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ON AFFINE RIGIDITY

Steven J. Gortler,* Craig Gotsman,! Ligang Liu,* and Dylan P. Thurston,’

ABSTRACT. We define the notion of affine rigidity of a hypergraph and prove a variety of
fundamental results for this notion. First, we show that affine rigidity can be determined
by the rank of a specific matrix which implies that affine rigidity is a generic property of
the hypergraph. Then we prove that if a graph is is (d 4 1)-vertex-connected, then it must
be “generically neighborhood affinely rigid” in d-dimensional space. This implies that if a
graph is (d + 1)-vertex-connected then any generic framework of its squared graph must be
universally rigid. Our results, and affine rigidity more generally, have natural applications
in point registration and localization, as well as connections to manifold learning.

1 Introduction

Suppose one has a number of overlapping “scans” of a set of points in some space, and that
the corresponding points shared between scans have been identified. One naturally may
want to register these scans and merge them together into a single configuration [26, inter
alia]. Such a merging problem is called a realization problem. The study of the uniqueness
of the solutions to such realization problems is known as rigidity.

We model the combinatorics of this problem using a hypergraph ©, with vertices
representing the points, and hyperedges representing the sets of points in each scan. The
geometry of the problem is modeled with a configuration p, associating each vertex with a
point in space.

One natural setting is the Euclidean setting, where the scans are known to be related
by Euclidean transforms. In this case it is sufficient to study just the case of a graph, where
we think of each edge as its own scan with only 2 points. Unfortunately, many of the
Euclidean problems are NP-HARD [21]. In this paper, we study what happens when one
relaxes the problem to the affine setting, that is, one assumes that the scans are known
to be related by affine transforms. Under this relaxation, much of the analysis reduces to
linear algebra, and uniqueness questions reduce to rank calculations. We prove a variety
of fundamental results about this type of rigidity and also place it in the context of other
rigidity classes such as global rigidity and universal rigidity.
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We also specifically investigate the case of hypergraphs © that arises by starting
with an input graph I', and considering each one-ring (a vertex and its neighbors) in I" as
a hyperedge in ©. We call such a hypergraph the neighborhood hypergraph of I'. Such
neighborhood hypergraphs naturally arise when studying molecules [16], when applying a
divide and conquer approach to sensor network localization [23] and in machine learning [19].

1.1 Summary of Results

We start by describing how affine rigidity in R¢ is fully characterized by the kernel size of one
of its associated “affinity matrices”. (This result was first shown by Zha and Zhang [30].)
We show how this implies a number of interesting corollaries including the fact that affine
rigidity is a generic property. That is, given a hypergraph © and dimension d, either all
generic embeddings of © are affinely rigid in R? or all generic embeddings are affinely flexible
in R?. The specific geometric positions of the vertices are irrelevant to this property, as
long as they are in sufficiently general position. Thus we call such a hypergraph generically
affinely rigid in R?.

Next we relate affine rigidity in R? to the related notion of universal Euclidean
rigidity. A framework is universally Euclideanly rigid if it is rigid (in the Euclidean sense)
in any dimension. In this context, we prove that affine rigidity in R¢ implies universal
Euclidean rigidity.

We then prove the following sufficiency result: if a graph I' is d+1 (vertex) connected,
then its neighborhood hypergraph is generically affinely rigid in R?; alternatively, we say
that the graph T itself is generically neighborhood affinely rigid in R?. In particular we will
show that almost every non-symmetric equilibrium stress matriz for any generic embedding
of T in R? will have co-rank d 4 1 (i.e., rank v —d — 1). Putting these two results together,
we show that if a graph is d + 1 connected, then any generic embedding of its square graph
in R is universally rigid. This result is interesting, as very few families of graphs have been
proven to be generically universally rigid.

We give examples showing that many of the implications proved in this paper do
not reverse. Finally we discuss some of the motivating applications.

The main properties of frameworks of graphs and their implications proven in this
paper are summarized below.

GGR — DP1C — GNSESM — GNAR — GNUR — GNGR

Property Graph ...

GGR is generically globally rigid in R¢
DP1C is d+ 1 connected ([13])
GNSESM generically has non-symmetric equilibrium stress matrix of rank
v —d —1 (Proposition 5.8)
GNAR is generically neighborhood affine rigid in R? (Proposition 5.9)
GNUR is generically neighborhood universally rigid in R? (Corollary 4.2)
GNGR is generically neighborhood globally rigid in R? (by definition)
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Figure 1: Left: A hypergraph with 6 vertices and 4 hyperedges. Each hyperedge is rep-
resented by a dotted ellipse enclosing a set of vertices. The hyperedges are: red {1,2,6},
green {2, 3,5}, purple {5,6}, blue {4,5}. Right: The body graph of the hypergraph shown
in the left.

2 A rigidity zoo

In this paper we will consider several different rigidity theories. They all fit in to a unifying
framework, which we now explain.

Most generally, rigidity questions (of any type) ask if all of the geometric information
about a set of points is determined by information from small subsets. In the usual Euclidean
rigidity problem, we measure the distances between pairs of points. However, in other cases
it is not enough to consider pairs of points for the small subsets; as such, we need to consider
hypergraphs rather than just graphs.

See Figure 1 for an example.

Definition 2.1. A hypergraph © is a set of v vertices V(©) and h hyperedges £(O), where
£(O) is a set of subsets of V(0). We will typically write just V or &, dropping the hyper-
graph © from the notation.

There are natural ways to pass from a hypergraph back and forth to a graph.

Definition 2.2. Given a hypergraph O, define its body graph B(©) as follows. For each
vertex in ©, we have a vertex in B(0©). For each hyperedge h in © and each pair of vertices
in h we have an edge in B(O).

Definition 2.3. Given a graph T, define its neighborhood hypergraph, written as N(T') as
follows. For each vertex in I', we have an associated vertex in N(I'). For each vertex in I'
we have a hyperedge in N(I") consisting of that vertex and its neighbors in T

Definition 2.4. Given a graph T, its squared graph I'? is obtained by adding to I' an edge
between two vertices 7 and j if ¢ and j share some neighbor vertex k.

