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In this appendix, we will prove the convergence rate and asymp-
totic optimality for the DLRS estimator, based on the asymptotic
behavior of eigenvalues of matrix M and statistical theory.

Let � be a bounded 2D manifold (the domain) and H 2(�) the
space of C2-continuous functions defined on �. A semi-norm in
H 2(�) is defined by

|f |2�,2 =
∫

�

(��f )2.

With a set of sampling points � = {Xi}n
i=1 in the domain �, we can

also give a discrete version of the aforementioned semi-norm as

|f |2�,2 =
n∑

i=1

|��f (Xi)|2.

Specially, |f |2�,0 = ∫
�

f 2 and |f |2�,0 = 1
n

∑n

i=1 f (Xi)2.

We now have a few assumptions as follows.

(A.1) The input � is a bounded Lipschitz domain satisfying the
uniform cone conditions. See Utreras [1988] for detailed
definition.

(A.2) The set of sampling points � = {Xi}n
i=1 in domain � satis-

fies the following quasi-uniform assumption: there exists a
constant ξ0 > 0 such that

δmax

δmin
≤ ξ0,

where δmax = supX∈� infXi∈� ‖X − Xi‖ and δmin =
minj �=i ‖Xj − Xi‖.

(A.3) Given � = {Xi}n
i=1 ⊂ �, there exist constants ξ and ξ (de-

pending on �) such that

ξ |f |2�,2 ≤ |f |2�,2 ≤ ξ |f |2�,2

for any function f ∈ H 2(�).

Remark 1. Suppose � = {Xi}n
i=1 is an equidistributed sequence

in the region �. From the law of large numbers, we have

lim
n→∞

|f |2�,2 = 1

Area(�)
|f |2�,2.

Since � is bounded, Area(�) is also bounded. Thus (A.3) is satisfied
with probability one as the sample size goes to infinity.

c© 2014 ACM 0730-0301/2014/03-ART18 $15.00
DOI: http://dx.doi.org/10.1145/2557449

1. PROOF OF THEOREM 1

Before we prove Theorem 1, we have some propositions.

PROPOSITION 1.1. For any f ∈ H 2(�), there exists a matrix
M�,2 (depending on �) such that

|f |2�,2 = min
φ ∈ H 2(�)

φ(Xi ) = fi , i = 1, . . . , n

1

n
fT M�,2f, (1)

where f = (f1, . . . , fn)T = (f (X1), . . . , f (Xn))T is the vector of
function values at � = {Xi}n

i=1.

The proof of the preceding proposition can be found in text-
book Halmos [1982] using the Riesz representation theorem and
thus the details are omitted.

PROPOSITION 1.2. If � is a bounded 2D manifold and μn is the
largest eigenvalue of matrix M�,2, then nδ2

max and δ4
maxμn are both

bounded from above.

PROOF. Suppose that Vunit is the area of unit geodestic disk on �.
So we have

nVunitδ
2
min ≤ Area(�),

and then get

δ2
max ≤ n−1 Area(�)

Vunit

δ2
max

δ2
min

= n−1 Area(�)

Vunit
ξ 2

0 = O(n−1). (2)

So nδ2
max is bounded from above.

Let u be the function such that

1

n
uT M�,2u = |u|2�,2 = min

φ ∈ H 2(�)
φ(Xi ) = ui , i = 1, . . . , n

|φ|2�,2,

where u = (u1, . . . , un)T is the eigenvector of M�,2 correspond-
ing to the largest eigenvalue, that is, M�,2u = μnu. We define a
compactly supported radial basis function

w(s) =
{

e−‖s‖/(1−‖s‖), 0 ≤ ‖s‖ ≤ 1
0, ‖s‖ > 1

and specify an interpolant φ(X) = ∑n

i=1 uiwi(X), where wi(X) =
w( X−Xi

δmin
). By the definition of δmin, it is easy to see that φ(Xi) =

ui, i = 1, . . . , n. Moreover, we have for β ∈ Z
3
+

Dβwi(Xj ) = 0, ∀i �= j

and with |β| = 2

Dβwj (Xj ) = δ−2
minD

βw(0).
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Hence, we have

|u|2�,2 ≤ |φ|2�,2

= 1

n

n∑
j=1

⎛
⎝∑

|β|=2

2!

β!
|Dβφ(Xj )|2

⎞
⎠

= 1

n

n∑
j=1

⎛
⎝∑

|β|=2

2

β!

