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a b s t r a c t

This paper presents a novel approach, called hybrid clipping, for computing all intersections between

two polynomial Bézier curves within a given parametric domain in the plane. Like Bézier clipping, we

compute a ‘fat line’ (a region along a line) to bound one of the curves. Then we compute a ‘fat curve’

around the optimal low degree approximation curve to the other curve. By clipping the fat curve with

the fat line, we obtain a new reduced subdomain enclosing the intersection. The clipping process

proceeds iteratively and then a sequence of subdomains that is guaranteed to converge to the

corresponding intersection will be obtained. We have proved that the hybrid clipping technique has

at least a quadratic convergence rate. Experimental results have been presented to show the

performance of the proposed approach with comparison with Bézier clipping.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Computing intersections of two curves has played an impor-
tant role in many engineering fields, including computer-aided
design and manufacturing (CAD/CAM), collision detection, and
geometric modeling [1–3].

If the two curves are parametric, the solution is identified by
the parameter values of intersection points. Early approaches
include the Bézier subdivision algorithm [4], the interval subdivi-
sion method [5], and implicitization [6]. One widely used and
robust method is Bézier clipping, which was developed by [7]. It
utilizes the convex hull property of Bézier curves and proceeds as
clipping away regions of the curves that are guaranteed to not
intersect. Recently, [8] proved that Bézier clipping has a quadratic
convergence rate.

Bézier clipping can be applied to compute roots of polynomials
as well. By extending Bézier clipping, [9] developed the quadratic
clipping technique to compute all the roots of a univariate
polynomial equation within an interval. The basic idea is to
generate a strip bounded by two quadratic polynomials which
encloses the original polynomial via degree reduction. Combined
with subdivision, quadratic clipping generates a sequence of
intervals that contain the roots of the original polynomial.
Recently, [10] extended this technique to cubic clipping and more
general cases. Theoretical and experimental results have shown
ll rights reserved.

author(s) will be available
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that both quadratic clipping and cubic clipping have at least
quadratic convergence rates.

In many cases intersection algorithms involve numerical
methods for solving systems of bivariate polynomial equations
system [11]. Ref. [12] presented an algorithm for computing all
roots of a given bivariate polynomial system within a given
rectangular domain. They construct the best linear approximants
to the polynomials and use them to define planar strips enclosing
the roots. The work of [13] used one linear and one quadratic
approximants to the two polynomials to improve the convergence
rate. Recently, Mourrain and Pavone [14] presented an improve-
ment of Interval Projected Polyhedron (IPP) algorithm [15] for
solving a system of polynomials, which uses a reduction strategy
based on univariate root finder and Descarte’s rule.

Instead of extending Bézier clipping to solve roots of two
polynomials, we develop a new technique, called hybrid clipping,
to directly compute all the intersections between two Bézier
curves within a given parametric domain. Like Bézier clipping, we
first compute a linear strip to bound one of the curves. Second, we
compute the best approximant with lower degree (e.g., quadratic
or cubic) of the other curve and then compute a curved strip
around this curve. By intersecting the linear strip and the curved
strip, we obtain a new reduced subdomain that encloses the
intersections. This algorithm is applied iteratively combined with
bisection steps and a sequence of subdomains that converge to
the corresponding intersections are obtained. We have proved
that the convergence rate of the proposed hybrid clipping algo-
rithm is at least quadratic which is as high as Bézier clipping and
is in many cases better than Bézier clipping.

This paper is organized as follows. After a brief review on the
Bézier clipping algorithm, we describe the hybrid clipping algo-
rithm in Section 2. Section 3 gives the convergence rate theorem
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and its proof. Section 4 provides some experimental results on
comparisons with Bézier clipping. We conclude the paper with
future work in Section 5.
Fig. 1. Illustration of hybrid clipping for intersecting two curves f and g. The curve

g is bounded by a fat line L (the linear strip in light gray). A fat curve (the curved

strip in dark gray) P is computed around the curve f. The intersection between f
and g is bounded by the intersection between two strips L and P.

Table 1
Hybrid clipping algorithm for computing intersections between two polynomial

Bézier curves f and g within the domain ½a,b� � ½x,Z�.

Algorithm 1 HybridClip ðf,g,½a,b�,½x,Z�,kÞ {Hybrid clipping}

if maxðb�a,Z�xÞZe then

if b�aZZ�x then
L’ compute the fat line of g

P’ compute the fat curve of f

if the fat curve P doesn’t intersect the fat line L within ½a,b� then

return (|)

else

Find intervals ½ai ,bi�, i¼ 1, . . . ,l, by intersecting P with L
if maxi ¼ 1,...,l9ai�bi9Z

1
29a�b9 then

return HybridClip (f,g, ½a,1
2 ðaþbÞ�,½x,1

2ðxþZÞ�,k)

[ HybridClip(f,g, ½a,1
2 ðaþbÞ�,½

1
2ðxþZÞ,Z�,k)

[ HybridClip(f,g, ½12 ðaþbÞ,b�,½x,1
2ðxþZÞ�,k)

[ HybridClip(f,g, ½12 ðaþbÞ,b�,½
1
2ðxþZÞ,Z�,k)

else

S’|

for i¼ 1, . . . ,l do

S’S[ HybridClip(f,g,½ai ,bi�,½x,Z�,k)

end for
return (S)

end if
end if

else

return HybridClip ðg,f,½x,Z�,½a,b�,kÞ
else

return (½a,b�,½x,Z�)
end if
2. Computing curve intersection via hybrid clipping

In this section, we first review the Bézier clipping algorithm
and then introduce our hybrid clipping algorithm for computing
the intersections between two polynomial Bézier curves.

