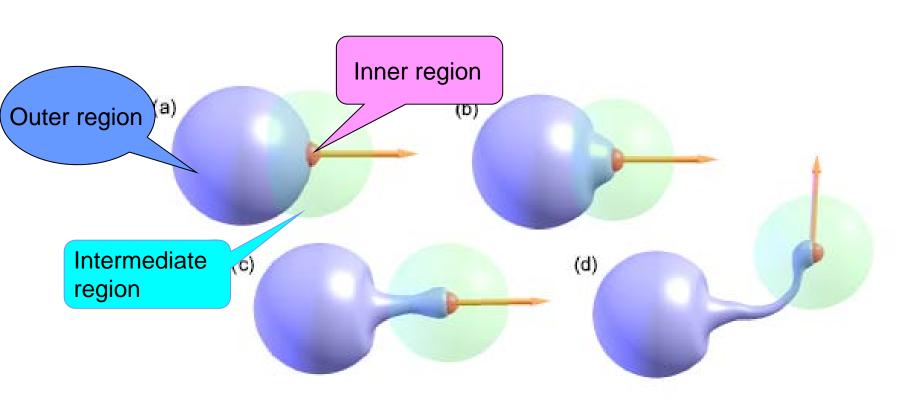
$$\frac{d}{dt}X(t) = V\left(X(t), t\right), \quad X(t_0) = X_0$$
 OR
$$X(t) = X_0 + \int_{t_0}^t V(X(s), s) ds$$

Vector Field Selection

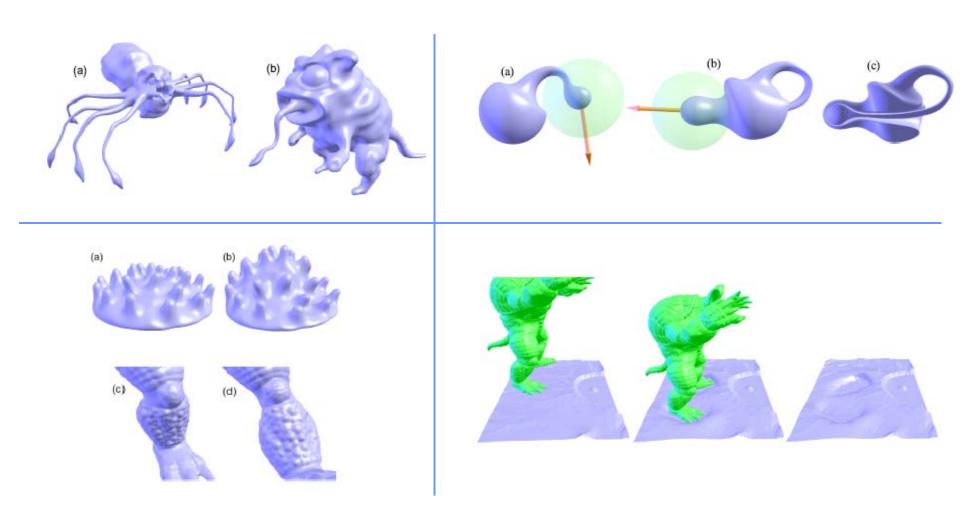
- Deformation Request:
 - No self-intersection
 - Volume-preserving
 - Details-preserving
 - Smoothness of shape in deformation
- Divergence-free Vector Field: v=(V₁, V₂, V₃)

$$div \mathbf{V} = \frac{\partial \mathbf{V}_1}{\partial x} + \frac{\partial \mathbf{V}_2}{\partial y} + \frac{\partial \mathbf{V}_3}{\partial z} = 0$$

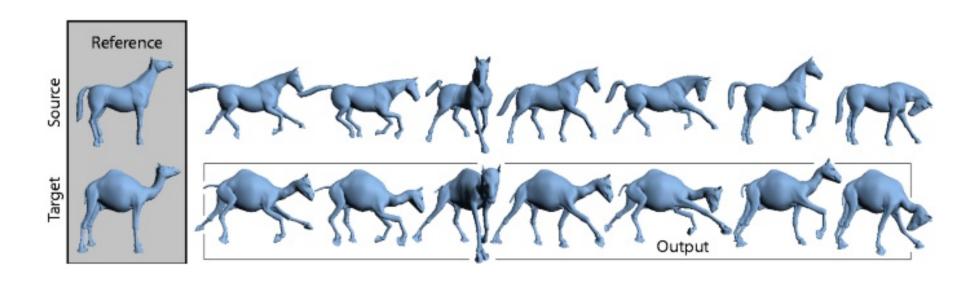
Piecewise Field for Deformation



Examples



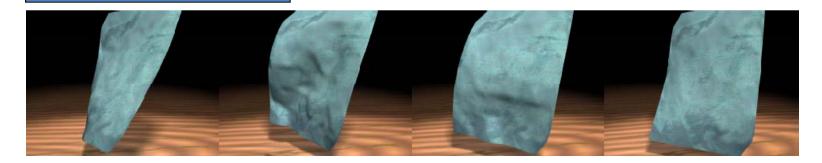
Deformation Transfer



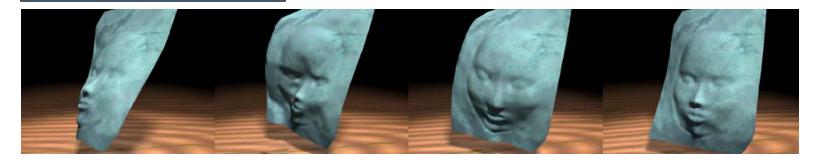
Editing Arbitrary Deforming Surface Animations

Siggraph 2006

Deforming Surface



Editing Surface



Discussions