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Why volumetric meshing?

e Interior of 3D shapes
— FEM
— Simulation

 Two typical types

— Tetrahedral meshes

— Hexahedral meshes




1. Tetrahedral Meshing



1.1 Variational Tetrahedral
Meshing

[Alliez et al., Siggraph 2005]



Motivation

Simulation of physical phenomena:

— realistic animation in Computer Graphics,
mechanics, fluids

— often modeled as PDE

e domain discretization + finite elements



Goals

 Tetrahedral mesh generation




Goals

e Tetrahedral mesh generation

* Focus on:
— quality: shape of elements

— control over sizing
e dictated by simulation
e constrained by boundary

* l[ow number of elements




Popular Meshing Approaches

e Advancing front [Optimization:]
= Spring energy
e Specific subdivision = aspect ratios
_ octree = dihedral angles
— crystalline lattice = solid angles
= volumes
-[Delaunay } = edge lengths
— refinement = containing sphere radi
— sphere packing s etc.

—

Freitag et al.; Amenta et al.]



Delaunay Triangulation

Canonical, associated to any point set.




Delaunay Triangulation

Degree of freedom: vertex positions.
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But, Harder in 3D...

e well-spaced points generate only round or
sliver Delaunay tetrahedra [Eppstein 01]
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The Visible Human




The Visible Human
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Approach
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Comparison with the Unit Mesh
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Conclusion

+ Generate high quality isotropic tetrahedral
meshes (improved aspect ratios)

+ Simple alternated optimizations
" connectivity: Delaunay
= vertex positions: weighted circumcenters

- Theoretical guarantees to be developed



1.2 Interleaving Delaunay Refinement and
Optimization for Practical Isotropic
Tetrahedron Mesh Generation

Jane Tournois, Camille Wormser,
Pierre Alliez, Mathieu Desbrun

Siggraph 2009



Contribution

e A practical system for isotropic tetrahedral
meshing of 3D domains bounded by piecewise
smooth surfaces

— Delaunay refinement
— Optimal Delaunay optimization
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Figure 2: Top: Mesh (5,499 vertices) penerated by Delaunay refinement
(shape and boundary approximation criteria activated). Norice the clusrer
in the middle of the armhole. Right image shows rerrahedra with dihedral
angles smaller than 15 degrees. Bottom: Mesh (3,700 vertices) generated by
interleaving Delaunay refinement and optimization so as to satisfy the same
criteria. Distriburions of dihedral angles are shown on the left.



Figure 4: Refinement steps without optimization. The mesh initialized with
feature vertices; after a few batch refinement steps (from 5 to 50); the final
refined mesh with shape and approximation criteria satisfied; and its 244
slivers (terrahedra with dihedral angle smaller than 10 degrees).



Results
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1.3 Graded mesh generation
using ODT



Graded Tet-meshes
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2. Hexahedral meshing



Hexahedral Meshes

e More popular in simulation and FEM
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2.1 All-Hex Mesh Generation via
Volumetric PolyCube Deformation



Pipeline

e Basic idea: PolyCube
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Deformation driven PolyCube




PolyCubes




Results




2.2 CUBECOVER —
Parameterization of 3D Volumes



CubeCover

e Volumetric parameterization
— Extend the idea of QuadCover

e Boundary aligned

e Guided by a frame field




Volumetric Parameterization




Feature Alignment




Results




2.3 Boundary Aligned Smooth 3D
Cross-Frame Field

[Huang et al., Siggrah Asia 2011]



Boundary Aligned
3D Cross-frame Field

e 24-symmetric 3D cross-frame field




Stream Lines




Hex-Meshes
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Figure 7: The sectional views of the hexahedral dominant meshes
generated from the 3D cross-frame field. The blue and red curves
indicate the angle distributions for all the triangular and quadrilat-
eral faces respectively. We list the numbers of hexahedra, pentahe-
dra and tetrahedra separately at the bottom.



2.4 More to come...

[Siggraph 2012]



Summary

e Volumetric meshing
— Tetrahedral meshes
— Hexahedral meshes

e Attractive in computer graphics

* More in engineering
— FEM
— Simulation



Discussions
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