∣∣∣∣
n∑

i=1

uiD
βwi(Xj )|2

⎞
⎠

= 1

n

n∑
j=1

⎛
⎝∑

|β|=2

2

β!
u2

j |Dβwj (Xj )|2
⎞
⎠

= 1

n

n∑
j=1

u2
j

⎛
⎝∑

|β|=2

2

β!
|Dβw(0)|2

⎞
⎠ δ−4

min,

which implies that μn ≤ c(w)δ−4
min by denoting the constant c(w) =∑

|β|=2
2
β! |Dβw(0)|2. Finally we get

δ4
maxμn ≤ c(w)

δ4
max

δ4
min

= c(w)ξ 4
0

and prove that δ4
maxμn is bounded from above.

PROPOSITION 1.3. Suppose that ξ1j
m ≤ μj ≤ ξ2j

m for m > 0
and j = 1, 2, . . . , where ξ1, ξ2 > 0 are constants. Then we have
for n > 0, λ > 0,

n∑
j=1

1

(1 + λμj )2
= O(λ−1/m).

PROOF. First of all we have
n∑

j=1

1

(1 + λξ2jm)2
≤

n∑
j=1

1

(1 + λμj )2
≤

n∑
j=1

1

(1 + λξ1jm)2
.

For i = 1, 2, we have

n∑
j=1

1

(1 + λξijm)2
≥

∫ n+1

1

1

(1 + λξixm)2
dx

= 1

m

∫ λξi (n+1)m

λξi

y− m−1
m

(1 + y)2
dy · (λξi)

−1/m

→ m−1

(∫ ∞

λξi

y−(m−1)/m

(1 + y)2
dy

)
ξ

−1/m

i · λ−1/m

= O(λ−1/m),

where the second equation reflects the change of variable (y =
λξix

m), and “→” corresponds to “n → ∞.” Similarly, with the
same change of variable, we also have

n∑
j=1

1

(1 + λξijm)2
≤

∫ n

0

dx

(1 + λξixm)2

= 1

m

∫ λξin
m

0

y− m−1
m

(1 + y)2
dy · (λξi)

−1/m

→ m−1

(∫ ∞

λξi

y−(m−1)/m

(1 + y)2
dy

)
ξ

−1/m

i · λ−1/m

= O(λ−1/m).

We are now ready to exhibit the Rayleigh quotient inequalities
connecting the semi-norms in H 2(�) and their discretized version.

LEMMA 1.4. Let � satisfy (A.1) and f �= 0 satisfy (A.3). Then
there exists constant γ1 > 0 (depending only on �, ξ0, ξ ) and
δ0 > 0, such that if δmax ≤ δ0 we have

|f |2�,2

|f |2�,0

≥ |f |2�,2

γ1

(|f |2�,0 + δ4
max|f |2�,2

) ,

for any |f |2�,0 �= 0.

PROOF. According to Theorem 3.3 in Utreras [1988], there exists
constant c(�, ξ0) > 0 and δ0 > 0 such that for δmax ≤ δ0,

|f |2�,0 ≤ C(d, m, �, ξ0)
(|f |2�,0 + δ4

max|f |2�,2

)
.

Since |f |2�,2 ≥ ξ |f |2�,2, we have

|f |2�,2

|f |2�,0

≥ ξ |f |2�,2

c(�, ξ0)
(|f |2�,0 + δ4

max|f |2�,2

)
≥ |f |2�,2

γ1

(|f |2�,0 + δ4
max|f |2�,2

) ,

where γ1 = c(�, ξ0)/ξ .

LEMMA 1.5. Assume the same conditions as in Lemma 1. Then
there exists constant γ2 > 0 (depending only on �, ξ0, ξ , ξ ) and
δ0 > 0, such that if δmax ≤ δ0 we have

|f |2�,2

|f |2�,0

≥ |f |2�,2

γ2

(|f |2�,0 + δ4
max|f |2�,2

) , (3)

for any 0 �= f .

PROOF. According to Theorem 3.4 in Utreras [1988], there exists
constant c′(�, ξ0) > 0 and δ0 > 0 such that for δmax ≤ δ0,

|f |2�,0 ≤ c′(�, ξ0)
(|f |2�,0 + δ4

max|f |2�,2

)
.

Since ξ |f |2�,2 ≤ |f |2�,2 ≤ ξ |f |2�,2, we have

|f |2�,2

|f |2�,0

≥ |f |2�,2/ξ

c′(�, ξ0)
(|f |2�,0 + δ4

max|f |2�,2/ξ
)

≥ |f |2�,2

γ2

(|f |2�,0 + δ4
max|f |2�,2

) ,

where γ2 = c′(�, ξ0)ξ max(1, 1/ξ ).