Lemma 2.5. For any graph T, B(N(T')) = I'?.

Proof. Immediate from the definitions. (See Figure 2 for an example.) O
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Figure 2: Left: A graph with 6 vertices and 7 edges. Middle: Its neighborhood hypergraph
with 6 vertices and 6 hyperedges: red {1,2,6}, purple {1,2,3,6}, light blue {2,3,5}, dark
blue {4, 5}, orange {3,4,5,6}, green {1,2,5,6}. Right: The body graph of the hypergraph
in the middle. It is also the squared graph of the graph in the left.

Definition 2.6. A k-hypergraph © is a hypergraph where each hyperedge has exactly k
vertices. For any k € N and hypergraph ©, let Bi(©) be the k-hypergraph whose hyperedges
are all the subsets S of size k of vertices that are contained together in at least one hyperedge
of ©:

E(B(®))={S|3he&©O),SCh,|S| =k}

For a vertex set S, the complete k-hypergraph on S, written Ky(S), is the k-hypergraph
whose hyperedges are all ('}3') subsets of S of size k.

For instance, a 2-hypergraph is a graph, and By(©) is just the body graph B(O).

Definition 2.7. A configuration of the vertices V(0) of a hypergraph in R? is a mapping p
from V(©) to R% Let C4(V) be the space of configurations in R%. For p € C4(V) and
u € V(0), we write p(u) € R? for the image of v under p.

A framework p = (p,©) of a hypergraph is the pair of a hypergraph and a config-
uration of its vertices. C?(©) is the space of frameworks (p, ®) with hypergraph © and
p € C4V(0)). We may also write p(u) for p(u) where p = (p,©) is a framework of the
configuration p.

A framework of a hypergraph has also been called a body-and-joint framework [29]
and a body-and-multipin framework [16].

Definition 2.8. Let M be a monoid acting on R?, such as Eucl(d), the Euclidean isometries
of R%. (We study monoids instead of groups since we don’t want to restrict ourselves to
always having inverses. In particular in the case of affine rigidity, we wish to allow singular
affine transforms as well). The framework p € C4(©) is M -preequivalent to the framework
o € C4(0) if for each hyperedge h € £(0), the positions of the vertices in p can be mapped
to their positions in ¢ by an element of M depending only on h. That is, for each h € &,
there is a g, € M so that for each u € h, we have g, (p(u)) = o(u).

The configuration p € C4(V) is M-precongruent to the configuration ¢ € C%(V) if
the positions of all the vertices in p can be mapped to their positions in ¢ by a single element
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g € M (not depending on h). When the configuration p is M-precongruent to ¢, we also
say that the framework (p,©) is M-precongruent to (¢, ©).

A framework p € C%(©) is globally M-rigid if for any other framework o € C4(0)
to which p is M-preequivalent, we also have that p is M-precongruent to o. Otherwise we
say that p is globally M-flexible in R,

Similarly, a framework p € C%4(0©) is locally M-rigid in R? if there is a small neigh-
borhood U of p in C%(©) so that for any o € U to which p, is M-preequivalent, we also
have that p is M-precongruent to o. Otherwise we say that p is locally M-flexible in R

Remark 2.9. When there are non-invertible elements of M, then neither M-preequivalence
nor M-precongruence is a symmetric relation. When M is a group, then M-preequivalence
is a symmetric relation and can be called M-equivalence, and likewise M-precongruence
can be called M-congruence.

A related notion of group based rigidity has been explored in the computer aided
design literature [22].

In this paper, we are mainly concerned with the cases when M is either Eucl(d) or
Aff(d), the set of all (including singular) affine linear maps of R?, in which case we speak
about Fuclidean or affine rigidity, respectively. But there are other interesting possibili-
ties, like projective transformations. Another interesting case is when M consists of the
dilations and translations of R? (with no rotations); this gives the theory of parallel-line
redrawings [29].

In this terminology, Euclidean rigidity is the default: if M is not specified, it is the
Euclidean group. In much of the rigidity literature, local rigidity is the default, and the
qualifier “local” is dropped. However, in this paper this distinction is important and we
will write “local” or “global” when the distinction is meaningful.

Lemma 2.10. A framework (p,©) is locally (resp. globally) Fuclideanly rigid iff the body
framework (p, B(©)) is locally (resp. globally) Euclideanly rigid.

Proof. This easily follows from the fact that, for each hyperedge h € £(©), the complete
graph on |h| vertices is globally rigid. O

Thus we only need to consider Euclidean rigidity for frameworks of graphs, not
hypergraphs.

In the next section (Corollary 3.5) we will see that a framework is locally affinely
rigid iff it is globally affinely rigid. Thus we can drop the local/global distinction for affine
rigidity.

In the following definition, for d < d’, we view C?%(V) as contained in C¢ (V) by the
inclusion of R? as the first d coordinates of R .

Definition 2.11. Let M be a family of monoids My acting on R?, so that for d < d,
My is the submonoid of My that fixes R as a subset of RY. A framework p € C(0)
is universally locally (resp. globally) M-rigid if it is locally (resp. globally) M-rigid as a
framework in C¢ (©) for all d’ > d.
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Note that universal rigidity of any sort implies rigidity of the same sort.

Lemma 2.12. A framework p € C%4(0) is universally globally Euclideanly rigid iff it is
universally locally Fuclideanly rigid.

Proof. For any two equivalent frameworks p in C4(©) and p’ in C%(©), Bezdek and Con-
nelly [5] show how to construct an explicit flex between p and p in C%+¥(@). Thus, if p is a
d-dimensional framework with a equivalent but non-congruent framework in d' dimensions,
then their constructed flex shows that p is not locally rigid in R+ O

Thus we can also drop the local/global distinction in the case of universal Euclidean
rigidity.

Definition 2.13. A framework (p,I") of the graph I' is neighborhood rigid (of any of the
sorts above) if the corresponding framework (p, N(I')) of the neighborhood hypergraph is
rigid (of the same sort).

For instance, Lemmas 2.10 and 2.5 tell us that neighborhood Euclidean rigidity of
(p,T') is equivalent to the Euclidean rigidity of (p, I'?).

