

Surface Completion

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Problem

• Filling holes in surface

Background

• Data acquisition

Background

Surface reconstruction

Surface Completion

- Integrated into surface reconstruction algorithm
- Considered as a post-processing

Other Terminologies

- Surface completion
- Surface inpainting
- Surface repairing
- Surface hole filling
- Surface restoration

Outline

- Image inpainting
- Surface completion
 - Geometric method
 - Volumetric method
 - Texture synthesis based method

1. Image Inpainting

Image Inpainting

- Objectives
 - Modify the image in a way that is non-detectable by an observer (fill holes in image)
 - Remove objects from the image
- Originated from museum restoration artists
 - Also known as "retouching"
- Less information present within the region to be inpainted

Revised Definition

"Digital Image Inpainting is an iterative method for repairing damaged pictures or removing unnecessary elements from pictures"

"Fast Digital Image Inpainting",
Manuel M. Oliveira, Brian Bowen, Richard McKenna and Yu-Sung Chang

Photo Restoration

"Image Inpainting : An Overview",

Guillermo Sapiro

Object Removal

Related Work: Films

e.g. Kokaram et al.

Doesn't work for stills or static objects

In the Literature

- Image Inpainting
 - Bertalmio and Sapiro , Siggraph 2000
- Level Lines Based Disocclusion
 - Masnou and Morel , ICIP 1998
- Fast Digital Image Inpainting
 - Oliveira et al., ICVIP 2001
- Image Inpainting: An Overview,
 - Sapiro 2002
- Fragment-based Image Completion
 - Drori et al., Siggraph 2003
- Image Completion with Structure Propagation
 - Sun et al., Siggraph 2005

Photoshop

- Photoshop has some utilities for image inpainting
- Diffusion based inpainting
 - ☐ Simplest of all
 - ☐ Colors diffuse into the missing areas of the image
 - ☐ Repeated blurring
 - □ Colors of each pixel are averaged with a small portion of the color from the neighboring pixels.

1.1 Level Line Based Method

- Joining with geodesic curves the points of the isophotes (lines of equal gray values) arriving at the boundary of the region to be inpainted
- Drawbacks
 - Inpainted region should have simple topology
 - Angle of level lines is not preserved

Example

Extension

[Siggraph 2000]

- Apply diffusion to the original image to avoid noise
- Updates to the values of pixels inside the region are made,
 information propagated in the direction of the isophotes
- After every few iterations, diffusion process is applied
- Propagation of gray values and the isophotes direction is critical
- Color images are considered as a group of 3 images and this technique is applied independently to them

Idea

Comparison

Examples

Examples

1.2 Texture Synthesis Based Method

- Use frequency and spatial domain information to fill a given region with a selected texture
- Requires the user to specify which texture to put where
- Will not be preferred when the region to be replaced covers several different structures

Texture Synthesis

- Hirani, Efros, Heeger, DeBonet, Simoncelli, Zhu, etc.
- Not practical for rich regions
- Not designed for structured regions
- "Copy" information instead of "see and interpolate"

1.3 Structure Propagation

[Siggraph 2005]

- Structure propagation
 - User specified structure curves
- Patch based texture synthesis

Structure Propagation

1D chain propagation

texture propagation

2D graph propagation

Examples

Examples

1.4 Fragment-based Method

[Siggraph 2003]

Multiply Image by inverse matte and add matte

Downsample and upsample with

kernel

Confidence Map

Search

Results

Results

2. Surface Completion

Requirements

- Robustness
 - Producing a watertight surface for any input model
- Efficiency
 - Processing huge models within reasonable time and space
- Accuracy
 - Preserving geometry
 - Boundary condition
 - Context condition

Extend 2D Methods to 3D

- Images
 - A regular spatial structure domain
- Problems in 3D
 - Topology and geometry of missing region
 - Fitting a patch to the boundary of the missing region
- Definition of similarity of shapes
- Definition of a surface patch

Classifications

- Geometric method
 - Operate directly on the polygons in the model
- Volumetric method
 - Convert a polygonal model into a volume representation
- Image-based
 - Convert a polygonal model into a geometry image

2.1 Radial Basis Function

[Carr et al., Siggraph 2001]

Signed-distance Function

$$f(x_i, y_i, z_i) = 0,$$
 $i = 1, ..., n$ (on-surface points), $f(x_i, y_i, z_i) = d_i \neq 0,$ $i = n + 1, ..., N$ (off-surface points).

off-surface 'normal' points

Interpolation Problem

Given: $X = \{x_i\}_{i=1}^N \subset \square^3$ and $\{f_i\}_{i=1}^N \subset \square$

Output:

$$\{x \in \square^3 \mid s(x) = 0\}$$

Radial Basis Function

General form

$$s(x) = p(x) + \sum_{i=1}^{N} \lambda_i \phi(|x - x_i|), \quad s \in BL^{(2)}(\square^3)$$

p(x) is a polynomial of low degree the basic function ϕ is a real valued function

e.g.

$$p(\vec{x}) = c_1 + c_2 x + c_3 y + c_4 z,$$

$$\phi(|x_i - x_j|) = |x_i - x_j|,$$

Evaluation

$$s(x) = c_1 + c_2 x + c_3 y + c_4 z + \sum_{i=1}^{N} \lambda_i |x - x_i|,$$

$$s \in BL^{(2)}(\mathbb{R}^3)$$

$$\sum_{i=1}^{N} \lambda_{i} = \sum_{i=1}^{N} \lambda_{i} x_{i} = \sum_{i=1}^{N} \lambda_{i} y_{i} = \sum_{i=1}^{N} \lambda_{i} z_{i} = 0.$$