Lemma 1.4 and Lemma 1.5 build a connection between the con-
tinuous semi-norms and discrete semi-norms. This enables us to
study the behavior of the eigenvalues of M�,2 through studying the
variational eigenvalue problem. Let μ1 ≤ · · · ≤ μn be the eigen-
values of M�,2 in ascending order. Clearly {μj } are non-negative
real numbers since the matrix M�,2 is semi-positive define. Next
we study the behavior of these eigenvalues and show that they can
be bounded by the discrete spectrum of the differential operator
(−��)2, where �� is the Laplacian-Beltrami operator on �.

LEMMA 1.6. Let � satisfy (A.1) and � = {Xj }n
j=1 satisfy (A.2).

Then there exist constants c1, c2 > 0 such that

c1ρj ≤ μj ≤ c2ρj ,
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where ρ1 ≤ ρ2 ≤ · · · ≤ ρn are the first n eigenvalues of the
variational eigenvalue problem∫

�

φ�2
�ψ = ρ

∫
�

φψ, ∀ ψ ∈ H 2(�).

PROOF. From Lemma 1.4 we get

|φ|2�,2

|φ|2�,0

≥ |φ|2�,2

γ1

(|φ|2�,0 + δ4
max|φ|2�,2

)
for any φ ∈ H 2(�) with |φ|2�,0 �= 0. Thus

μj ≥ 1

γ1
ϑj ,

where ϑ1 ≤ · · · ≤ ϑn are the first n eigenvalues of the variational
eigenvalue problem

|φ|2�,2 = ϑ · (|φ|2�,0 + δ4
max|φ|2�,2

)
,

which implies

ϑj = ρj

1 + δ4
maxρj

, j = 1, . . . , n.

Note that δ4
maxρj is bounded from above, since ρj ∼ j 2 according

to Theorem 14.6 in Agmon [1965] and the fact δ4
max = O(n−2)

from Eq. (2). So there exists c1 > 0 such that 1
γ1(1+δ4

maxρj )
≥ c1, then

we have

μj ≥ c1ρj .

On the other hand, using Lemma 1.5

|φ|2�,2

|φ|2�,0

≥ |φ|2�,2

γ1

(|φ|2�,0 + δ4
max|φ|2�,2

)
we have

ρj ≥ 1

γ2
νj ,

where ν1 ≤ · · · ≤ νn are the first n eigenvalues of the variational
eigenvalue problem

|φ|2�,2 = ν · (|φ|2�,0 + δ4
max|φ|2�,2

)
,

which gives

νj = μj

1 + δ4
maxμj

, j = 1, . . . , n.

So there exists c2 > 0 such that

μj ≤ γ2

(
1 + δ4

maxμj

)
ρj ≤ γ2

(
1 + δ4

maxμn

)
ρj ≤ c2ρj ,

since δ4
maxμn is bounded according to Proposition 1.2.

LEMMA 1.7. Suppose � satisfy (A.1). Let {μ1 ≤ · · · ≤ μn}
be the eigenvalues of M�,2 in ascending order. Then there exist
constants c3, c4 > 0 such that for 2 < j ≤ n we have

c3j
2 ≤ μj ≤ c4j

2. (4)

PROOF. According to Lemma 1.6, it suffices to prove that the
eigenvalues ρ1 ≤ ρ2 ≤ · · · satisfy the type of relationship in Eq. (4).

By using integration by parts, we observe that ρ1 ≤ ρ2 ≤ · · ·
are the eigenvalues of the differential operator (−��)2 which has
discrete spectrum contained in the non-negative real axis. We can
then apply Theorem 14.6 in Agmon [965] to get

ρj ∼ j 2, j > 2.

This concludes the proof.

THEOREM 1.8. Let f be an element of H 2(�) and the samples
satisfy

yi = f (Xi) + εi, i = 1, . . . , n, (5)

where y1, . . . , yn are the observed functional values at � =
{Xi}n

i=1 ⊂ �, and ε1, . . . , εn are i.i.d random variables with zero
mean and finite variance σ 2 > 0. Suppose (A.1) and (A.2) are
fulfilled. Let f̂n(λ) = An(λ)y = (In + λM�,2)−1y be the estimator
from the DLRS model. Denote rn(λ) = n−1‖f̂n(λ) − f‖2. As n → ∞
and λ ∼ n−2/3 is chosen, then

E[rn

(
λ)] = O(n− 2

3
)
.