Remark 2.14. Related to universal Euclidean rigidity is the notion of dimensional rigid-
ity [1]. A framework (locally rigid or not) in R? is called dimensionally rigid if there is no
(Euclidean) equivalent framework with an affine span of dimension strictly greater than d.

Another related notion is that of d-realizability [4]. A graph is d-realizable if any
framework of the graph, in any dimension, has a (Euclidean) equivalent framework with an
affine span of dimension d or less.

Presumably one could extend these notions to arbitrary monoids as well but we will
not pursue these in this paper.

Definition 2.15. A configuration p in C%(V) is generic if the coordinates do not satisfy
any non-zero algebraic equation with rational coefficients. A framework is generic if its
configuration is generic.

A property is generic in RY if, for every (hyper)graph, either all generic frameworks
in C%(©) have the property or none do. For instance, local and global Euclidean rigidity
in R? are both generic properties of graphs and therefore for hypergraphs as well [3, 11].
For any property P (generic or not) of frameworks, a (hyper)graph © is generically P in
R? if every generic framework in C%(©) has P. (For a non-generic property like universal
Euclidean rigidity, there are (hyper)graphs that are neither generically P or generically
not P.)

Thus, for any framework, we may talk about
(generic/0) (universal/@) (local/global) (Euclidean/affine) rigidity.

where by () we mean that this term has been dropped.
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3 Affine Rigidity in R?

We now move on the main focus of this work, affine rigidity, as defined in the previous
section. Though the definitions start from a different point of view, this notion of affine
rigidity is, in fact, identical to the one defined by Zha and Zhang [30] and the concept is also
informally mentioned by Brand [6]. Additionally, Theorem 1 below is essentially equivalent
to [30, Theorem 5.2].

Our contribution here, described by the corollaries, is showing how affine rigidity
fits in to the general scheme of rigidity problems.

Lemma 3.1. Any framework of a complete (d + 2)-hypergraph in R is affinely rigid.

Proof. Let ¢ € C%(V) be a configuration with such that (p, ©) is affinely preequivalent in
RY to (g, 0).

Let ¢ < d be the dimension of the affine span, S, of the configuration p. Select ¢+ 1
vertices whose affine span in p is S. Let Ay be an affine transform that maps these vertices
from their positions in p to their positions in g. The action of Ay on the space S (and thus
all of the vertices p) is uniquely determined by these selected vertices.

For any vertex v, there must be a hyperedge h, that includes v and the selected
vertices. Let Ap, be an affine transform that maps these vertices from their positions in p
to ¢ (which must exist by affine preequivalence). The action of Ay, on the space S (and
thus all of the vertices p) is uniquely determined by the selected vertices, and thus must
agree with that of Ag. Thus for all v, we see that their positions in ¢ are obtained from the
positions in p through Ay Thus p is affinely precongruent to q. ]

Proposition 3.2. A framework (p,©) in general position is affinely locally (resp. globally)
rigid iff the associated framework (p, By2(©)) is affinely locally (resp. globally) rigid.

(Compare Lemma 2.10.)

Proof. First consider a hyperedge with less than d 4+ 2 vertices in general position. Using
a d-dimensional affine transform, we can move these vertices to any other configuration in
R?. Therefore this hyperedge does not affect affine preequivalence and may be dropped
without affecting affine rigidity. Next consider a hyperedge with k vertices, with k > d + 2.
By Lemma 3.1, one can replace this hyperedge with ( di2) hyperedges corresponding to all
subsets of d + 2 vertices. The framework of the new hypergraph will be affinely rigid in R¢

iff the original one is. O

Definition 3.3. An affinity matriz of a framework (p,©) in C%(0) is a matrix with v
columns such that each row encodes some affine relation between the coordinates of the
vertices in a hyperedge of (p,©) as a homogeneous linear equation in the following sense.
The only non-zero entries in a row correspond to vertices in some hyperedge, the sum of
the entries in a row is 0, and each of the coordinates of p, thought of as a vector of length v,
is in the kernel of the matrix.
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An affinity matrix is strong if it encodes all of the affinely independent relations in
every hyperedge of (p, ©).

Lemma 3.4. If the framework (p, ©) is affinely preequivalent to (q,©) then the coordinates
of q are in the kernel of any affinity matriz for (p,©). Additionally, the converse is true if
the affinity matrix is strong.

Proof. Clear from the definitions. O

The kernel of an affinity matrix of a framework (p, ©) € C%(©) always contains the
subspace of RY spanned by the coordinates of p along each axis and the vector T of all 1’s.
This corresponds to the fact that any p is preequivalent to any of its affine images. If p is a
proper d-dimensional configuration (with full d-dimensional affine span), these vectors are
independent and span a (d + 1)-dimensional space. In particular, a generic framework of a
hypergraph with at least d + 1 vertices in R? is proper, so for such frameworks the corank
of any of its affinity matrices must be no less than d + 1.

The rank of strong affinity matrices fully characterize affine rigidity.

Theorem 1. Let © be a hypergraph with at least d + 1 vertices. Let (p,©) be any proper,
d-dimensional framework and let M be any strong affinity matriz for (p,©). Then (p,©) is
affinely rigid in R? iff dim(ker(M)) = d + 1.

Proof. By Lemma 3.4, for any other configuration q in C%(V) such that (p, ©) is affinely pree-
quivalent to (g, ©), the coordinates of ¢ must be in the kernel of M. When dim(ker(M)) =
d+1, the kernel of M contains only one-dimensional projections of p and the all-ones vector.
Thus when (p, ©) is affinely preequivalent to (¢,©), we have that (p,®) must in fact be
affinely precongruent to (¢, ©).

Conversely, if the corank is higher, then the kernel must contain an “extra” vector
that is not a one-dimensional projection of p. Adding any amount of this vector to one of the
coordinates of p must, by Lemma 3.4, produce a ¢ such that (p, ©) is affinely preequivalent
to (g, ®) but not precongruent to it. O

It is easy now to prove the following corollaries.

