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Abstract—Semi-supervised dimensionality reduction is very
important in mining high-dimensional data due to the lack of
costly labeled data. This paper studies the Semi-supervised Dis-
criminant Analysis (SDA) algorithm, which aims at dimension-
ality reduction utilizing both limited labeled data and abundant
unlabeled data. Different from other relative work, we pay our
attention to graph construction, which plays a key role in graph
based SSL methods. Inspired by the advances of compressive
sensing, we propose a novel graph construction method via
group sparsity,which means to constrain the reconstruct data
to be sparse for each sample, and constrain the representation
in each class to be quite similar. Experimental results show
that our method can significantly improve the performance of
SDA, and outperform state-of-the-art methods.

Keywords-semi-supervised learning; graph construction; s-
parsest representation;

I. INTRODUCTION

Dimensionality reduction is very important in many vision

tasks such as face recognition and image retrieval. In these

tasks, one is often confronted with high-dimensional data,

and suffers from ”curse of dimensionality”. Fortunately,

most high-dimensional data in these tasks often lies in a

lower dimensional manifold (”bless of dimensionality”) [1],

[2], [3]. This leads one to consider methods of dimensionlity

reduction that allow one to represent the data in a lower

dimensional space.

For classification tasks, linear discriminant analysis (L-

DA) is one of the most popular methods for dimensionality

reduction. It seeks a linear projection that simultaneously

maximizes the betweens-class dissimilarity and minimizes

the within-class dissimilarity to increase the class sepa-

rability. To achieve promising performance, LDA requires

sufficient labeled training samples. When the number of

labeled samples is much smaller than the number of di-

mensions, LDA will suffer from the so-called small sample

size (SSS) problem due to severe under-sampling of the

underlying data distribution. As a result, the within-class

scatter matrix is not of full rank and hence not invertible.

In this case, the performance of LDA will reduce obviously,

and its generalization capability on test samples cannot be

guaranteed.

In many real applications, it is difficult to obtain enough

labeled training data. On the other hand, large number of

unlabeled data are available at very low cost. One possible

solution to overcome the SSS problem is to exploit unlabeled

data. Inspired by semi-supervised learning for classification,

many methods have proposed to alleviate the SSS problem of

LDA by utilizing both unlabeled data and labeled data. Cai

[4] first proposed a semi-supervised dimensionality reduc-

tion algorithm, called Semi-supervised Discriminant Anal-

ysis (SDA). SDA exploits the local neighborhood informa-

tion of data points in performing dimensionality reduction.

Instead of using local manifold structure of data, Yu and Dit-

Yan proposed another method called SSDA [5] using path-

based similarity measure to capture global manifold structure

of the data. Similarly, SMDA [6] and UDA [7] also per-

form LDA under semi-supervised setting through manifold

regularization. Different from above methods, SSDACCCP

[8] was recently proposed, by exploiting label information

from unlabeled data to maximize an optimality criterion of

LDA. Besides SSDACCCP , M-SSDACCCP [8] were pro-

posed by adopting the manifold assumption. However, both

SSDACCCP and M-SSDACCCP have no structure preserv-

ing strategy in performing LDA with the augmented labeled

data, which may limit their performance. By considering

both label augmenting and local structure preserving, Zhai

proposed a spectral based discriminant analysis approach

called STSDA [9], and achieve an impressive performance.

Though all of above methods perform semi-supervised

LDA in different ways, they all model the geometric rela-

tionships between all data points in the form of a graph.

Graph plays a key role in these methods. However, far little

attention has been paid to the graph constructor methods.