PROOF. By using the bounds of eigenvalues μj = O(j 2) obtained
in Lemma 1.7, we have

E[rn(λ)] = E[n−1‖f̂n(λ) − f‖2]
= n−1

(
fT (An(λ) − In)2 f + σ 2tr[An(λ)2]

)
≤ λ

4n
fT Mf + σ 2

n

n∑
j=1

1

(1 + λμj )2

= O(λ) + O
(
n−1λ− 1

2
)
,

(6)

where the last equation is based on the result of Proposition 1.3
with m = 2. In particular, if the smoothing parameter is cho-
sen to satisfy λ ∼ n−2/3, then we achieve the convergence rate
E[rn(λ)] = O(n− 2

3 ). According to Stone [1982], − 2
3 is the opti-

mal for multivariate function estimation with the order 2 in the 2D
domain � with some standard assumptions. Since the assumption
(A.3) is satisfied with probability one as n → ∞, we know the
DLRS estimator achieves the optimal convergence rate with proba-
bility one.

Using Theorem 1.8, we can easily prove Theorem 1 in the sub-
mission. Specifically, in the DLRS model we let the unknown
function f be a C2-smooth surface S itself and the observa-
tions y = (y1, . . . , yn)T be the noisy samples of surface posi-
tion P = (p1, . . . , pn)T . Therefore we come to the conclusion of
Theorem 1 in the submission.

2. PROOF OF THEOREM 2

We will show that the DLRS estimator satisfies some general con-
ditions and then prove the asymptotic optimality of GCV under our
proposed framework.

Let f̂n(λ) = An(λ)y = (In + λM)−1y be the estimator of our
DLRS model and denote rn(λ) = n−1‖f̂n(λ) − f‖2. The asymptotic
optimality of GCV is defined as

rn(λ̂G)

infλ∈R+ rn(λ)
→p 1, (7)

which verifies the closeness between the values of risk function
given by the GCV choice λ̂G and the theoretically optimal choice
λ∗ = arg infλ∈R+ rn(λ).

The main result here is to show that our estimator satisfies the
following three conditions.

(C.1) infλ∈R+ nE[rn(λ)] → ∞.
(C.2) There exists a sequence {λn} such that rn(λn) →p 0 (the

convergence in probability).
(C.3) Let 0 ≤ κ1 ≤ · · · ≤ κn be the eigenvalues of K(λ) = λM .

For any � such that �

n
→ 0, then

(n−1 ∑n
i=�+1 κ−1

i
)2

n−1 ∑n
i=�+1 κ−2

i

→ 0 as
n → ∞.
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The condition (C.1) states that the convergence rate of the risk
function to zero should be lower than O(n−1). Otherwise, the esti-
mates may possess unattainably small risk.

Denote null(��) the null space of Laplacian operator ��. Actu-
ally from the behavior of eigenvalues as shown in Lemma 1.7, it is
not difficult to verify that our proposed model meets the condition
(C.1) except for f ∈ null(��).

LEMMA 2.1. If f /∈ null(��), the estimator f̂n(λ) from our DLRS
model holds

inf
λ∈R+

nE[rn(λ)] → ∞.

This verifies the condition (C.1).

PROOF. Let 0 ≤ μ1 ≤ · · · ≤ μn be the eigenvalues of design
matrix M , and uj the unit eigenvector corresponding to μj , j =
1, . . . , n. So we have

nE[rn(λ)] = nE[n−1‖f̂n(λ) − f‖2]

= E[(f̂n(λ) − f)T (f̂n(λ) − f)]

= fT (An(λ) − I )2 f + σ 2tr[An(λ)2]

=
n∑

j=1

λ2μ2
j

(1 + λμj )2
e2
j + σ 2

n∑
j=1

1

(1 + λμj )2
,

(8)

where ej = uT
j f.

If λ ∼ O(1) or λ → ∞ (corresponds to n → ∞), since μj ∼ j 2

there exists j ∗ such that j∗
n

→ 0 and
λμj

1+λμj
≥ 1

2 for j > j ∗, then

nE[rn(λ)] ≥
n∑

j=1

λ2μ2
j

(1 + λμj )2
e2
j

≥ 1

4

∑
j>j∗

e2
j

≥ n

4
|f |2�,0 − 1

4
j ∗ max

{
e2

1, . . . , e
2
j∗

}
= O(n) → ∞.

On the other hand, if λ → 0 corresponds to n → ∞, we have

nE[rn(λ)] ≥ σ 2
n∑

j=1

1

(1 + λμj )2

= O(λ− 1
2 )

→ ∞,

where the second equation is also based on Proposition 1.3.