Corollary 3.5. If (p,0) is affinely globally flexible in RY then it is affinely locally flexible.

Proof. From the proof of Theorem 1, when (p, ©) is affinely globally flexible in R there is
an extra vector § in the kernel of a strong affinity matrix, and we can add any multiple of
d to one of the coordinates of p to get a framework to which (p, ©) is affinely preequivalent
but not precongruent. O

Remark 3.6. In fact, if (p,©) is affinely preequivalent to (g, ©), there is a continuous path
of frameworks in C%(0) to which (p, ©) is affinely preequivalent, namely ((1 — t)p + tg, ©).

Corollary 3.7. A framework (p,0) € C%(O) is affinely rigid in R iff it is affinely rigid
when considered as a (degenerate) framework in RY ford >d.
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Proof. Follows from the proof of Theorem 1. O

Thus there is no distinct notion of “universal” affine rigidity.

Corollary 3.8. Affine rigidity in R? is a generic property of a hypergraph.

Proof. The condition that M is an affinity matrix for (p, ®) is linear in the entries in M.
The corollary then follows from Proposition A.1. O

Though we will not pursue the details here, one can use the concept of an affinity

matrix to derive an efficient randomized discrete algorithm for testing generic affine rigidity
of a hypergraph in R%. To do this, one needs to use integers of sufficiently many bits, and
do the arithmetic modulo a suitably large prime. The details parallel those in the global
rigidity case [11, Section 5].
Remark 3.9. There is also an strong connection between affine rigidity and a problem from
polyhedral scene analysis [29]. This is most easily explained in two dimensions. Given a
framework in R?, one can interpret each hyperedge as a planar polygon drawn in R? (the
vertex order is not relevant here). We say that the framework is sharp if each vertex can
be given a third coordinate, such that, in the resulting three dimensional drawing, each
polygon remains planar, and the faces do not all lie in a single plane. This idea is easily
generalized to arbitrary dimension.

As shown in [29, Proposition 2.1], a framework is sharp iff the rank of its strong
affinity matrix is not maximal. Thus this notion of sharpness corresponds exactly to affine
flexibility.

More deeply, due the combinatorial characterization of sharpness given by [29, The-
orem 4.2], generic affine rigidity can be tested by an efficient deterministic algorithm.

4 Universal Euclidean Rigidity

We now turn to universal Euclidean rigidity. To begin, we need the following technical
definition:

Definition 4.1. We say that the edge directions of a graph framework (p,I') € C4(T") are
on a conic at infinity if there exists a symmetric d-by-d matrix @} such that for all edges
(u,v) of I'; we have

[p(w) = p(v)]*Qlp(u) — p(v)] = 0.

The edge directions of (p,I') are on a conic at infinity iff there is a continuous family
of d-dimensional non-Euclidean affine transforms that preserve all of the edge lengths [9)].
This is a very degenerate situation which is very easy to rule out. For example, if in a
hypergraph framework (p, ©) some hyperedge in © has vertices whose positions in p affinely
span R?, then the edge directions (p, B(©)) cannot be on a conic at infinity.

Theorem 2. If a framework (p, ©) of a hypergraph © with p € C(V) is affinely rigid in R?,
and the edge directions of (p, B(©)) are not on a conic at infinity, then (p,©) is universally
Euclidean rigid.
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Figure 3: The framework in R? of the hypergraph on the left is not affinely rigid as each
hyperedge (shown as a dashed ellipse) has only 3 vertices. But this framework is universally
Euclidean rigid, as its body graph (right) is a Cauchy polygon. (A Cauchy (bar) polygon
on v vertices is a planar framework where the vertices p(1), ..., p(v), in order, form a strictly
convex polygon in the plane, and the edge set consists of the edges {i,i+ 1}, 7 =1,2,...,v,
and 8,7+ 2}, i =1,...,v — 2 (indices modulo v). A Cauchy polygon is universally rigid [8]).

Proof. Let g € C% (V) be a configuration with d’ > d such that (p, ©) is Euclidean equivalent
in R? to (¢,©). Then (p, ©) is affinely preequivalent in R? to (¢, ©). Since (p, ©) is affinely
rigid in R, from Corollary 3.7, we have that p is affinely precongruent to ¢ in R% and the
affine span of ¢ must be of dimension no larger than d. Let R(q) be a rotation of ¢ down
to R%. Then p, is affine precongruent in R¢ to R(q) and (p,©) is Euclidean equivalent in
R to (R(q),0).

Let A be an affine transform such that A(p) = R(q) (which must exist due to affine
precongruence). By Euclidean equivalence, all of edge lengths agree between (p, B(0)) and
(A(p), B(©)). If A is not Euclidean, then this means that the edge directions of (p, B(©))
are on a conic at infinity, which contradicts our assumption. Thus A is Euclidean making p
and R(q) Euclidean congruent in R?. Likewise p must be Euclidean congruent to ¢ in RY
and we can conclude that (p, ©) is universally rigid. O

Corollary 4.2. Let © be a hypergraph with at least d + 2 vertices. If a generic framework
(p,©) of a hypergraph © with p € C4(V) is affinely rigid in R? then (p,©) is universally
rigid.

Proof. As in the proof of Proposition 3.2, any generic framework of a hypergraph © with at
least d + 2 vertices that is affinely rigid in R%, must have at least one hyperedge h with at
least d+ 2 vertices, and these vertices in p have a d-dimensional affine span. Thus (p, B(0©))
must include a general position framework of a (d 4 1)-simplex and thus cannot have edge
directions at a conic at infinity. Then Theorem 2 applies. O

There can be frameworks that are universally rigid but not affinely rigid in R%. (See
Figure 3.)

Corollary 4.2 can be generalized beyond the Euclidean case to apply to much larger
set of groups and monoids.'

!Thanks to Louis Theran for suggesting we look at this generality.
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Theorem 3. Let M be a family of monoids My (as in Definition 2.11) with each My a
submonoid of Aff(d). Let (p,©) € CHO) be a framework with some hyperedge ho in ©
whose vertex positions in p affinely span R, If (p,©) is affinely rigid in R? then (p, ©) is
universally M -rigid.