2.1. Review on Bézier clipping for curve intersection

Let Pn
½a,b� be the linear space of planar polynomial Bézier

curves of degree n within ½a,b�. Any Bézier curve fðtÞAPn
½a,b� can

be represented by its Bernstein–Bézier (BB) representation as

fðtÞ ¼
Xn

i ¼ 0

aiB
n
i,½a,b�ðtÞ, tA ½a,b�, ð1Þ

where

Bn
i,½a,b�ðtÞ ¼

n

i

� �
ðt�aÞiðb�tÞn�i

ðb�aÞn
, i¼ 0;1, . . . ,n ð2Þ

are the Bernstein basis with degree n in ½a,b� and aiAR2

ði¼ 0;1, . . . ,nÞ are the control points of this curve [2].
Bézier clipping was developed by [7] to compute the intersec-

tions between two polynomial Bézier curves fðtÞ in (1) and
gðsÞ ¼

Pm
i ¼ 0 biB

m
i,½x,Z�ðsÞ within the parameter domain ½a,b� � ½x,Z�,

which is an iterative method by taking advantages of the convex
hull property of Bézier curve. First, it computes a ‘fat line’, which is
defined as the region between two parallel lines, to bound one of
the two curves, say, fðtÞ. Then it clips away regions of the second
curve gðsÞ, which are guaranteed to not intersect the fat line, by
computing the distance function of g to the fat line. Similarly f is
then clipped by a fat line around g. This intersection algorithm
proceeds by iteratively applying the clipping procedure and
generates a sequence of parameter subdomains ½ai,bi� �

½xi,Zi�, i¼ 1;2, . . . , which might contain an intersection of these
two curves. The lengths of these intervals decrease to zero and the
interval with maximum length which is less than e is returned to
locate the intersection, where e specifies the desired accuracy.

Bézier clipping performs much better than the classical New-
ton’s method for computing the curve intersections. It does not
require a suitable initial guess and is guaranteed to find all
intersections in a given domain. And it converges more robustly
than Newton’s method. Recently, [8] proved that Bézier clipping
has a quadratic convergence rate at transversal intersection, the
equivalent of single root of function. In the case of tangent
intersections, the equivalent of multiple root of function, how-
ever, only linear convergence was observed.

2.2. Hybrid clipping algorithm for curve intersection

As we see, Bézier clipping needs to compute the intersections
between a line and a polynomial Bézier curve in each of its
iteration, which can be converted into a root-finding problem for
polynomial equation. Recently, the works of [9,10] proposed
efficient approaches, which extended Bézier clipping, for comput-
ing the roots of a polynomial. The basic idea is to use a polynomial
with low degree, say 2 or 3, to approximate the original poly-
nomial based on degree reduction. Then two polynomials with
low degrees are obtained to bound the original polynomial and
their roots bound the corresponding roots of the original poly-
nomial. These approaches are pretty efficient due to the fact that
the roots for quadratic or cubic polynomials can be computed
analytically. As shown in [9,10], these clipping approaches based
on degree reduction have higher convergence rates than Bézier
clipping, which make the intersection computation much faster.

Inspired from these works, we propose a new approach for
computing the intersections between two polynomial Bézier
curves f and g based on degree reduction. As in Bézier clipping,
we use a fat line (linear strip) L to bound one of the curves, say, g.
We then compute a curved strip P, called fat curve, which is
enclosed by two polynomial Bézier curves with low degrees, say,
quadratic or cubic, around the other curve f. By intersecting the
two strips L and P, which can efficiently be computed in closed
forms, we can compute a reduced subdomain that includes the
intersection, see Fig. 1. As we use both a linear strip and a curved
strip to bound the intersection, we call this approach hybrid

clipping.
The hybrid clipping algorithm for computing the intersections

between two polynomial Bézier curves is given in Table 1. We will
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give detailed explanation about this algorithm in the following
sections.
2.3. Fat curve construction via degree reduction

The fat line of gðsÞ is constructed as in Bézier clipping [7],
which is constructed by two lines that are parallel to the chord of
g, see Fig. 2. We now introduce the construction of fat curve for
fðtÞ based on degree reduction.

Denote J � J as the canonical Euclidean norm of fðtÞAR2. We
define three other norms in Pn

½a,b� as follows:
1.
Fig. 2
lines

boun
normalized L2 norm:

JfJ½a,b�
2 ¼

1ffiffiffiffiffiffiffiffiffiffi
b�a

p Z b

a
JfðtÞJ2 dt

 !1=2

, ð3Þ
2.
 L1 norm:

JfJ½a,b�
1 ¼ max

tA ½a,b�
JfðtÞJ, ð4Þ
3.
 BB norm:

JfJ½a,b�
BB ¼ max

i ¼ 0,...,n
JaiJ: ð5Þ
maxd

2δ

α β1( )d t
It is easy to verify that the above norms are invariant under
affine transformations of the t-axis [9]. Specifically, each of the
three norms can be regarded as a functional F ½a,b� defined in Pn

½a,b�.
Then given any affine transformation

A : t/A0þA1t, ð6Þ

with A1a0, the following equation holds:

F ½a,b�
ðfÞ ¼ FAð½a,b�Þ

ðfJA�1
Þ: ð7Þ

Let pðtÞAPk
½a,b� with kon be the optimal L2 approximation to

fðtÞAPn
½a,b�. As shown in Appendix A, pðtÞ can be obtained using

the degree reduction technique, which can easily be computed by
matrix computation. We represent pðtÞ as a degree n curve
pðtÞ ¼

Pn
i ¼ 0 ciB

n
i,½a,b�APn

½a,b� by degree elevation (see Appendix B)
and denote

d¼ JfðtÞ�pðtÞJ½a,b�
BB : ð8Þ
( )tf

1( )tp

2( )tp

( )sg
0b

1b

2b

3b

. Illustration of fat line and fat curve. The fat line of gðsÞ is bounded by two

that are parallel to the chord of its control polygon. The fat curve of fðtÞ is

ded by two curves p1ðtÞ and p2ðtÞ with lower degrees.
Thus we have

JfðtÞ�pðtÞJ¼
Xn

i ¼ 0

ðai�ciÞB
n
i,½a,b�ðtÞ

�����
�����r

Xn

i ¼ 0

Jai�ciJBn
i,½a,b�ðtÞrd: ð9Þ

We offset pðtÞ along a unit vector nðtÞ by the distance d and get
two curves as

p1ðtÞ ¼ pðtÞþdnðtÞ, p2ðtÞ ¼ pðtÞ�dnðtÞ: ð10Þ

It can be seen by the definition of BB norm that fðtÞ lies between
p1ðtÞ and p2ðtÞ on the line segment. That is, fðtÞ is ‘bounded’ by the
two curves p1ðtÞ and p2ðtÞ along the direction of nðtÞ at each t. We
call p1ðtÞ and p2ðtÞ the upper bound and the lower bound of fðtÞ
along n respectively.

The unit vector n in (10) should be carefully chosen in order to
ease the analysis of convergence rate of our proposed hybrid
clipping algorithm. In our algorithm, we set n as the unit vector
that is perpendicular to the chord ðbm�b0Þ of gðsÞ, see Fig. 2.
Denote

dmax ¼ max
i ¼ 0,...,m

ðn � ðbi�b0ÞÞ,

dmin ¼ min
i ¼ 0,...,m

ðn � ðbi�b0ÞÞ, ð11Þ

dðtÞ ¼ n � ðfðtÞ�b0Þ, d0ðtÞ ¼ n � ðpðtÞ�b0Þ, ð12Þ

d1ðtÞ ¼ n � ðp1ðtÞ�b0Þ ¼ d0ðtÞþd,

d2ðtÞ ¼ n � ðp2ðtÞ�b0Þ ¼ d0ðtÞ�d: ð13Þ

Then we have

9dðtÞ�d0ðtÞ9¼ 9n � ðfðtÞ�pðtÞÞ9rJnJ � JfðtÞ�pðtÞJ¼ JfðtÞ�pðtÞJ

rJfðtÞ�pðtÞJ½a,b�
1 rd, ð14Þ

which means that d(t) is enclosed in the strip bounded by d1ðtÞ

and d2ðtÞ, see Fig. 3. We summarize the algorithm for computing
the fat curve P of f in Table 2.
mind( )d t

2( )d t

Fig. 3. Computation of the subintervals which bounds the intersections.

Table 2

Compute the fat curve of f via degree reduction.

Algorithm 2 ComputeFatCurve ðf,g,kÞ {Fat curve}

p’ generate a degree k curve of f by degree

reduction

d’ compute Jf�pJ½a,b�
BB

n’ compute a unit vector that is orthogonal to

ðbm�b0Þ of gðsÞ

p1’pþdn {upper bound}

p2’p�dn {lower bound}

return P ¼ ðp1 ,p2Þ
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2.4. Remarks on the algorithms

Some steps of Algorithms 1 and 2 will be explained in more
detail in the following:
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given a prescribed tolerance e. This technique guarantees to find
all the intersections of two planar Bézier curves within a
given domain. However, like Bézier clipping, the approach may
produce false positive answers (i.e., some pairs of intervals do not
contain any intersection) if the two curves get too close to
each other.
io
n

s
½N

f
,N

g
�

a
n

d
co

m
p

u
ti

n
g

ti
m

e

1
0
�

8

i
p

2
-
H
y
b
C
l
i
p

3
-
H
y
b
C
l
i
p

[3
,3

]
[2

,2
]

0
.5

1
4

0
.4

9
9

[2
,8

]
[1

,8
]

8
.7

0
4

1
2

.1
3

6

[3
,3

]
[2

,3
]

1
.0

6
0

1
.0

7
6
3. Convergence rate of hybrid clipping

We give the convergence rate of the proposed hybrid clipping
algorithm in this section.

Definition 3.1. Suppose that fðtÞAPn
½a,b� and gðsÞAPm

½x,Z� intersect
at z0 ¼ fðt0Þ ¼ gðs0Þ, where t0A ½a,b� and s0A ½x,Z�. The intersection
z0 is called a transversal intersection if f 0ðt0Þ � g0ðs0Þa0; z0 is
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called a tangent intersection if f 0ðt0Þ � g0ðs0Þ ¼ 0 and
f 0ðt0Þa0, g0ðs0Þa0; z0 is called a degenerate intersection
if one of the curves has no tangent at z0, i.e., f 0ðt0Þ ¼ 0 or
g0ðs0Þ ¼ 0.

The following theorem gives the convergence rates of the
hybrid clipping approach for transversal intersections.