LEMMA 2.2. Under condition (C.1), we have in probability

sup
λ>0

∣∣∣∣ rn(λ)

E[rn(λ)]
− 1

∣∣∣∣ → 0. (9)

PROOF. To get Eq. (9), it suffices to show in probability

sup
λ>0

n−1
∣∣fT (An(λ) − In)An(λ)ε

∣∣
E[rn(λ)]

→ 0 (10)

and

sup
λ>0

n−1
∣∣‖An(λ)ε‖2 − σ 2tr[An(λ)2]

∣∣
E[rn(λ)]

→ 0. (11)

According to the Chebyshev inequality, we have for any given
δ > 0

Pr

{
n−1

∣∣fT (An(λ) − In)An(λ)ε
∣∣

E[rn(λ)]
> δ

}

≤ δ−2(nE[rn(λ)])−2E
[
(fT (An(λ) − In)An(λ)ε)2

]
= δ−2(nE[rn(λ)])−2σ 2

tr
[
An(λ)(An(λ) − In)f fT (An(λ) − In)An(λ)

]
= δ−2(nE[rn(λ)])−2σ 2‖An(λ)(An(λ) − In)f‖2

≤ δ−2(nE[rn(λ)])−1σ 2 ‖(An(λ) − In)f‖2

nE[rn(λ)]
≤ δ−2σ 2(nE[rn(λ)])−1 → 0,

since nE[rn(λ)] ≥ ‖(An(λ) − In)f‖2. Thus Eq. (10) holds in proba-
bility.

Again using the Chebyshev inequality, we have for any given
δ > 0

Pr

{
n−1

∣∣‖An(λ)ε‖2 − σ 2tr[An(λ)2]
∣∣

E[rn(λ)]
> δ

}

≤ δ−2(nE[rn(λ)])−2E
[
(‖An(λ)ε‖2 − σ 2tr[An(λ)2])2

]
= δ−2(nE[rn(λ)])−1 E[‖An(λ)ε‖4]−(σ 2tr[An(λ)2])2

nE[rn(λ)] .

Since nE[rn(λ)] ≥ σ 2tr[An(λ)2], we only need to show

E
[‖An(λ)ε‖4

] − (
σ 2tr[An(λ)2]

)2

σ 2tr[An(λ)2]
< Constant. (12)

Denote B = An(λ)2 = (Bij )n×n, then we have

E
[‖An(λ)ε‖4

] = E
[
(εT Bε)2

]
= E

[( ∑
i,j

Bij εiεj

)(∑
i′,j ′

Bi′j ′εi′εj ′

)]

= E
[( ∑

i

Biiε
2
i

)( ∑
i′

Bi′i′ε
2
i′

)]

+E
[( ∑

i �=j

Bij εiεj

)( ∑
i′ �=j ′

Bi′j ′εi′εj ′

)]

≤
(

n∑
i=1

Biiσ
2

)2

+
n∑

i=1

B2
iiE

[
ε4

i

] +
∑
i �=j

B2
ij σ

4.

There exists a constant c such that E[ε4
i ] ≤ cσ 2 and σ 4 ≤ cσ 2, so

we get

E
[‖An(λ)ε‖4

] ≤
(

n∑
i=1

Biiσ
2

)2

+ c

n∑
i=1

B2
iiσ

2 + c
∑
i �=j

B2
ij σ

2

=
(

n∑
i=1

Biiσ
2

)2

+ c
∑
i,j

B2
ij σ

2

= (
σ 2tr[An(λ)2]

)2 + cσ 2tr[An(λ)4]

≤ (
σ 2tr[An(λ)2]

)2 + cσ 2tr[An(λ)2],

which implies Eq. (12), and immediately leads to (11) in probabil-
ity.

The condition (C.2) shows that the risk function rn(λn) con-
verges to zero in probability with appropriate sequence {λn}. Obvi-
ously, the conclusion of condition (C.2) can be easily derived from

ACM Transactions on Graphics, Vol. 33, No. 2, Article 18, Publication date: March 2014.



Decoupling Noise and Features via Weighted �1-Analysis Compressed Sensing • App-5

Theorem 1.8 and Lemma 2.2. Therefore, the condition (C.2) holds
true.

The condition (C.3) gives a ratio(
n−1

∑n

i=�+1 κ−1
i

)2

n−1
∑n

i=�+1 κ−2
i

, (13)

which is defined on the eigenvalues of K(λ) = λM and often plays
an important role in the asymptotic analysis.

LEMMA 2.3. In our model, for any � such that �

n
→ 0 and

κ�+1 > 0, then the ratio of Eq. (13) converges to zero as n (the
sample size) goes to infinity. This verifies the condition (C.3).

