

Re-Meshing Surfaces

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Remeshing

Generate another mesh for the given mesh

Re-Meshing

- No precise definition
 - Varies according to the targeted goal or application
 - Mesh generation
- Possible definition
 - Given an input mesh, generate another mesh
 - Good element quality
 - Approximating well the input

Motivation

- Computer graphics
 - NURBS patches in CAD/CAM
 - PDEs for fluid, cloth, …
- Finite elements
 - High-quality meshes for simulation

Applications

- Creation and editing
- Animation
- Metamorphosis
- Approximation
- Simulation
- Denoising
- Smoothing and fairing
- Efficient rendering
- Compression
- Feature recovery
- Levels of detail

Quality

- Some criteria
 - Vertex sampling, grading, regularity, size and shape of elements
- A combination of these criteria

Quality

- Measure "closeness" to equilateral triangle
- Triangle quality measures
 - Ratio of in-radius to circum-radius
 - Smallest angle
 - Ratio of shortest edge to circum-radius

Generality of Remeshing

Outline

- Mesh generation in 2D
- Remeshing surfaces
 - Local
 - Global
- Remeshing classifications
 - Structured remeshing
 - Compatible remeshing
 - High quality remeshing
 - Feature remeshing
 - Error-driven remeshing
- Case studies

1. Mesh Generation in 2D

Meshing in 2D

- Input
 - Planar polygon
 - Optimal sizing
- Output
 - Triangular mesh
- Motivation
 - 2D problems
 - 3D problems reduced to 2D (parameterization)

Delaunay Criterion

Empty Circle Property:
No other vertex is contained within the circumcircle of any triangle

Delaunay Triangulation

Delaunay Triangulation

- Obeys empty-circle property
- Exists for any set of vertices
- Is unique (up to degenerate cases)
- Proven to provide best triangles in terms of quality for given vertex positions
- To test enough to check pairs of triangles sharing common edge

Triangulation Methods

- Edge flip algorithm
 - Start with any triangulation of the vertices
 - Test all edges if satisfy Delaunay criterion
 - test triangles on both sides of edge
 - If edge does not satisfy it, flip edge
 - Repeat until all edges satisfy criterion
- Proven to terminate & give Delaunay mesh
- Slow O(n²)
- Alternative additive construction
 - Keep Delaunay mesh
 - Add one vertex at a time

Vertex Insertion

Locate triangle containing

X

• Subdivide triangle

Vertex Insertion

- Locate triangle containing X
- Subdivide triangle
- Recursively check empty-circle property
- Swap diagonal

Boundary Insertion

- Place vertices on boundary at cord-length intervals based on sizing
- Create bounding triangles
- Insert vertices using Delaunay method
- Delete outside triangles

Boundary Insertion

Refinement

- Edge split
- Edge collapse

Uniform sampling

Voronoi Diagram

- Given set of vertices
 - union of all locations at equal distance from two or more vertices

Voronoi Diagram

- Dual to Delaunay Triangulation
 - Vertices correspond to faces
 - Voronoi edges = perpendicular bisectors of Delaunay edges
- Can be constructed directly
- Easier compute
 Dealunay & compute
 dual

Centroidal Voronoi Diagram

Vertices coincide with centroids

Ordinary Voronoi diagram

Centroidal Voronoi diagram

Centroidal Voronoi Diagram

- To compute use Lloyd iterations:
 - Start with set of sites
 - Do
 - Compute VD
 - Compute centers of mass for each Voronoi cell
 - If sites = centers of mass
 - Stop
 - Set sites to centers of mass
 - Repeat
- Guaranteed to converge
- Provides optimal repartitioning of density among vertices

2D Meshing

- Place vertices on boundary
- Use sampling for initial placement inside
- Construct Delaunay triangulation
- Iterate
 - Refinement
 - Coarsening
 - Smoothing
 - Each time perform necessary edge flips

Boundary Recovery

Delaunay triangulation does not have to obey polygon boundary

Boundary Conforming Delauanay

- Add vertices at intersections
- Repeat if necessary

Boundary Recovery - Constrained

- Not always can add boundary vertices (shared edges)
 - Swap edges between adjacent pairs of triangles
 - Repeat till recover the boundary
- Does not maintain Delaunay criterion !!!

Boundary Recovery - Constrained

Examples

Use the library "Triangle"!