Proof. Let q € Cd/(V) be a configuration with d’ > d such that (p, ©) is M-preequivalent in
R% to (¢,0). Then (p,0) is affinely preequivalent in R? to (¢, ©). Since (¢, ©) is affinely
rigid in R?, from Corollary 3.7, we have that p is affinely precongruent to ¢ in Rd/; there is
an A € Aff(d') such that A(p) = q.

By the assumption of M-preequivalence, for each hyperedge h there is an element
gn € Mg which maps the vertices of h from their positions in p to their positions in gq.
Since My is a subgroup of Aff(d'), and the specific hyperedge ho has d + 1 vertices in
general position in the configuration p, the action of g, on R? is fully determined by these
vertices and must agree with the action of A on R%. Thus g, (p) = A(p) = ¢, making p
M-precongruent to ¢, and making (p, ©) universally M-rigid. O

5 Neighborhood affine rigidity

In this section we prove the following theorem about the generic neighborhood affine rigidity
of a graph.

Theorem 4. Let T be a graph. If T is (d + 1)-vertex-connected, then T' is generically
neighborhood affinely rigid in R?.

The strategy to prove this theorem is as follows. First we show, using a “rubber
band” construction [8,18,27], that a sufficiently connected graph must have a framework
with certain nice geometric properties. Moreover, these geometric properties are stable
under generic perturbations of the configuration. Then we show that any such framework
must have a “non-symmetric equilibrium stress matrix” of appropriate high rank. Since the
perturbed framework is generic, then any generic framework must have such a matrix. This
matrix serves as a certificate of neighborhood affine rigidity.

Definition 5.1. An equilibrium stress matriz of a framework (p,T') of a graph in C4(T') is
a matrix 2 indexed by V x V so that

1. for all u,w € V, we have Q(u,w) = Q(w, u);
2. for all u,w € V with u # w and {u,w} ¢ &, we have Q(u,w) = 0;
3. for all uw € V, we have Y, <) Q(u, w) = 0; and

4. for all u € V, we have Y, <y, Q(u, w)p(w) = 0.

A non-symmetric equilibrium stress matriz of a framework (p,I") is a matrix that satisfies
properties (2)—(4) above.
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Observe first that an equilibrium stress matrix (symmetric or not) Q of (p,I") is an
affinity matrix of (p, N(I')). From the properties of affinity matrices, the kernel of {2 always
contains the subspace spanned by the coordinates of p along each axis and the vector I of
all 1’s.

Definition 5.2. We say that a framework of a graph in C%(T") has the convex containment
property if

1. the configuration of each vertex along with its neighboring vertices has an affine span
of dimension d, and

2. Almost every vertex in the framework is contained in the strict d-dimensional convex
hull of its neighbors. There are may be up to d + 1, so-called, exceptional vertices
which do not have this property.

Lemma 5.3. Let I' be a graph with at least d+ 1 vertices. Suppose I' is (d + 1)-connected.
Then there exists a generic framework (¢,T) in C(T) with the convex containment property.

Proof. Pick any d+ 1 vertices to be exceptional. Constrain the exceptional vertices to fixed
generic positions in R (at the vertices of a simplex). Associate generic positive weights Wij
with each (undirected) edge ij. Find the “rubber band” configuration consistent with the
constrained vertices and these weights. Namely, find a framework (r,T") so that each non-
exceptional vertex is the weighted linear average of its neighbors:

> wij(r(@) —r(j)) =0,

JEN()

where N (i) are the neighbors of vertex 7. This involves solving d systems of linear equations,
one for each component of r. Note that the resulting configuration r may not be generic.

From [18], we know that if I" is (d + 1)-connected and the constraints on the excep-
tional vertices and the edge weights w are generic, then no set of d + 1 vertices in r will be
contained in a (d — 1)-dimensional affine plane, giving us the first condition.

By construction, any non-exceptional vertex in (r, I') must be contained in the convex
hull of its neighbors. Again, from [18], the convex containment must be strict.

Finally, we perturb each vertex in R? to obtain a generic configuration in ¢ € C¢4(V).
By the first convex containment condition, the convex hull of the neighbors of a vertex has
non-empty interior, so a sufficiently small perturbation will maintain both conditions. [

Definition 5.4. Suppose that (g,I') has the convex containment property and €2 is a non-
symmetric equilibrium stress matrix for (¢,I'). We call a row of Q non-exceptional if its
corresponding vertex is in the strict d-dimensional convex hull of its neighbors.

Lemma 5.5. Let ' be a graph with at least d+ 1 vertices. Suppose I' is a (d+ 1)-connected
graph, and we have a framework (q,T) in C4T) with the convexr containment property.
Then there is a non-symmetric equilibrium stress matriz Q@ of (q,I'), such that for every
non-exceptional row i, we have the following property: If there is an edge connecting vertex
i and vertex j, then §);; is positive.
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Proof. All vertices have d + 1 or more neighbors. For each vertex i, we can therefore find
“barycentric coordinates”: non-zero edge weights w;; on the adjoining edges so that

> wijla(y) — q(@) = 0.

JEN(i)

If ¢ is a non-exceptional vertex, due to the convex containment property we can choose the
wi; to be positive. We then choose ;; = w;; for i # j and Q;; = — Zj Wij ]

Remark 5.6. This lemma is false if we require the stress matrix to be symmetric, because
this prevents us from choosing w;; and wj; independently.

Lemma 5.7. Let T' be a graph with at least d + 1 vertices. Suppose I is (d + 1)-connected,
and we have a framework (q,T) in C4(T') with the convex containment property. Then there
is a non-symmetric equilibrium stress matriz Q of (q,T") with co-rank d + 1.

Proof. From Lemma 5.5 we find for (¢,I") a non-symmetric equilibrium stress matrix  with
the desired positive entries. We now show that 2 has the stated rank.

First remove the d+ 1 rows and columns associated with the exceptional vertices to
create a smaller matrix '. Due to the sign pattern assumed in 2, as well as property (3)
of any equilibrium stress matrix, ' must be weakly diagonally dominant.

