

Shape Matching and Retrieval

Ligang Liu
Graphics&Geometric Computing Lab
USTC

http://staff.ustc.edu.cn/~lgliu

Content-based 3D Shape Retrieval

- Huge amount of 3D shape models available on the internet and domain-specific databases
- Creating a model from scratch takes much time
- Text-based searching does not work in many cases

Terminology

- Matching: given two 3D shapes A and B determine their similarity
 - − → dissimilarity measures
- Retrieval: given a query object and a database of models find the most similar ones
 - → indexing, build a data structure to speed up the search

Shape Matching

How similar do they look?

Shape Retrieval

Applications

- Retrieval
- Recognition and classification
- Registration (Alignment)
- Morphing and deformation
- Approximation

Deformation and morphing

Recognition

Chinese characters

Fingerprints

Registration

Registering Image ${}^{1}\mathbf{I_{t1}}$ to ${}^{2}\mathbf{I_{t2}}$

Conceptual Framework

offline

Normalization

- Normalize for size by scaling
- Normalize for translation by moving the center of mass of a model to the origin
 - Or use a translation-invariant descriptor
- Normalize for rotation by aligning the principal axes of a model to the x-, y-and zaxes
 - Or use a rotation-invariant descriptor

3D shape retrieval aspects

- Efficiency
- Discriminative power
- Partial matching
- Robustness

Methods

- Explicit Methods
- Topology Based Methods
- Shape Descriptors

1. Explicit Method

ICP Algorithm (Iterative Closest Point Algorithm)

Inputs

[Besl & McKay 1992]

points from two raw scans, initial estimation of the transformation,
 criteria for stopping the iteration.

Output

refined transformation

Steps

- Associate points by the nearest neighbor criteria
- Estimate transformation parameters using a mean square cost function
- Transform the points using the estimated parameters
- Iterate (re-associate the points and so on)

Cons

- The establishing of correspondences is difficult
- Performances pair-of of-models basis is time consuming
- Can not be used for the retrieval of models from large databases in runtime

2. Topology-based Methods

Types

- Skeleton based similarity
- Reeb graph based similarity

• ...

Skeleton

Medial axis

Reeb Graph

3. Shape Descriptor

See more detail in "Shape Descriptor.ppt"

Shape Descriptor

- Structured abstraction of a 3D model
- Capturing salient shape information

Approach

- Represent each model by a shape descriptor
- Compare shapes by comparing their shape descriptor

Shape descriptors

- Volumetric Representations
- Surface Representations
- View-Based Representations

Volumetric Representation

• 1/0 voxels

Volumetric Representation

By measuring the overlaps of volumes

Spherical Parameterization

Extended Gaussian Image

 Represent model by a spherical function by binning surface normals

Shape Histograms

Spherical Extent Function

Light Field Descriptor

Recap

- Very hot topic!
- Very useful
- Trend...

Discussion