PROOF. From Lemma 1.7, namely, μi = O(i2), we get

lim
n→∞

(
n−1 ∑n

i=�+1 κ−1
i

)2

n−1
∑n

i=�+1 κ−2
i

= lim
n→∞

(∑n
i=�+1 μ−1

i

)2

n
∑n

i=�+1 μ−2
i

= lim
n→∞

(∫ n

�+1 μ−2m/ddμ
)2

n
∫ n

�+1 μ−4m/ddμ

= lim
n→∞

(4m − d)d

(2m − d)2
·

(
(� + 1)1− 2m

d − n1− 2m
d

)2

n
(
(� + 1)1− 4m

d − n1− 4m
d

)
= lim

n→∞
(4m − d)d

(2m − d)2
· � + 1

n
·
(
1 − ( �+1

n
)

2m
d

−1
)2(

1 − ( �+1
n

)
4m
d

−1
)

= 0.

By conclusion, we have verified that the three conditions (C.1),
(C.2), and (C.3) hold true for our model. Then we will prove the
asymptotic optimality of GCV under these three conditions.

LEMMA 2.4. Under the condition (C.2), we have

n−1tr[In − An(λn)] → 1, (14)

and

n−1‖(In − An(λn))y‖2 → σ 2. (15)

PROOF. From the fact that

σ 2(n−1tr[An(λn)])2 ≤ σ 2n−1tr[An(λn)2] ≤ E[rn(λn)] → 0,

we have n−1tr[An(λn)] → 0 and then get

n−1tr[In − An(λn)] → 1.

By the fact n−1‖ε‖2 → σ 2 and the Cauchy-Schwartz inequality, we
have

n−1‖(In − An(λn))y‖2 = n−1‖ε‖2

+ n−1‖f − f̂n(λn)‖2 + 2

n
|(f − f̂n(λn))T ε| → σ 2.

LEMMA 2.5. Under the condition (C.3), for λn such that
rn(λn) → 0, we have (

n−1tr[An(λn)]
)2

n−1tr[An(λn)2]
→ 0. (16)

PROOF. Recall An(λn) = (In + λnM)−1 = (In + Kn(λn))−1. We
get (

n−1tr[An(λn)]
)2

n−1tr[An(λn)2]
=

(
n−1

∑n

i=1(1 + κi)−1
)2

n−1
∑n

i=1(1 + κi)−2
, (17)

where 0 ≤ κ1 ≤ · · · ≤ κn are the eigenvalues of Kn(λn). Let � be
the number holding κ� ≤ 1 < κ�+1, then we have

n∑
i=1

(1 + κi)
−1 ≤ � +

n∑
i=�+1

κ−1
i , (18)

and
n∑

i=1

(1 + κi)
−2 ≥ 1

4

(
� +

n∑
i=�+1

κ−2
i

)
. (19)

To reach Eq. (16), it suffices to show

(
�

n
+ 1

n

∑n

i=�+1 κ−1
i

)2

1
4

(
�

n
+ 1

n

∑n

i=�+1 κ−2
i

) → 0. (20)

On the other hand, E[rn(λn)] → 0 since rn(λn) is non-negative, thus
we get n−1tr[An(λn)2] → 0 and have �

n
→ 0 due to Eq. (19). So it

is not hard to see that (20) holds under the condition (C.3).

LEMMA 2.6. For any λ̂ such that rn(λ̂) → 0 and

(
n−1tr[An(λ̂)]

)2

n−1tr[An(λ̂)2]
→ 0, (21)

under the condition (C.1) we have∣∣SUREn(λ̂) − r̃n(λ̂) − n−1‖ε‖2 + σ 2
∣∣

rn(λ̂)
−→p 0, (22)

and

n−1‖f̃n(λ̂) − f̂n(λ̂)‖2

rn(λ̂)
−→p 0, (23)

where SUREn(λ) = σ 2 − σ 4 (n−1tr[In−An(λ)])2

n−1‖(In−An(λ))y‖2 , f̃n(λ) = y −
σ 2 tr[In−An(λ)]

‖(In−An(λ))y‖2 (In − An(λ))y and r̃n(λ) = n−1‖f̃n(λ) − f‖2.

Proof of the Lemma 2.6 is left in the Appendix.

LEMMA 2.7. Under conditions (C.2) and (C.3), f̂n(λ̂G) is consis-
tent, that is, rn(λ̂G) → 0, where λ̂G is chosen by GCV.

PROOF. According to the proof of Lemma 5.2 in Li [1985] and
similarly as in Girard [1991], the preceding lemma can be estab-
lished.