Theorem 3.2. Suppose fðtÞAPn
½a,b� and gðsÞAPm

½x,Z� have a transver-

sal intersection z0 ¼ fðt0Þ ¼ gðs0Þ. Furthermore, suppose ð½ai,bi�Þi ¼

0;1,2, . . . is the sequence of generated intervals that contain t0, and

ð½xi,Zi�Þi ¼ 0;1,2,... is the corresponding sequence of generated intervals

that contain s0, then there exist constants Cf depending solely on f
and Cg depending solely on g, such that for sufficiently large iAN,
the following inequality holds:

hiþ1,f rCfhkþ1
i,f þCgh2

i,g, ð15Þ

where hi,f ¼ bi�ai and hi,g ¼ Zi�xi.

Similarly, there exist constants C0f depending solely on f and C0g
depending solely on g, such that for sufficiently large iAN, the

following inequality holds:

hiþ1,grC0f h2
i,fþC0ghkþ1

i,g : ð16Þ
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Fig. 5. Example 1 (transversal intersections). Left: the figures of the curve pairs; right:

(4,4) (upper row), (8,4) (middle row), (8,8) (lower row), respectively.
We will prove this convergence rate theorem based on two
technical lemmas which respectively can be regarded as the ‘vector
versions’ of Lemmas 1 and 2 in [10]. In order to make this paper self-
contained, we give these two technical lemmas and their proofs first.

Lemma 3.3. Given a planar Bézier curve f of degree n, there exists a

constant C0f depending solely on f, such that for all intervals

½a,b�D ½0;1� the bound d in (8) satisfies drC0fhkþ1, where h¼ b�a.

Proof. Due to the equivalence of norms in finite-dimensional real
linear spaces, there exist constants C1, C2 such that

JrJ½a,b�
BB rC1JrJ½a,b�

2 and JrJ½a,b�
2 rC2JrJ½a,b�

1 ð17Þ

for all rAPn
½a,b�. The constants C1 and C2 do not depend on the

given interval ½a,b�, since all the norms are invariant with respect
to affine transformations of the t-axis. Therefore

d¼ Jf�pJ½a,b�
BB rC1Jf�pJ½a,b�

2 rC1Jf�qaJ
½a,b�
2 rC1C2Jf�qaJ

½a,b�
1

r
ffiffiffi
2
p

ðkþ1Þ!
C1C2 max

tA ½0;1�
Jfðkþ1Þ

ðt0ÞJhkþ1, ð18Þ

where each of the components of qa is the degree k Taylor
polynomials at t¼ a to the corresponding component of f and
fðkþ1Þ is the ðkþ1Þ-th derivative vector. &
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Lemma 3.4. Given a planar Bézier curve f of degree n, there exist

kþ1 constants C1f ,C2f , . . . ,Cðkþ1Þf , depending solely on f, such that

for all intervals ½a,b�D ½0;1� the optimal approximate curve p of

degree k to f satisfies

Jf�pJ½a,b�
1 rC1fhkþ1, Jf 0�p0J½a,b�

1 rC2fhk, . . . ,

JfðkÞ�pðkÞJ½a,b�
1 rCðkþ1Þfh, ð19Þ

with h¼ b�a.

Proof. We construct a new norm in ½a,b� as

JrJ½a,b�
n
¼ JrJ½a,b�

1 þhJr0J½a,b�
1 þ � � � þhk

JrðkÞJ½a,b�
1 : ð20Þ

Due to the affine invariance of the norms, there exists a constant
C3, which does not depend on the interval ½a,b�, such that ([9])

JrJ½a,b�
n

rC3JrJ½a,b�
2 : ð21Þ

Consequently,

Jf�pJ½a,b�
n
¼ Jf�pJ½a,b�

1 þhJf 0�p0J½a,b�
1 þ � � � þhk

JfðkÞ�pðkÞJ½a,b�
1

rC3Jf�pJ½a,b�
2 rC3Jf�qaJ

½a,b�
2 rC2C3Jf�qaJ

½a,b�
1

r
ffiffiffi
2
p

ðkþ1Þ!
C2C3 max

tA ½0;1�
Jfðkþ1Þ

ðt0ÞJhkþ1, ð22Þ

here qa has the same meaning as that in the proof of (3.3). Clearly,
this implies (19). &

Proof (Proof of Theorem 3.2). Note that f and g play the same role
in the algorithm. We only prove (15) here.

It is observed that the length of intervals ½ai,bi� tends to be 0 as i

tends to infinity, since subdivision is introduced in the algorithm

(see line 10 of Algorithm 1). The chord b0bm of g tends to the

tangent line at z0 when the length of the interval ½xi,Zi� tends to be

0. Therefore, the unit vector n (see line 3 of Algorithm 2) tends to

the unit normal vector n0 of g at z0.

Denote o¼ n0 � f
0
ðt0Þ. As f 0ðt0Þ � g0ðs0Þa0, then oa0. Without

loss of generality, we assume o40 (otherwise we can take �n

instead of n and �n0 instead of n0Þ.

Since n0 is the limit of n, there exists e140 such that

9d0ðt0Þ�o9¼ 9n � f 0ðt0Þ�n0 � f
0
ðt0Þ9oo=4 ð23Þ

as hi,goe1.

Due to the continuity of f 0ðtÞ, there exists e240 such that

Jf 0ðtÞ�f 0ðt0ÞJoo=4 ð24Þ

as hi,f oe2.