A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator

http://www.cs.cmu.edu/~quake/triangle.html

- Planar Straight Line Graph (PSLG)
- a Delaunay triangulation of its vertices
- a constrained Delaunay triangulation of the PSLG
- a conforming Delaunay triangulation of the PSLG
- a quality conforming DT of the PSLG with no angle smaller than 25 degree

- a PSLG of Lake Superior
- triangulations having minimum angles of 0, 5, 15, 25, and 33.8 degrees.

Maximum area constraints

Different maximum triangle area constraints

2. Re-Meshing Surface (Triangular meshes)

Hausdorff Metric

Given two sets P and Q

$$H_P(Q) = \max_{p \in P} \min_{q \in Q} ||p - q||$$

$$H(P, Q) = \max(H_P(Q), H_Q(P))$$

- Approximate by measuring distance from vertices
 - For each vertex on new mesh measure distance to old surface
 - For each vertex on old mesh measure distance to new surface
- Another approximation (upper bound)
 - Measure distance from new/old vertices to nearest old/new vertex

Approaches

- Local perform sequence of operations to improve existing mesh
 - Use local parameterization
 - Mesh optimization
- Global 2D reduction
 - Segment surface into parameterizable pieces
 - Parameterize in 2D
 - Mesh in 2D (Delaunay)
 - Project back

2.1 Local Remeshing

Mesh optimization

Local Remeshing

- Perform sequence of operations to improve existing mesh
- Connectivity modification
 - Edge swap/split
 - Vertex insertion/removal
- Geometry modification
 - Mesh smoothing
- Repeat operations

Local Remeshing

Topology changes
Local correction strategies

Algorithms

Flip an edge.
 Split an edge.

3. Collapse an edge.

Normal Error

Local Remeshing: Enrichment

- Add vertices reach desired sizing or element count
- Strategies
 - Long edge split insert mid-points
 - Other: random, face split (circumcenter)
- Find vertex locations
 - Location on current mesh
 - Project to original mesh
 - For better accuracy/smoothness use approximate surface

Hard to achieve good spacing

Improve by smoothing

Local Remeshing: Simplification

- Remove similar to simplification
 - Vertex removal remove vertex & triangulate generated cavity
 - Edge collapse
 - Project new vertex to original surface as in enrichment
- Error metrics to preserve original surface shape
 - + sizing specs
 - Same as in simplification quadrics
 - Or normal based

Local Remeshing: Smoothing

- Move vertices ON surface to improve sizing/quality
- Relocation:
 - Compute vertex location as function of neighbors in new mesh
 - E.g. weighted average (similar weights as in parameterization)
 - Compute in
 - Directly in 3D
 - Or in 2D using local parameterization of new mesh
 - Project to original mesh (approximate surface)
 - same as for enrichment
 - Check error
 - If too large, keep previous location

Example

Example

Local Methods Properties

- Preserve topology
- Fast
- Simple to implement
 - Depending on choice of local operations
- Hard to place distance/quality bounds
- Hard to find GOOD spacing of vertices
 - WCVD does the trick but at a cost...
- Heuristic
 - How many iterations of each operation to do?
- Bag of tricks....

2.2 Global Remeshing

Global: Reduction to 2D

- Segment surface into parameterizable patches
- Parameterize each patch in 2D
 - Parametric distortion determines 3D mesh quality
- Mesh patches in 2D (Delaunay)
 - Take parametric distortion into account (sizing)
 - Take care of shared boundaries
- Project back

Parameterization

- Fixed boundary approach
- Boundary free approach

Segmentation

- Make parameterizable patches
 - Cut closed & high genus surfaces
- Less distortion (curvature) simplifies meshing
- Fixed boundary parameterization should segment into convex patches

Genus>0

- Finding shortest cut NP-hard
- Use heuristics
- Algorithm
 - Start from seed face
 - Propagate face front (BFS)
 - Each time front meets itself (at edge e)
 - Add e to Cut Path
 - Prune Cut Path

Examples

Segment Based Remeshing

- Map each triangular patch to corresponding triangle
 - Use harmonic/mean-value weights
- Mesh each triangle using subdivision connectivity
 - Guarantees conformity

Segment Based Remeshing

- Drawbacks
 - No sizing control
 - Approximation & quality depend on patch planarity & shape

Boundary Consistency

- Need conformal mesh on boundary
- Place vertices conformally on shared boundaries

Conformal Boundaries

Conformal but visible...