Let us call a vertex EN if it has an exceptional neighbor and refer to its corresponding
row in ' as EN. Any EN row must be strictly diagonally dominant (since at least one non-
zero off-diagonal entry of 2 have been removed from this row).

Since all entries corresponding to edges are non-zero, the irreducible components of
Q' correspond to vertex subsets that remain connected after the exceptional vertices have
been removed. (An irreducible square matrix is one that is not similar via a permutation to a
block upper triangular matrix. Any square matrix has a unique irreducible decomposition).

Each irreducible component of €' includes such an EN row, thus @ must be full
rank. (See, e.g., [28, Theorem 1.21].)

Since Q' has co-rank 0, the co-rank of € must be at most d+1. It is no less since any
equilibrium stress matrix must have a (d+1)-dimensional kernel spanned by the coordinates
of ¢ and the all-ones vector. ]

Proposition 5.8. Let T' be a graph with at least d + 1 vertices. Suppose T is (d + 1)-
connected, and p is generic in C*(V). Then there is a non-symmetric equilibrium stress
matriz Q of (p,T') with co-rank d + 1.

Proof. From Lemma 5.3, there must exist a generic framework (g, T') in C%4(T") that has the
convex containment property. From Lemma 5.7, (¢,I") must have a non-symmetric equi-
librium stress matrix of co-rank d 4+ 1. Thus from Proposition A.1, any generic framework
(p,I') must have such a matrix as well. O

See Figure 4 for an example showing that the converse of Proposition 5.8 is not
true. Since the upper (and lower) vertex in the framework has 3 neighbors in affine general
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Figure 4: This framework in R? is not 3-connected but does have a non-symmetric stress
matrix of high rank.

Figure 5: This framework in R? does not have a non-symmetric equilibrium stress matrix
of co-rank d + 1 = 3, but is (trivially) neighborhood affinely rigid.

position, its position can be written as an affine combination of these neighbors producing a
non-zero, non-symmetric equilibrium stress matrix. Any non-zero, non-symmetric equilib-
rium stress matrix must have rank at least 1 and co-rank of no more than 3 = d+ 1. Thus,
as an equilibrium stress matrix, it has co-rank of exactly d 4+ 1. Meanwhile, this framework
is not 3-connected.

Note that from the proof of Proposition A.1 it is clear that if I" is (d + 1)-connected,
then almost every non-symmetric stress matrix for almost every (p,T) in C%(T") will have
co-rank d + 1. Moreover, each row of such a non-symmetric stress matrix of p can be
constructed independently from the other rows, and we still expect to find this minimal
co-rank.

Proposition 5.9. Let I' be a graph with at least d+ 1 vertices. Suppose (p,T"), a framework
in C4T), has a non-symmetric equilibrium stress matriz Q that has co-rank d + 1. Then
(p,T) is neighborhood affinely rigid in RY.

Proof. € is a (not strong) affinity matrix of (p, N(I')) and so the proof follows that of the
first direction of Theorem 1. O

Proof of Theorem j. The theorem now follows directly from Propositions 5.8 and 5.9. If
I' has less than d + 1 vertices and is (d + 1)-connected, then it is a simplex and thus
neighborhood affinely rigid for any configuration. O

See Figure 5 for an example showing that the converse of Proposition 5.9 is not true.
The framework is clearly neighborhood affinely rigid since the central vertex is adjacent to
all of the other vertices. Meanwhile the outer 4 vertices have only one neighbor and hence
must have all zeros in their corresponding rows of any non-symmetric equilibrium stress
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matrix. Thus, this framework cannot have a non-symmetric equilibrium stress matrix of
co-rank d+1 = 3.

Remark 5.10. Generic global rigidity of a graph I' in E? can be characterized either using
the dimension of the kernel of a single symmetric stress matrix of a generic framework (p,I")
or using the dimension of the shared symmetric stress kernel of a generic p: the intersection
of the kernels of all stress matrices of p [11].

By contrast, the analogous statement is not true in the affine rigidity case. By
“vertically concatenating” a sufficient number of non-symmetric equilibrium stress matrices
of (p,I"), we can create a strong affinity matrix for (p, N(I')). The kernel of the vertical
concatenation will be the shared non-symmetric stress kernel of (p,T"), and the dimension
of this kernel characterizes affine rigidity. Since the converse of Proposition 5.9 is not true,
we see that neighborhood affine rigidity cannot in general be characterized by the rank of
one single (say, generic) non-symmetric equilibrium stress matrix for (p,T").

Note that there is a different sufficiency condition for affine rigidity given by Zha and
Zhang [30]. Their condition is complementary to our condition (neither strictly stronger
or weaker), and (like trilateralization [10]) is greedy in nature. Their condition on generic
frameworks of a hypergraph requires that for each pair of vertices s and ¢, one can find a
sequence of hyperedges starting with some hyperedge containing s and ending with some
hyperedge containing ¢, such that for each pair (7, j) of hyperedges in the sequence, h; and
h; share at least d + 1 vertices. When translated to a neighborhood hypergraph N(T'), it
states that one can walk between any two vertices along edges, such that for each pair (i, )
of vertices along the walk, the neighborhoods of these vertices share at least d + 1 vertices
in I,

Figure 6 shows a graph which clearly fails Zha and Zhang’s condition, but is 3-
connected, showing that their condition does not imply Theorem 4. It is not hard to
construct examples in the opposite direction, as well.

We also have the following corollary of Theorem 4

Corollary 5.11. Let I" be a graph. If T is (d + 1)-connected, then any generic framework
of T'? in R? is universally rigid.

Proof. If ' has at least d + 2 vertices, then we can directly apply Corollary 4.2. Any graph
with fewer vertices that is (d + 1)-connected must be a simplex and be universally rigid for
all configurations. O

Remark 5.12. This corollary can also be proven without reference to affine rigidity and
Corollary 4.2. In particular, Proposition 5.8 guarantees a non symmetric maximal-rank
stress Q for (p,T'), and then Q'Q) is a symmetric, positive semi-definite, maximal rank stress
for (p,T?). Universal rigidity then follows by a theorem of Connelly [8]. (See also [12].)