By Lemma 3.4 we have

9d0ðtÞ�d01ðtÞ9¼ 9n � ðf 0ðtÞ�p0ðtÞÞ9rJf 0ðtÞ�p0ðtÞJ

rJf 0ðtÞ�p0ðtÞJ½a,b�
1 rC2fhk

i,f : ð25Þ

Thus there exists e340 such that

9d0ðtÞ�d01ðtÞ9oo=4 ð26Þ

as hi,f oe3.

Let e4 ¼minðe1,e2,e3Þ. By (23) and (24) we have

9d0ðtÞ�o9¼ 9n � f0ðtÞ�n0 � f
0
ðt0Þ9

r9n � f 0ðtÞ�n � f0ðt0Þ9þ9n � f
0
ðt0Þ�n0 � f

0
ðt0Þ9

rJf 0ðtÞ�f 0ðt0ÞJþ9d
0
ðt0Þ�o9

oo=4þo=4¼o=2 ð27Þ

as hi,goe4, hi,f oe4. Thus d0ðtÞ4o=2. By (26) we know

d01ðtÞ ¼ d02ðtÞ4o=4: ð28Þ

From Fig. 4 we have the bound for hiþ1,f as

hiþ1,f rLiþ1 ¼ liþ1;1þ liþ1;2þ liþ1;3: ð29Þ
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First it is seen that

liþ1;1þ liþ1;3 ¼
dmax�dmin

o=4
¼

4ðdmax�dminÞ

o : ð30Þ

Now we try to obtain an upper bound for liþ1;2.

As d01ðtÞ ¼ d02ðtÞ4o=440, both functions d1ðtÞ and d2ðtÞ strictly

increase in the interval ½ai,bi�. Therefore, for any y0 such that

d1ðaiÞoy0od2ðbiÞ, the following two equations have roots t1,t2

within the interval ½ai,bi�

d1ðtÞ ¼ y0,

d2ðtÞ ¼ y0: ð31Þ

Obviously

liþ1;2r sup
y0 A ðd1ðaiÞ,d2ðbiÞÞ

f9t1�t29 : d1ðt1Þ ¼ d2ðt2Þ ¼ y0g, ð32Þ

where t1,t2A ½ai,bi�. As d1ðt1Þ ¼ d2ðt2Þ ¼ y0, we have

n � ðpðt1Þ�pðt2ÞÞ ¼ 2di, ð33Þ

where di is computed as the corresponding one in (8).
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Let pðtÞ ¼ ðxðtÞ,yðtÞÞ. There exist tn and t% between t1 and t2 such

that

pðt1Þ�pðt2Þ ¼ ðxðt1Þ�xðt2Þ,yðt1Þ�yðt2ÞÞ

¼ ðx0ðtnÞðt1�t2Þ,y
0ðt%Þðt1�t2ÞÞ: ð34Þ

Thus we have

9n � ðx0ðtnÞ,y0ðt%ÞÞ�d0ðtÞ9

¼ 9n � ðx0ðtnÞ,y0ðt%ÞÞ�n � f 0ðtÞ9rJðx0ðtnÞ,y0ðt%ÞÞ�f 0ðtÞJ

¼ Jðx0ðtnÞ,y0ðtnÞÞ�f0ðtÞþð0,y0ðt%ÞÞ�ð0,y0ðtnÞÞJ

rJp0ðtnÞ�f 0ðtÞJþJp0ðt%Þ�p0ðtnÞJ

rJp0ðtnÞ�p0ðtÞJþJp0ðtÞ�f 0ðtÞJþJp0ðt%Þ�p0ðtnÞJ

r2 max
t1 ,t2 A ½ai ,bi �

Jp0ðt1Þ�p0ðt2ÞJþJp0ðtÞ�f0ðtÞJ½ai ,bi �
1 : ð35Þ

By Lemma 3.4 and the fact that p0ðtÞ is uniformly continuous in

½ai,bi�, there exists e540 such that

max
t1 ,t2 A ½ai ,bi �

Jp0ðt1Þ�p0ðt2ÞJoo=16,

Jp0�f 0J½ai ,bi �
1 oo=8 ð36Þ

as hi,f oe5.
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Let e0 ¼minðe4,e5Þ. Then we have

9n � ðx0ðtnÞ,y0ðt%ÞÞ�d0ðtÞ9oo=4 ð37Þ

as hi,goe0 and hi,f oe0.

Combining the above inequalities and (27), we have

n � ðx0ðtnÞ,y0ðt%ÞÞ4o=4: ð38Þ

Since 2di ¼ n � ðpðt1Þ�pðt2ÞÞ ¼ ðt1�t2Þn � ðx0ðt
nÞ,y0ðt%ÞÞ, we have

9t1�t29o
2di

o=4
¼

8di

o
: ð39Þ

From (30) and (32), the above inequality implies

hiþ1,f rLiþ1o
8di

o þ
4ðdmax�dminÞ

o : ð40Þ

Clearly, this implies (15) from dirC0fhkþ1
i,f (see Lemma 3.3) and

dmax�dminrC0gh2
i,g (see the proof of Theorem 6 of [8]). &

The key of the proof is introducing Liþ1 to bound biþ1�aiþ1.
Meanwhile, Liþ1 can be decomposed into three components, i.e.,
liþ1;1, liþ1;2, and liþ1;3, each of which can be bounded separately.
On one hand, the bound of liþ1;2 relies on the estimation of the
difference between the roots of d1ðtÞ and d2ðtÞ. On the other hand,
liþ1;1þ liþ1;3 can be computed directly. Note that the property that
o is nonzero plays a crucial role in the construction of liþ1;1 and
liþ1;3. That is why transversal intersection is required in
this proof.