In this paper, by taking SDA [4] for an example, we

investigate the performance of popular graphs in a systematic

way. Furthermore, inspired by the advances of compressive

sensing, we construct a novel graph called �2,1-graph for

SDA via group sparsity. Experiments show that our �2,1-

graph outperformed other popular methods for SDA.
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A. Related work

There are many methods proposed for graph construction,

including k-nearest neighbors (k-NN) method [10] and ε-
ball based method. These methods often divide graph con-

struction into two separative steps, graph adjacency con-

struction and graph weight calculation. Graph adjacency

construction computes the similarity (or distance) between

any two data points using some similarity or kernel function,

and generates an adjacency matrix reflecting the neigh-

borhoods of each data point. k-Nearest Neighbors (k-NN)

method and ε-ball method are usually used to graph adja-

cency construction. Given the adjacency matrix, Heat-kernel,

inverse Euclidean Distance and Locally Linear Reconstruc-

tion (LLR)[11] are often used to calculate the graph edge

weights. However, traditional methods are mainly based on

pair-wise Euclidean distance, which are sensitive to noise.

Meanwhile, traditional methods usually use a fixed global

parameter to determine the neighbors for all the samples,

and thus fail to offer data-adaptive neighborhoods. At last, as

graph adjacency construction and graph weight calculation

are two interrelated steps, separating them leads to an

information loss. These shortcomings limit the performance

and efficiency of traditional graphs.

Recently, inspired by advances of compressed sensing,

Yan etc.[12] proposed a novel graph called �1-graph via

sparse representation by L1 optimization. An �1-graph over

a dataset is derived by encoding each data point as the sparse

representation of the remaining samples, and automatically

selects the most informative neighborhoods for each datum.

Compared with traditional graphs, �1-graph is robust, sparse,

and datum-adaptive. Meanwhile, �1-graph simultaneously

learns the graph adjacency structure and graph edge weights.

However, �1-graph computes the coefficients of each data

points individually, lacking global structures of data. This

drawback can largely reduce the performance of �1-graph in

semi-supervised learning tasks.

However, these methods construct all of the data in

a subspace[13], using little information about the other

generated coefficients when they make a new reconstruct

coefficients of data. As we know, if the samples are in the

same class, their coefficients will highly related, and the

coefficients should have the largest margin property if they

are in different classes. In this paper, we present a novel

graph construct methods. For each individual coefficient,

we use sparse represent to make it more suitable for the

human visual system in the feature represent and more robust

to noise and partial image occlusions. In addition, for the

mutual coefficient relationship, we think that if data in the

same class can be well represent by others, then the represent

should be highly similarity. This property is important for

the low-label rate problem, where the labeled information is

really limited. So we add the �2 norm limitation to the sum of

each reconstruct coefficient to be minimize, which constrains

graph weight centered on the same class and presents the

adjacency of the more precise. Another contribution is we

also give the optimization algorithm of the �2,1 graph by

using the traditional Argument Lagrange Multiplier (ALM).

Experiments on semi-supervised face recognition show that

our proposed �2,1 graph can reflect the graph weight more

accurately, and it can get a more precise subspace for image

classification in semi-supervised learning task. Especially

for the low-labeled rate dimension deduce problem, it get

a better performance.

The rest of this paper is organized as follows. We first

introduce traditional SDA framework in Section II. In Sec-

tion III, we introduce our new �2,1 optimization algorithm

and graph construct method. The experimental results and

our analysis are presented in Section IV Finally, we conclude

the paper and provide suggestions for future work in Section

V.

II. OVERVIEW OF SDA

Given a label set {x1, . . . , xm, xm+1, . . . , xm+ l}where

N = m + l, N vectors for the whole data. m of them are

labeled as {y1, . . . , ym}, and other l are unlabeled. They all

belong to c classes. The SDA motivates to present the prior

assumption of consistency by the graph.

By the definition of within class scatter matrix Sw,

between class scatter matrix Sb and total class scatter matrix

St:

Sw =
c∑

k=1

(

lk∑
i=1

(x
(k)
i − μ(k))(x

(k)
j − μ(k))T ) (1)

Sb =
c∑

k=1

lk(μ
(k) − μ)(μ(k) − μ)T (2)

St =
l∑

i=1

(xi − μ)(xi − μ)T (3)

where μ is the total sample mean vector, lk is the number

of samples in the k-th class, μ(k) is the average vector of

the k-th class, adn x
(k)
i is the i-th sample in the k-th class.