2.1 Asymptotic Optimality Theorem

THEOREM 2.8. Under conditions (C.1), (C.2), and (C.3), f̂n(λ̂G)
is asymptotically optimal, where λ̂G is the GCV choice.

PROOF. From the condition (C.2), for λ∗
n that is the minimizer of

rn(λ), we have rn(λ∗
n) → 0. According to Lemma 2.5, we have

(
n−1tr[An(λ∗

n)]
)2

n−1tr[An(λ∗
n)2]

→ 0. (24)

Hence from Lemma 2.6, we have SUREn(λ∗
n) − n−1‖εn‖2 + σ 2 =

rn(λ∗
n)(1 + op(1)).

On the other hand, from Lemma 2.7 this also holds for λ̂ = λ̂G.
Therefore we have

SUREn(λ̂G) − n−1‖εn‖2 + σ 2 = rn(λ̂G)(1 + op(1)). (25)

Since SUREn(λ̂G) ≤ SUREn(λ∗
n) and rn(λ∗

n) ≤ rn(λ̂G), we have
rn(λ̂G)/rn(λ∗

n) → 1 in probability.
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Proof of Lemma 2.6

PROOF. We first prove Eq. (22), which can be rewritten as

2
∣∣∣ σ 2tr[In−An(λ)]yT (In−An(λ))ε

n‖(In−An(λ))y‖2 − σ 4(tr[In−An(λ)])2

n‖(In−An(λ))y‖2 − n−1‖ε‖2 + σ 2
∣∣∣

rn(λ)

≤ 2
σ 2tr[In − An(λ)]

‖(In − An(λ))y‖2
· n−1

∣∣fT (In − An(λ))ε
∣∣

rn(λ)

+2
σ 2tr[In − An(λ)]

‖(In − An(λ))y‖2
· n−1

∣∣εT An(λ)ε − σ 2tr[An(λ)]
∣∣

rn(λ)

+2

∣∣∣( σ 2tr[In−An(λ)]
‖(In−An(λ))y‖2 − 1

)(
σ 2 − n−1‖ε‖2

)∣∣∣
rn(λ)

.

(26)
Note that n−1tr[In − An(λn)] → 1, n−1‖(In − An(λn))y‖2 → σ 2

from Lemma 2.4, and supλ>0 | rn(λ)
E[rn(λ)] −1| → 0 by Lemma 2.2. Thus

it suffices for us to show the following three equations

sup
λ>0

n−1
∣∣fT (In − An(λ))ε

∣∣
E[rn(λ)]

→ 0, (27)

sup
λ>0

n−1
∣∣εT An(λ)ε − σ 2tr[An(λ)]

∣∣
E[rn(λ)]

→ 0, (28)

sup
λ>0

|(σ 2n−1tr[In−An(λ)]−n−1‖(In−An(λ))y‖2)(σ 2−n−1‖ε‖2)|
E[rn(λ)]

→ 0.

(29)
For Eq. (27), according to the Chebyshev inequality, we have for

any given δ > 0

Pr

{
n−1|fT (In − An(λ))ε|

E[rn(λ)]
> δ

}
≤ δ−2(nE[rn(λ)])−2E

[
(fT (In − An(λ))ε)2

]
= δ−2(nE[rn(λ)])−2σ 2tr

[
(In − An(λ))f fT (In − An(λ))

]
= δ−2(nE[rn(λ)])−2σ 2‖(In − An(λ))f‖2

= δ−2(nE[rn(λ)])−1σ 2 ‖(In−An(λ))f‖2

nE[rn(λ)]

≤ δ−2σ 2(nE[rn(λ)])−1 → 0,

since nE[rn(λ)] ≥ ‖(In − An(λ))f‖2.
For Eq. (28), again using the Chebyshev inequality, we have for

any given δ > 0

Pr

{
n−1

∣∣εT An(λ)ε − σ 2tr[An(λ)]
∣∣

E[rn(λ)]
> δ

}

≤ δ−2(nE[rn(λ)])−2E
[(

εT An(λ)ε − σ 2tr[An(λ)]
)2]

= δ−2(nE[rn(λ)])−1 E[(εT An(λ)ε)2]−(σ 2tr[An(λ)])2

nE[rn(λ)] .