Due to this theorem, we conclude that the process of subdivi-
sion would not exist when intervals are sufficiently small,
i.e., hybrid clipping indeed has the convergence rate of at least
order 2, which is at least as high a convergence rate as that of
Bézier clipping.

Note that we have proved the convergence rates for computing
the transversal intersections. But unfortunately we could not
obtain the convergence rates for the case of tangent intersection
where two curves are tangent at the intersection. As pointed in
Bézier clipping [7], a large number of subdivisions may be needed
and the algorithm tends to degenerate to a divide-and-conquer
binary search for the cases of tangent intersections.
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4. Experimental results

In this section, we will do various numerical experiments to
illustrate the performance of our proposed hybrid clipping (Hyb-
Clip for short) technique and make comparisons with the classic
Bézier clipping (BezClip for short) technique.

From Theorem 3.2 we can see that HybClip has at least a
quadratic convergence rate while BezClip has only a quadratic
convergence rate [8]. As in [9,10] we introduce a few criteria, such
as convergence rate, number of operations per iteration step, time
per iteration step, number of iterations, and computing time
needed to achieve a certain prescribed accuracy, to make an
intensive comparison between these two techniques numerically.

We had done a great number of experiments and the results
had shown that HybClip performs better than BezClip in all
these criteria. In order to make our manuscript more compact,
here we show the experimental results based on a couple of
criteria, that is, number of iterations and computing time needed
to achieve a certain prescribed accuracy for convenience, to
compare two techniques.

Note that we can use different value of k to construct the fat
curve for fðtÞ in Algorithm 1. That means we use an optimal
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degree k Bézier curve to approximate fðtÞ and then the algorithm
involves computing the roots of degree k polynomials. By
Theorem 3.2 we know that the larger k is, the faster the
convergence rate is. To make the computation practically usable,
we generally set k as 2 or 3 because the roots for quadratic or
cubic polynomials are easy to compute. We set k¼2,3 in the
following comparisons. And we refer 2-HybClip and 3-HybClip

as HybClip with k¼2 and k¼3, respectively, for short.
We have implemented all the algorithms on a PC with

Intel(R) Core(TM) Duo CPU (2.00 GHz) with 2 GB of RAM and
utilize Maple V12 to do all experiments with 600 significant
digits. In these experiments, both curves fðtÞ and gðsÞ have the
parameter domain ½0;1�.
4.1. Single intersections

We first show experimental results on computing the single
intersections between two curves. The cases of transversal inter-
sections are shown as follows.

Example 1 (Transversal intersection). We applied the algorithms
2-HybClip, 3-HybClip, and BezClip to the three pairs of
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Fig. 7. Example 3 (degenerate intersections). Left: the figures of the curve pairs; right:

(4,4) (upper row), (8,4) (middle row), (8,8) (lower row), respectively.
Bézier curves

fðtÞ ¼ ððt�1=3Þðt�3Þðtþ6Þ2, ðt�1=3Þðtþ3Þðt�6Þ2Þ,

gðsÞ ¼ ððs�1=3Þðs�2Þðsþ6Þ2, ðs�1=3Þðs�3Þðsþ6Þ2Þ,

(

fðtÞ ¼ ððt�1=3Þðt�3Þ3ðtþ6Þ4, ðt�1=3Þðtþ3Þ3ðt�6Þ4Þ,

gðsÞ ¼ ððs�1=3Þðs�2Þðsþ6Þ2, ðs�1=3Þðs�3Þðsþ6Þ2Þ,

(

fðtÞ ¼ ððt�1=3Þðt�3Þ3ðtþ6Þ4, ðt�1=3Þðtþ3Þ3ðt�6Þ4Þ,

gðsÞ ¼ ððs�1=3Þðs�2Þ3ðsþ6Þ4, ðs�1=3Þðs�3Þ3ðsþ6Þ4Þ:

(

Table 3 reports the number pairs of iterations ½Nf ,Ng� and the

computing times in seconds for various values of desired accuracy

e for computing the transversal intersections between the three

pairs of Bézier curves with various degrees (n,m). As pointed out

in Section 2.4, we always use the fat line of the curve with smaller

interval to clip the fat curve of the other curve in 2-HybClip and

3-HybClip, like in BezClip. In both algorithms, the number Nf

denotes the number of using the fat line of g to clip f (in

BezClip) or the fat curve of f (in 2-HybClip or 3-HybClip).

The same for the number Ng. Fig. 5 visualizes the relation

between computing times and desired accuracy.
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From Table 3 and Fig. 5, we can see the following observations.
Algorithm 2-HybClip performs slightly better than BezClip in
running times for these three pairs of Bézier curves. The differ-
ence between the overall computing times to achieve a certain
accuracy is not that significant although 2-HybClip has fewer
times in all examples. However, Algorithm 3-HybClip performs
not as well as what we have expected. It seems that its
performance depends much on the curve pairs. For the third
curve pair, 3-HybClip performs close to 2-HybClip. Both are
better than BezClip. For the first curve pair, 3-HybClip per-
forms only a bit better than BezClip. However, for the second
curve pair, 3-HybClip performs even worse than BezClip. This
is because 3-HybClip involves more computation in solving the
cubic polynomial equations and thus needs more time to finish
one iteration step.