The SDA method [4] want to find a rejection matrix R
that maximizes the trace function of St and Sw, which is

also to find a suitable subspace:

R = argmax
R

RTSbR

RTStR+ αJ(R)
(4)

where α is a balance parameter, and J(R) controls the

learning complexity of the hypothesis family, which can

be generate from a graph matrix. The graph puts an edge

between nodes i and j if Xi and Xj are neighbors, which is

decided by k nearest neighbor or ε−ball neighbor algorithm.

If two data points are linked by an edge, they are likely to

692



be in the same class. Then the corresponding weight matrix

is defined by:

Sij =

{
i, if xi ∈ N(xj) or xj ∈ N(xi)

0, otherwise.
(5)

where N(xi) denotes the set of neighbors of xi. then J(R)
can be defined as follows:

J(R) =
∑
ij

(RTxi −RTxj)Sij (6)

If we define D is a diagonal matrix where Dii =
∑

j Sij ,

and L = D − S, the rejection matrix R is easily obtained:

R = argmax
R

RTSbR

RT (St + αXLXT )R
(7)

III. GROUP SPARSE CONSTRUCT ALGORITHM

A. Motivation
For the need of classification problem, how to find a

suitable subspace for classification is an important task,

which we called dimensionality reduction. We assume that

the training sample data are given as X = [x1, x2, . . . , xN ],
where xi ∈ R

d and N is the Total number of training

samples. In these data l is labeled and m is unlabeled, where

N = l + m. The dimensionality reduction on the graph

consists in finding a labeling of the graph that is consistent

with both the initial labeling and the geometry of the data

induced by the graph structure(edges and weights W ).As

the proposed algorithm always analyze the relationship only

using the form one-to-others, whatever the most common

graph: k-nearest neighbor graph and the ε−ball graph, only

for determining the edges and the weight graph should be 1,

or the lle-graph and the �1-graph show the graph structure

weights by the limitation of �2-norm or the �1-norm. By

well considering the strength of the graph weight lle-graph

and �1-graph get a good performance.
But without consider the relation together, above methods

are under the assumption that all of the figure an well present

on a single linear subspace. So it use the expression as (8)

a = argmin
a
‖y −Xa‖p (8)

Where ‖ · ‖ is the �p norm.
Here we think that if the data can be well represent

by the same class label, and the represent in the same

class are highly similar. If the number of labeled data and

unlabeled data is almost the same, this property can be

well reflect by their reconstruct coefficient. But when the

number of labeled data is much smaller than the whole

training data, this property is really helpful. So we added

the �2-norm limitation in the traditional non-negative sparse

representation to make the weight matrix more close to limit

in the same class. Just like Equation (9).

minA ‖A‖2,1
s.t. X = XA,A ≥ 0

(9)

B. Minimization of the �2,1 Problem

By concern the relationship of each reconstruct coefficien-

t, we count the graph weight using all of the training data

together, and set the diag of the matrix into 0 by considering

to minimize the weight of the vector itself. Supposing that

there is some noise , we add a Error part E. Then we got

Equation (10)

min
A,E

‖A‖2,1 + λ‖E‖1
s.t. X = XA,A ≥ 0, Diag(A) = 0

(10)

This problem can be solved by change the reformulate into

the below problem (11), which can solved by the Augmented

Lagrange Multiplier (ALM)[14] method.

min
J,E
‖J‖2,1 + λ‖E‖1

s.t. X = XA,

J = A,W = A,Z = A

Z ≥ 0, Diag(W ) = 0

(11)

By using The ALM method ,it minimizes the following

augmented Lagrange function (12),and we got Algorithm 1

L(J,A, Z,W,E, Y1, Y2, Y3, Y4, μ1, μ2, μ3, μ4)

= ‖J‖2,1 + λ‖E‖1 + 〈Y1, X −XA− E〉
+ 〈Y2, J −A〉+ 〈Y3, Z −A〉+ 〈Y4,W −A〉
+ μ1

2 ‖X −AZ − E‖2F + μ2

2 ‖J −A‖2F
+ μ3

2 ‖Z −A‖2F + μ4

2 ‖W −A‖2F

(12)

And one of the most important part of this algorithm is

to solve the optimal problem as

J = argmin
J

‖J‖2,1 + 1

2
‖J −Q‖2F

Fortunately, we got the method to solve this method from

Guangcan Liu [15]. Let Q = [q1, q2, . . . , qi, dots] the i−th

column of W is

J(:, i) =

{ ‖qi‖2−1
|qi‖2 qi, ifλ < ‖qi‖2,

0, otherwise.