A manuscript by Cheung and Whiteley [7] contains a variety of other results relating
graph powers to global rigidity.

We wish to highlight this corollary since the only other known (to us) class of graphs
that are universally rigid for all generic configurations in R? are graphs that can be realized
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nnap

A
Figure 6: A drawing of a hexagonal lattice on the torus. (The vertices on the top edge
should be identified with those on the bottom and similarly with the left and right, as
indicated by the arrows.) This graph is 3-connected but its neighborhood hypergraph does
not satisfy the sufficiency condition of Zha and Zhang [30], and its squared graph is not a
2-trilateralization graph.

greedily such as the d-trilateralization graphs (A d-trilateralization graph is one that can
be obtained from a complete graph by successively adding vertices, each connected to at
least d + 1 old vertices) and their generalizations (such as graphs formed by gluing together
d-trilateralization graphs along d + 1 vertices.

See Figure 6 for an example of a framework whose square is universally rigid by this
corollary but is not a trilateralization graph.

We also mention that a theorem of a related nature, showing a relationship between
the connectivity of a graph and global rigidity in the squared graph, has been described by
Anderson et al. [2].

6 Applications

6.1 Registration

There are many applications where one has multiple views of some underlying configuration,
but it is not known how these views all fit together. We assume that these views share some
points in common, and this correspondence is known. (Of course in practice, establishing
such a correspondence could in itself be a very challenging problem.) For example, in
computer vision, one may have multiple uncalibrated laser scans of overlapping parts of
some three-dimensional object.

In our setting we model all of the points as vertices, and each of the views as a
hyperedge. The geometry of the vertices in each hyperedge h is given up to some unknown
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transform T}, from a relevant class. The goal in registration then is to realize the entire
hypergraph up to the relevant congruence class.

Affine case: Suppose we wish to realize a framework (p, ®) where we are given as input
the geometry of each hyperedge h up to an affine transform Aj;. Theorem 1 tells us that
if (p,©) is affine rigid, then we can compute the realization just using linear algebra. In
particular, we can use the data for each hyperedge to build its associated rows in a strong
affinity matrix. Then we can solve for its kernel, giving us our answer p.

If our hypergraph © happens to be the neighborhood graph of an underlying graph T',
then one could also construct a (smaller) non-symmetric equilibrium stress matrix €2 for
(p,T'). This is not guaranteed to work; even when (p,I") is neighborhood affinely rigid
in R?, the matrix € may have co-rank larger than d + 1. But Theorem 4 states that if T
is (d + 1)-connected, this method will indeed work for almost every p in R? (and, in fact,
using almost any non-symmetric equilibrium stress matrix for (p,T")).

Euclidean case: The Euclidean framework registration problem is perhaps more natural
and common.

When (p,©) is globally rigid in R?, this problem is well posed, but it is general
hard to solve, as the graph case includes the graph realization problem which is strongly
NP-HARD [21].

When (p,©) is, in fact, also universally rigid there is an efficient algorithm: we
can solve the Euclidean registration problem using semi-definite programming. One simply
sets up the program that looks for the Gram matrix of an embedding of the vertices in
RY (a semi-definite constraint on a Gram matrix) subject to the length constraints (linear
constraints on the Gram matrix) [17]. Due to universal rigidity, one does not need to
explicitly enforce the (non-convex) constraint that the embedding have a d-dimensional
affine span [25].

When (p,©) is, furthermore, affinely rigid then we can solve the Euclidean reg-
istration problem using linear algebra. We can simply reduce this problem to an affine
registration problem above, and find p using the kernel vectors of an affinity matrix. This
determines p up to some global affine transform. Moreover, for (p,©) that is generically
globally rigid in R, we can solve a second (least squares) linear system to remove the un-
wanted global affine transform, leaving just the unknown global Euclidean transform (see
Appendix B). This approach is morally the same affine relaxation used in the initialization
step of the registration method of Krishnan et al. [15] (though in their case, they think of
the inter-patch transforms as the unknown variables instead of the point positions).

6.2 Global embeddings from edge lengths

Similar approaches have been applied to the (NP-HARD) problem of solving for the frame-
work of a graph given its edge lengths. In these approaches one first attempts to find local
d-dimensional embeddings for each one-ring (a vertex and its neighbors) of the framework
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up to an unknown local Euclidean transform. This step alone is NP-HARD and can fail.
But assuming this step is (approximately) successful one can reduce the rest of the problem
to the Euclidean registration problem above.

In the As-Affine-As-Possible (AAAP) method [14, 31], this was done using what is
essentially a strong affinity matrix. In the Locally-Rigid-Embedding (LRE) method [23] this
was done using a non-symmetric equilibrium stress matrix. Both approaches then removed
the global affine transform using the least squares linear system described in Appendix B.

6.3 Manifold learning

Many of the ideas of affine rigidity first appeared in the context of manifold learning.
Suppose one has d-dimensional smooth manifold M which is a topological d-ball embedded
in a larger D-dimensional space RP. Also suppose that one has a set V of sample vertices on
the manifold. In manifold learning, one first connects nearby samples to form a proximity
graph I". One then looks for a framework (p,I") of this graph in R? that in some way that
preserves some of the geometric relations of the points in R”. This is used to represent a
parametrization of M.

To compute the coordinates p, the Locally Linear Embedding (LLE) method [19]
builds a matrix €2 with structure similar to a non-symmetric equilibrium stress matrix. In
particular, row i encodes one affine relation between vertex i and its neighbors in RP”. Then
(after ignoring the all ones vector) the smallest d eigenvectors of Q€2 are used to form the
coordinates of p in R?. Unfortunately, since the original embedding is in R”, for a graph of
high enough valence and assuming no noise, {2 must have a kernel of size at least D+1, which
is much larger than d+1. Thus it is not clear how the numerically smallest d+1 eigenvectors
will behave. The paper suggests to add an additional regularization term, possibly to
address this issue. A follow up to the LLE paper [20] describes a PCA-LLE variant where
a d-dimensional local PCA is computed to “flatten” each one-ring before calculating its
corresponding row in the matrix 2. Thus 2 is designed to represent d-dimensional affine
relations between the points. The Local-Tangent-Space-Alignment (LTSA) method [32] is
an interesting variant of PCA-LLE. In this method, a v X v matrix N is formed that is the
Hessian of a quadratic energy. Thus this matrix plays the role of a strong affinity matrix.
It is in this context that Zha and Zhang investigated the rank of this matrix and affine
rigidity [30].