We now show experimental results on computing the single
tangent intersections between two curves.

Example 2 (Tangent intersections). We applied algorithm 2-Hyb-

Clip, 3-HybClip, and BezClip to the three pairs of Bézier
curves

fðtÞ ¼ ððt�1=3Þ2ðtþ1Þðt�2Þ, ðt�1=3Þðt�1Þðtþ2Þ2Þ,

gðsÞ ¼ ððs�1=3Þ2ðs�2Þðs�3Þ, ðs�1=3Þðsþ1=2Þðsþ1Þ2Þ,

(

fðtÞ ¼ ððt�1=3Þ2ðtþ1Þ3ðt�2Þ3, ðt�1=3Þðt�2Þ3ðtþ1=2Þ4Þ,

gðsÞ ¼ ððs�1=3Þ2ðs�2Þðs�3Þ, ðs�1=3Þðsþ1=2Þðsþ1Þ2Þ,

(

fðtÞ ¼ ððt�1=3Þ2ðtþ1Þ3ðt�2Þ3, ðt�1=3Þðt�2Þ3ðtþ1=2Þ4Þ,

gðsÞ ¼ ððs�1=3Þ2ðs�2Þ4ðsþ1Þ2, ðs�1=3Þðs�3=2Þ5ðsþ1Þ2Þ:

(

Table 4 reports the number pairs of iterations ½Nf ,Ng� and the
computing times in seconds for various values of desired accuracy
e for computing the tangent intersections between the three pairs
of Bézier curves with various degrees (n,m). Fig. 6 visualizes the
relation between computing times and desired accuracy. We can
see that both 2-HybClip and 3-HybClip generally perform
slightly better than BezClip for computing the tangent intersec-
tions between curves. Unfortunately, we are not able to give the
exact convergence rate in theory for these cases.

We show experimental results on computing the single
degenerate intersections between two curves as follows.

Example 3 (Degenerate intersections). We applied algorithms 2-
HybClip, 3-HybClip, and BezClip to the three pairs of Bézier
curves

fðtÞ ¼ ððt�1=3Þ2ðt�3Þðtþ6Þ, ðt�1=3Þ2ðtþ3Þðt�6ÞÞ,

gðsÞ ¼ ððs�1=3Þ2ðs�2Þðsþ6Þ, ðs�1=3Þ2ðs�3Þðsþ6ÞÞ,

(

fðtÞ ¼ ððt�1=3Þ2ðt�2Þ2ðtþ3Þ4, ðt�1=3Þ2ðtþ1Þ5ðt�4ÞÞ,

gðsÞ ¼ ððs�1=3Þ2ðs�2Þ2, ðs�1=3Þ2ðs�3Þðsþ1ÞÞ,

(

fðtÞ ¼ ððt�1=3Þ2ðt�2Þ2ðtþ3Þ4, ðt�1=3Þ2ðtþ1Þ5ðt�4ÞÞ,

gðsÞ ¼ ððs�1=3Þ2ðs�2Þ2ðsþ1Þ4, ðs�1=3Þðs�3Þ3ðsþ1Þ4Þ:

(

Table 5 reports the number pairs of iterations ½Nf ,Ng� and the
computing times in seconds for various values of desired accuracy
e for computing the tangent intersections between the three pairs
of Bézier curves with various degrees (n,m). Fig. 7 visualizes the
relation between computing times and desired accuracy. We can
see that both 2-HybClip and 3-HybClip perform much better
than BezClip for computing the degenerate intersections
between curves. Unfortunately, we are not able to give the exact
convergence rate in theory for these cases.
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4.2. Multiple intersections

We show experimental results on computing multiple inter-
sections between two curves in this section.
Example 4 (Multiple intersections). We applied algorithms 2-

HybClip, 3-HybClip, and BezClip to the three pairs of Bézier
curves. Note that these three pairs have respectively 2, 4, and
8 intersections.

fðtÞ ¼ ð�51
2 t4þ50t3�27t2þ2tþ3

2 , 2
5 tþ 3

10Þ,

gðsÞ ¼ ðs4�4s3�3
2 s2þ4s�1

2 , 26
5 s3�39

5 s2þ16
5 sþ1

5Þ,

(

fðtÞ ¼ ð�2
5 t8�12

5 t7�84
5 t6þ336

5 t5�84t4

þ56t3�112
5 t2þ16

5 tþ7
5,

1123
10 t8�2074

5 t7þ441t6þ70t5�805
2 t4

þ238t3�42t2�2tþ1
2Þ,

gðsÞ ¼ ð32 s4�16
5 s3�3

5 s2þ12
5 sþ13

10,
1
5 s4þ24

5 s3�36
5 s2þ14

5 s�1
5Þ,

8>>>>>>>>>><
>>>>>>>>>>:
fðtÞ ¼ ð�53
10 t8þ64t7�672

5 t6þ224
5 t5þ98t4

�448
5 t3þ112

5 t2þ1,
37
4 t8þ52t7�350t6þ588t5�350t4

þ70t2�20tþ1Þ,

gðsÞ ¼ ð� 1
10 s8þ24

5 s7�84
5 s6þ56

5 s5þ14s4

�84
5 s3þ14

5 s2þ8
5sþ1,

4s8þ2s7�28s5þ56s3�42s2þ8sÞ:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
Table 6 reports the number pairs of iterations ½Nf ,Ng� and the
computing times in seconds for various values of desired accuracy
e for computing the tangent intersections between the three pairs
of Bézier curves with various degrees (n,m). Fig. 8 visualizes the
relation between computing times and desired accuracy. We can
see that both 2-HybClip and 3-HybClip perform better than
BezClip for computing the multiple intersections between
curves. Note that 2-HybClip and 3-HybClip perform much
similar in the case of third curve pair.