Evaluation

$$\begin{pmatrix} A & P \\ P^{\mathsf{T}} & 0 \end{pmatrix} \begin{pmatrix} \lambda \\ c \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix},$$

$$A_{i,j} = |x_i - x_j|, \quad i, j = 1, ..., N,$$
 $P = (1, x_i, y_i, z_i), \ \lambda = (\lambda_1, ..., \lambda_N)^{\mathsf{T}}$ $c = (c_1, c_2, c_3, c_4)^{\mathsf{T}}.$

Greedy algorithm

Procedure

- Choose a subset from the interpolation nodes X and fit an RBF only to these.
- 2. Evaluate the residual, $\varepsilon_i = f_i s(x_i)$ nodes.
- 3. If $\max\{|\varepsilon_i|\} < \text{fitting accuracy p.}$
- 4. Else append new centers where $i \varepsilon_i$ arge.
- 5. Re-fit RBF and goto 2.

Results

Summary

Repair holes with arbitrary topology

- Holes are smoothly filled
- Approximate original surface

2.2 Filling Holes in Meshes

[Liepa, SGP 2003]

Pipeline

- 1. Hole identification
- 2. Hole triangulation
- 3. Mesh refinement
- 4. Mesh fairing

Triangulation of 3D Polygons

- Minimum area triangulation
- Min-max dihedral angel triangulation

Mesh Refinement

1. Subdivision

2. Edge Relaxation

Fairing

Weighted umbrella-operator

$$\mathbf{U}_{\omega}(v) = -v + \frac{1}{\omega(v)} \sum_{i} \omega(v, v_{i}) v_{i} ,$$

$$v = v + \mathbf{U}_{\omega}(v)$$

- Uniform : $\omega(v_i, v_j) = 1$
- Scale-dependent :

$$\omega(v_{i,}v_{j}) = 1/\|v_{i} - v_{j}\|$$

Summary

- Easy to implement
- Focus algorithm on holes
- Triangulation may self-intersect
- Can't fill holes with islands
- Fairing weaken original surface feature

2.3 Robust Repair of Polygonal Models

[Ju, Siggraph 2004]

Pipeline

- Scan-conversion
- II. Sign generation
- III. Surface reconstruction

Sign Generation

Cell faces containing an odd number of intersection edges

Patch Boundary Circles

Marching Cubes

Cube with signs at eight corners

Marching Cubes

Results

Results

Summary

- Employ a space-efficient octree grid
- Produce closed, manifold surface for any input model

2.4 Context-based Surface Completion

[Sharf et al., Siggraph 2004]

Motivation

Complete the missing region with patches that conform with its context

Context-based

Method

Import patches with matching context from the surface itself:

- Analyze surface characteristics.
- Find best matching patch.
- Fit imported patch to boundary.

Algorithm

- Create initial spatial subdivision
- For each cell
 - Compute a local shape representation.
 - Compute a shape signature.
- For each empty cell:
 - Find matching nonempty cell ω' .
 - Copy patch of ω ' into ω .
- Subdivide cells and repeat
- Until completed region matches its neighborhood

Completion Process

Original

Manual Editing of Bunny Model

Scan of "Youth" Statue

Scan of Human Bone

Limitations: Semantics

Summary

- A fully automatic method to complete a missing region in a surface from its context.
 - Completed patches geometrically conform with neighborhood.
 - Incremental scale-space framework for finer approximation of the unknown region.

2.5 Example-based Surface Completion

[Pauly et al., SGP 2005]

Solution

- Use 3D model database to provide geometric priors for shape completion
- Apply non-rigid transforms on the models
 - More deformation \Rightarrow less likely completion
- Consistently combine geometric information from multiple context models
- Final result comes with confidence values

Shape Completion Pipeline

Data Classification

Local analysis

- quality of fit
- uniformity of sample distribution

Scored Point Cloud

 confidence value assigned to each point

Database Retriev

Non-rigid Alignment

Similar to the approaches proposed by:

- Allen, Curless and Popovic, 2003.
- Sumner and Popovic, 2004.

Non-rigid Alignment

Deformation Model

Piecewise linear.
 Each vertex of the mesh assigned an independent displacement vector.

Optimize for smallest **Shape Matching Penalty**

- Distortion Measure
- Geometric Error

Derived in the continuous setting to allow consistent comparison between different context models.

Feature Correspondence

Warped Models

Initial Segmentation

Input Data

Warped Context Model

Patch Growing

Final Segmentation

Result

Giraffe Example

Giraffe Example

Evaluation

Context Model

Final Model

Evaluation

Enriching the Database

Additional Constraints

Acquired Data

Context Model

No Constraints

Symmetry Constraints

2.6 Atomic Volumes for Mesh Completion

[Podolak and Rusinkiewicz, SGP 2005]

Atomic Volumes

 A volume is atomic if it doesn't intersect the polygons of the mesh.

Spatial Partitioning

(e) Adding Faces

(f) Smoothing

User Constraints

Results

Summary

- Avoid changing, approximating or re-sampling the original mesh data
- Incorporate user constraints
- Can't process holes with islands

2.7 Geometry Completion by Texture Synthesis

[Nguyen et al., PG 2005]

Geometry Image

Basic idea

Basic idea

Basic idea

render

[r,g,b] = [x,y,z]

2.8 Others

Template based Solution

(Allen, Curless, Popovic, 2003; Kraevoy and Sheffer, 2005)

Discussion