In all of these methods, an understanding of affine rigidity is important. In particular
it tells us what the rank of the computed matrix would be if the original d-dimensional
manifold was in fact embedded in R%. For example, if such a framework was not affinely
rigid in R?, then the kernel would be too big, and we would not expect a manifold learning
technique to succeed. However, in manifold learning the embedding has an affine span
greater than d and the analysis becomes more difficult. The kernel of a strong D-dimensional
affinity matrix is too large, while the kernel of a strong affinity matrix for the locally flattened
configurations contains only the all-ones vector but it is hoped that the numerically next
smallest d eigenvectors are somehow geometrically meaningful. For an analysis along these
lines, see [24].
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A Matrix rank

For completeness, we recall the necessary material for determining the generic matrix rank.
This material is standard. For a more detailed treatment, see, e.g., [11, Section 5].

We will consider the general setting where there is a set of linear constraints that
must be satisfied by a vector m € R"™. The entries of m are then arranged in some fixed
manner as the entries of a matrix M, whose rank we wish to understand. The linear
constraints are described by a constraint matrix with n columns: C(p). Each of the entries
of C(p) is defined by some polynomial function, with coefficients in Q, of the coordinates of
an input configuration p. We wish to study the behavior of the rank of M as one changes
.

We apply this in the proof of Corollary 3.8 where the constraints C' specify that
the matrix M is an affinity matrix for (p, ©) and in the proof of Proposition 5.8 where the
constraints C specify that the matrix M is a non-symmetric equilibrium stress matrix for

(p,T).

Proposition A.1. Suppose that for some generic p, there is a matrix M of rank s consistent
with C(p)m = 0.

Then for all generic p, there is some matriz M of rank > s consistent with C(p)m =

Proof. To prove this proposition we first need the following lemma.

Lemma A.2. Let M(7) be a matriz whose entries are polynomial functions with rational
coefficients in the variables m € R™. Let r be a rank achieved by some M(my). Then
rank(M (7)) > r for all points 7 that are generic in R™.

Proof. The rank of the M (7) is less than r iff the determinants of all of the 7 x r submatrices
vanish. Let mp € R™ be a choice of parameters so M (mp) has rank r. Then there is an
r x r submatrix T'(my) of M (my) with non-zero determinant. Thus det(7'(7)) is a non-zero
polynomial of 7. For any 7 with rank(M (7)) < r, this determinant must vanish. Thus, any
such 7 cannot be generic. d

Next we recall that for a non-singular n x n matrix C ,
adj(C) = det(C)C71, (1)

where adjC is the adjugate matriz of C, the conjugate of the cofactor matrix of €. In
particular, adj C' is a polynomial in C'.

For a given p, let t(p) be the rank of C(p). Let t := max, t(p). By Lemma A.2 this
maximum is obtained for generic p.

For each p we add a set H of n — t additional rows to C'(p) to obtain a matrix
C(p, H), and determine m by solving the linear system C(p, H)m = b where b € R" is a
vector of all zeros except for a single 1 in one of the positions of a row in H (if there are any
rows in H). This m is then converted to a matrix M (p, H). M (p, H) is well-defined iff this
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linear system has a unique solution, i.e., iff C'(p, H) has rank n. Note that this happens for
generic p and H.

Let pg be generic and have a compatible matrix My with rank s, as in the hypotheses
of the proposition. Find a set Hp of additional rows so that C(pg, Hy) has rank n and
C(po, Ho)mo = b. Let C(p, H) be an n x n submatrix of C(p, H) so that C(po, Hp) is
invertible. (C necessarily uses ¢ rows from C(p) and all rows of H.) Define b similarly, let
m(p, H) := adj(C)b, and let M(p, H) be the associated matrix.

By Lemma A.2, the rank of C’(p, H) is equal to its maximum value, n, at all
points (p, H) that are not zeros of a polynomial P;(p, H) := det C’(p, H). Moreover, when
Pi(p, H) # 0, the linear equation defining M (p, H) has a unique solution and the adjugate
matrix M (p, H) is a scalar multiple of M (p, H). In particular we have assumed (pg, H) is
not a zero of P, and thus M (po, Ho) has rank s. By Lemma A.2 again, the rank of M (p, H)
is less than s only at the zeros of a non-zero polynomial Ps(p, H).

For any generic p, there must be some generic point (p, H). Such a generic (p, H)
cannot be a zero of P, or P, and thus M(p, H) and M(p, H) must have rank no less
than s. O

B Removing the Affine Transform

Suppose one has solved for ¢ — a configuration in R? — up to an unknown global affine
transform A of the true configuration p: p = A(q). Given a set of edge lengths for p, it is
possible to compute A up to an unknown global Euclidean transform. This approach was
described by Singer [23].

In particular, let L be a d x d matrix representing the linear portion of A and let
G := LTL. Now consider the following set of linear equations (in the w unknowns of
G): For each pair of vertices i, j, whose edge lengths are known, we require

(q()) — q(7)) " G(q(i) — q(j)) = (p(i) — p(7))" (p(i) — p(4)) (2)

(Since we have more constraints than unknowns, for numerical purposes we would solve this
as a least squares linear system in the unknown G.)

The only remaining concern is whether this system has more than one solution. The
solution to Equation (2) will be unique as long as our set of edges with known lengths do
not lie on a conic at infinity. Fortunately, we can conclude from Proposition 4.3 of [9] that
if our known lengths form a graph B(©) with minimal valence at least d and p is generic,
then the edges do not lie on a conic at infinity. This property holds for any hypergraph
that is generically globally rigid in E¢. Using Cholesky decomposition on G then yields L
up to a global Euclidean transform.
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