5. Conclusion

We have proposed the hybrid clipping technique for computing all
the intersections between two planar Bézier curves within a certain
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accuracy in a given domain. The algorithm is based on the convex hull
property of Bézier curves. By clipping a fat curve of one curve with a
fat line that bounds the other curve, we generate a reduced
subdomain that encloses the intersection. Therefore, a sequence of
subdomains that is guaranteed to converge to the corresponding
intersection will be obtained by combining with bisection steps. We
have proved that the hybrid clipping technique has at least a
quadratic convergence rate which is at least as fast as Bézier clipping
for transversal intersections. Experimental results have shown that
the hybrid clipping performs better than Bézier clipping for transver-
sal intersections, much better than Bézier clipping for degenerate
intersections, but a slightly better than Bézier clipping for tangent
intersections. It is worthwhile pointing out that both tangent inter-
sections and degenerate intersections are rare in practical applica-
tions. Therefore, the hybrid clipping technique is practically useful for
computing the transversal intersections between planar curves.

We guess that the hybrid clipping has higher convergence rate
than Bézier clipping at tangent and degenerate intersections. As one
of our future works we will try to find it out. Another future work will
focus on the extension of the technique to the intersection computa-
tion between two rational curves or between two Bézier surfaces.
Finally, we can use other methods, for instance, the SLEVEs [16–18]
method, to linearly bound the curves and then compute their
intersections. It is worthwhile to try this method for curve intersec-
tions which is expected to gain better performance. However, the
computation of the SLEVEs for the spline curve is a bit complicated
and thus makes the convergence hard to analyze.
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Appendix A. Optimal degree reduction of Bézier curve

Degree reduction of Bézier curves has been well studied in the
literature. To make this paper self-contained, we give the main
formulae for computing the optimal L2 approximation (with lower
degree) to a given Bézier curve. More details can be found in [19].

Given a degree n Bézier curve fðtÞ ¼
Pn

i ¼ 0 aiB
n
i,½a,b�ðtÞAPn

½a,b�,
the control points of its optimal degree k (kon) Bézier curve
pðtÞ ¼

Pk
i ¼ 0

~c iB
k
i,½a,b�APk

½a,b� can be computed as

ð ~c0, ~c1, . . . , ~ckÞ
T
¼ ðFk

ðkþ1Þ�ðkþ1ÞB
n
ðkþ1Þ�ðnþ1Þ�Fk

ðkþ1Þ�ðkþ1ÞC
n
ðkþ1Þ�ðn�kÞ

�ðCn
ðn�kÞ�ðn�kÞÞ

�1Bn
ðn�kÞ�ðnþ1ÞÞ � ða0,a1, . . . ,anÞ

T, ðA:1Þ

where

Bn
ðnþ1Þ�ðnþ1Þ ¼

Bn
ðkþ1Þ�ðnþ1Þ

Bn
ðn�kÞ�ðnþ1Þ

 !
,

Cn
ðnþ1Þ�ðn�k1Þ ¼

Cn
ðkþ1Þ�ðn�kÞ

Cn
ðn�kÞ�ðn�kÞ

 !
,

Fn
ðnþ1Þ�ðnþ1Þ ¼ ðf ijÞðnþ1Þ�ðnþ1Þ,

Bn
ðnþ1Þ�ðnþ1Þ ¼ ðbijÞðnþ1Þ�ðnþ1Þ,

Cn
ðnþ1Þ�ðn�kÞ ¼ ðcijÞðnþ1Þ�ðn�kÞ,

with

f ij ¼

n�j
i�j

� �
= n

i

� �
if iZ j;

0 otherwise,

8<
:

bij ¼
ð�1Þiþ j n

i

� �
i
j

� �
if iZ j;

0 otherwise,

8<
:

cij ¼

Xmþ jþ1

l ¼ i

ð�1Þlþ i mþ jþ1

mþ jþ1�l

� 	
mþ jþ1þ l

l

� 	
l

i

� 	
if ðnÞ,

0 otherwise,

8>><
>>:

where ðnÞ means 0r jrn�m�1, 0r irmþ jþ1.
Appendix B. Degree elevation of Bézier curve

To make this paper self-contained, we also give the formulae
for computing the degree elevation of Bézier curve. Suppose
pðtÞ ¼

Pk
i ¼ 0

~c iB
k
i,½a,b�APk

½a,b� is a degree k(kon) Bézier curve. As
Pk
½a,b�DPn

½a,b�, pðtÞ can be elevated to a degree n Bézier curve with
the form pðtÞ ¼

Pn
i ¼ 0 ciB

n
i,½a,b� where the control points can be

calculated as [2]

ðc0,c1, . . . ,cnÞ
T
¼ Fn
ðnþ1Þ�ðnþ1ÞE

n
ðnþ1Þ�ðkþ1ÞB

k
ðkþ1Þ�ðkþ1Þ

�ð ~c0, ~c1, . . . , ~ckÞ
T, ðB:1Þ

where F and B are the same in Appendix A and

En
ðnþ1Þ�ðkþ1Þ ¼ ðeijÞðnþ1Þ�ðkþ1Þ, eij ¼

1 if i¼ j;

0 otherwise:

(
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