Features

- Preserving features locate surface creases and prevent removing them
- Special handling by segmentation and/or 2D meshing

Global Methods - Properties

- Strongly depends on parameterization quality
 - In turn depends on segmentation
- Bottleneck
 - Parameterization
- Better shape control/spacing
- Better theoretical basis
 - Quality
 - Approximation
- Typically more complex to implement

3. Remeshing Classifications

Remeshing Techinques

- Structured remeshing
- Compatible remeshing
- High quality remeshing
- Feature remeshing
- Error-driven remeshing

3.1 Structured Remeshing

Structured Remeshing

Regular Meshes

- Regular Meshes
 - Regular vertices
 - Extraordinary vertices
- Advantages
 - Simple connectivity graph
 - Efficient traversal and storage

Completely Regular

Geometry Image

[Gu et al., Siggraph 2002]

Quadrilateral Remeshing

[Hormann and Greiner, VMV 2000]

Semi-regular Remeshing

Recursive subdivision

MAPS

[Lee et al., Siggraph 1998]

3.2 Compatible remeshing

Joint Parameterization

Compatible remeshing

- Consistent mesh parameterizaiton
- Cross parameterizatin
- Inter-surface mapping
- Polycube maps
- Manifold parameterization

See details in classes of "Surface Parameterization" and "Mesh Morphing"

3.3 High Quality Remeshing

High Quality

- Well shaped elements
 - well-shaped triangle has aspect ratio as close to 1 as possible
- Uniform or isotropic sampling
 - sampling is locally uniform in all directions
- Smooth gradation sampling
 - if the sampling density is not uniform -- it should vary in a smooth manner

Re-Tiling

[Turk, Siggraph 1992]

Interactive Geometry Remeshing

[Alliez et al., Siggraph 2002]

Lloyd Relaxation

[Alliez et al., SMI 2003]

3.4 Feature Remeshing

Feature Preserving/Enhancement

[Attene et al., Siggraph 2003]

3.5 Error-Driven Remeshing

Error-driven Remeshing

- Variational surface approximation (VSA)
 - Remeshing into planar patches

[Cohen-Steiner et al, Siggraph 2004]

4. Case Studies

Case Study

4.1 Interactive Geometry Remeshing

[Alliez et al., Siggraph 2002]

Main Ideas

- Work in parameter space:
 - 2D space, much easier/faster!
- Use a density map to design the sampling:
 - Density map can be computed and/or painted
- Avoid long optimizations as much as we can:
 - Error diffusion for near-optimal vertex placement

Pipeline

- Geometry Analysis input-dependent
 Parameterization (remove embedding)
 Geometry Maps (2D images to substitute for 3D)
- Remeshing Design real-time
 Flexible Design (use conventional DSP tools)
 Realtime Resampling (use error diffusion)
- Mesh Generation output-dependent
 Triangulation and Reprojection (2D back to 3D)
 Final Optimization (only if needed!)

1. Geometry Analysis

- Creating the parametrization charts
- Computing 2D geometry maps

Parametric domain

Area stretching

Mean curvature

Gaussian curvature

2. Remeshing Design

Design of the desired vertex density

- Select a sampling criteria
 - Can use any combination of precomputed maps
 - Or any user-defined, spray-painted map
- Multiply (pixel by pixel) by the area map
- ⇒ Importance map (sampling space)

Real-time Resampling

 -512×512 picture in 15ms Independent of vertex budget!

3. Mesh Generation

- Triangulate in parameter space
- Mesh optimization

The area stretch map can drive tiling

Remeshing patch by patch

Andtaftien tangential amonthinger...

More Examples

Preserving Features

Using a Feature Skeleton

- Extract feature graph
- 1D error diffusion along features
- Constrained Delaunay triangulation

Example With Sharp Edges

User-Defined Maps

paint either in the importance map or directly on the mesh

More...

- Quad Meshing
 - Quadrangulation

- Tetrahedral Meshing
 - Volume meshing

Summary

- Remeshing is to generate high quality meshes
- Many applications
- Still a hot topic
- Trends
 - Local → Global (shape analysis)
 - − Greedy → Optimization
 - Properties (feature) preserving
 - Application dependent

Discussions