Since nE[rn(λ)] ≥ σ 2tr[An(λ)2], we only need to show

E
[
(εT An(λ)ε)2

] − (
σ 2tr[An(λ)]

)2

σ 2tr[An(λ)2]
< Constant. (30)

Denote An(λ) = (Aij )n×n, then we have

E
[
(εT An(λ)ε)2

] = E
[( ∑

i,j

Aij εiεj

)(∑
i′,j ′

Ai′j ′εi′εj ′

)]

= E
[( ∑

i

Aiiε
2
i

)( ∑
i′

Ai′i′ε
2
i′

)]

+ E
[( ∑

i �=j

Aij εiεj

)( ∑
i′ �=j ′

Ai′j ′εi′εj ′

)]

≤
(

n∑
i=1

Aiiσ
2

)2

+
n∑

i=1

A2
iiE

[
ε4

i

] +
∑
i �=j

A2
ij σ

4.

There exists a constant c such that E[ε4
i ] ≤ cσ 2 and σ 4 ≤ cσ 2, so

we get

E
[
(εT An(λ)ε)2

] ≤
(

n∑
i=1

Aiiσ
2

)2

+ c

n∑
i=1

A2
iiσ

2 + c
∑
i �=j

A2
ij σ

2

=
(

n∑
i=1

Aiiσ
2

)2

+ c
∑
i,j

A2
ij σ

2

= (
σ 2tr[An(λ)]

)2 + cσ 2tr[An(λ)2],

which implies Eq. (30), and immediately leads to (28).
For Eq. (29), using the proved (27), (28), and σ 2(n−1tr[An(λ)])2 ≤

σ 2n−1tr[An(λ)2] ≤ E[rn(λ)], we only need to show

sup
λ>0

∣∣σ 2 − n−1‖ε‖2
∣∣

(E[rn(λ)])1/2
→ 0, (31)

since the fact that∣∣σ 2n−1tr[In − An(λ)] − n−1‖(In − An(λ))‖2
∣∣

= ∣∣σ 2 − σ 2n−1tr[An(λ)] − n−1‖ε + f − f̂n(λ)‖2
∣∣

= |σ 2 − σ 2n−1tr[An(λ)] − n−1‖ε‖2 − rn(λ) − 2n−1(f − f̂n(λ))T ε|
= |σ 2 − n−1‖ε‖2 − σ 2n−1tr[An(λ)]

−rn(λ) − 2n−1fT (In − An(λ))ε + 2n−1εT An(λ)ε|
≤ ∣∣σ 2 − n−1‖ε‖2

∣∣ + rn(λ) + 2n−1
∣∣fT (In − An(λ))ε

∣∣
+2n−1

∣∣εT An(λ)ε − σ 2tr[An(λ)]
∣∣ + σ 2n−1tr[An(λ)].

By the Chebyshev inequality, we have for any given δ > 0

Pr

{∣∣σ 2 − n−1‖ε‖2
∣∣

(E[rn(λ)])1/2
> δ

}

≤ δ−2(E[rn(λ)])−1E
[(

σ 2 − n−1‖ε‖2
)2]

= δ−2(E[rn(λ)])−1
(
n−2E[‖ε‖4] − σ 4

)
≤ δ−2(E[rn(λ)])−1

(
n−2

(
n2σ 4 + nE

[
ε4

i

]) − σ 4
)

= δ−2(nE[rn(λ)])−1E
[
ε4

i

] → 0,

which implies (31).
Now it remains to prove Eq. (23), the numerator of which can be

rearranged as

n−1‖f̃n(λ̂) − f̂n(λ̂)‖2

=
( σ 2n−1tr[In − An(λ)]

n−1‖(In − An(λ))y‖2
− 1

)2
n−1‖(In − An(λ))y‖2

= ((σ 2−n−1‖ε‖2)−rn(λ)−2n−1fT (In−An(λ))ε+2n−1(εT An(λ)ε−σ 2tr[An(λ)])+σ 2n−1tr[An(λ)])2

n−1‖(In−An(λ))y‖2 .
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To get (23), since n−1‖(In − An(λ))y‖2 → σ 2, it suffices to show
the following (

σ 2 − n−1‖ε‖2
)2

rn(λ)
→ 0, (32)(

n−1fT (In − An(λ))ε
)2

rn(λ)
→ 0, (33)(

n−1(εT An(λ)ε − σ 2tr[An(λ)])
)2

rn(λ)
→ 0, (34)(

n−1tr[An(λ)]
)2

rn(λ)
→ 0. (35)

Note that supλ>0 | rn(λ)
E[rn(λ)] − 1| → 0, then Eqs. (32), (33), and (34)

can be easily proved from (31), (27), and (28) respectively. The last
equation (35) follows from σ 2n−1tr[An(λ)2] ≤ E[rn(λ)] and (21).

Hence, we complete the proof of Lemma 2.6.
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