Supplementary Material

Cost-effective Printing of 3D Objects with Skin-Frame Structures

Weiming Wang ${ }^{\dagger, \ddagger}$ Tuanfeng Y. Wang ${ }^{\dagger}$ Zhouwang Yang ${ }^{\dagger *}$ Ligang Liu ${ }^{\dagger}$ Xin Tong ${ }^{\S}$
Weihua Tong ${ }^{\dagger}$ Jiansong Deng ${ }^{\dagger}$ Falai Chen ${ }^{\dagger}$ Xiuping Liu ${ }^{\ddagger}$
${ }^{\dagger}$ University of Science and Technology of China \ddagger Dalian University of Technology ${ }^{\S}$ Microsoft Research Asia

- Illustration of our algorithm on 2D case

Figure 1: Pipeline of our algorithm on $2 D$ case. (a) is the initial sampling, connectivity and external forces; the initial truss is generated with (b); (c) and (d) are the topology optimization of our algorithm

- Comparisons of the supporting structures on FDM printers

(a)
(b)

Figure 2: Extrusion-type (FDM) 3D printers need to add extra supporting structures to print the objects. (a) shows the printed result with supporting structure generated by the naive method in commercial software; and (b) shows the printed result with supporting structure generated by our method. It is seen that our method needs much less material used in the supporting structures.

- Detail of the Balance constraint in Section 3.2

To make the printed object self-balanced while standing on a horizontal plane, the vertical projection $G_{\text {proj }}$ of its mass center G onto the plane should lie within the convex hull H of its contact points on the plane [Prevost et al. 2013]. That is, the balance constraint is as follows:

$$
G_{\mathrm{proj}} \in H
$$

1) Calculate the mass center of the object

In order to calculate the mass of the object, we tetrahedralize the skin layer into a set of tetrahedron elements $\left\{T_{i}\right\}_{i=0}^{n-1}$. Then the mass and mass centers of the tetrahedrons can be obtained as $\left\{m_{T_{i}}\right\}_{i=0}^{n-1}$ and $\left\{c_{T_{i}}\right\}_{i=0}^{n-1}$ respectively.

Denote $\left\{l_{i}\right\}_{i=0}^{m-1}$ as the set of all struts. As each strut is a cylindrical shape, its mass and mass center can be easily computed. Denote $\left\{m_{l_{i}}\right\}_{i=0}^{m-1}$ and $\left\{c_{l_{i}}\right\}_{i=0}^{m-1}$ as the mass and mass centers of all struts respectively.

Then the mass center of the object is calculated as follows:

$$
G=\frac{\sum_{i=1}^{n}\left(c_{T_{i}} * m_{T_{i}}\right)+\sum_{i=1}^{m}\left(c_{l_{i}} * m_{l_{i}}\right)}{\sum_{i=1}^{n} m_{T_{i}}+\sum_{i=1}^{m} m_{l_{i}}}
$$

Then the vertical projection of G onto the standing plane can be computed as $G_{\text {proj }}$.
2) The balance constraint

Suppose H has k vertices $\left\{P_{i}\right\}(i=0,1, \ldots, k-1)$ in the clockwise order in the standing plane. Then the balance constraint is represented as follows:

$$
\left(P_{i}-G_{\mathrm{proj}}\right) \times\left(P_{(i+1) \% k}-G_{\mathrm{proj}}\right)<0, \quad i=0,1, \ldots, k-1
$$