C. Graph construct

For the training samples, we set the whole matrix as

X = [x1, x2, . . . , xN ]. Using Algorithm 1 we can got the

adjacency structure and the graph weight at the same time

by solving Equation (12). So we set the graph weight as :

W = A. Using the above method, we got the coefficient

compared with sparse representation (like �1-graph). As we

see from figure 1, our coefficient are accumulated more from

0 to 30, which is the first class of the training sample. So

the weight of the graph by �2,1 graph is more efficiency.
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Algorithm 1 Solving Problem (12) by Inexact ALM

Input: data matrix X, dictionary A, parameter λ
Initialize: Z = J = W = 0,E = 0,Y1 = Y2 = Y3 =

10−2,μi,max = 1010,ρ = 1.1,ε = 10−8

1: while not converged do
2: Update the variables in parallel. Namely, a newly up-

dated variables are not immediately used for updating

the next variable:

A = [μ1X
TX + (μ2 + μ3 + μ4)I]

−1

[(XTY1) + Y2 + Y3 + Y4) + μ1X
T (X − E)

+ μ2(J −A) + μ3(J −A) + μ4(W −A)]
J = argmin

J
‖J‖2,1 + 〈Y2, J −A〉+ μ2

2 ‖J −A‖2F
Z = argmin

Z≥0
+ μ3

2 ‖Z −A‖2F
W = argmin

Diag(W=0)

+ μ4

2 ‖W −A‖2F
E = argmin

E
λ‖E‖1 + 〈Y1, X −XA− E〉

μ1

2 ‖X −XA− E‖2F
3: Update the multiplier, using the newly updated vari-

ables:

Y1 = Y1 + μ1(X −XA− E),
Y2 = Y2 + μ2(J −A),
Y3 = Y3 + μ3(W −A),
Y4 = Y4 + μ4(Z −A),

4: Update the parameter μi by μi = min(ρμi, μi,max),
where μi,max is an upper bound of μi and i = 1, 2, 3

5: Check the convergence conditions:

max(‖X −XA− E‖∞, ‖J −A‖∞,
‖Z −A‖∞, ‖W −A‖∞) < ε

6: end while
Output: an optimal solution (A∗, E∗)

Figure 1. Coefficient of the reconstruct Matrix

IV. EXPERIMENT AND ANALYSIS

In this section,experiment is performed to test our al-

gorithm. The databases is PIE1, which contains 41,368

images of 68 people, each person under 13 different poses,

43 different illumination conditions, and with 4 different

expressions. All of facial images are normalized to the size

of 32-by32 pixel. We only pick the first 15 people for

classification, and normalize the data before training and

testing. We use 30 images for the training part, and the

1Available at http://www.zjucadcg.cn/dengcai/Data/FaceData.html

percentage of the label rate is under this training data. In

such a database we trained our rejection matrix by different

graph construct algorithms like k-nearest neighbor, ε− ball,
lle, �1 and our �2,1 for graph construction first. We set

λ = 1, and for the other graphs, we vary the values of

k and ε. We report the classification results for different

configuration with k = 3, 5 and ε = 0.2, 0.3. For the lle-

graph, we use the Euclidean Distance for the weight count.

Then based on rejection space semi-supervised learned by

these graph, we make a image classification experiment on

the deduced dimension and use the basic nearest neighbor

for classification.

We carry out the classification experiments on the face

databases under different deduced dimension. For the whole

database, we change 25 different training data and 25 differ-

ent testing data to get a mean accuracy. For the percentage

of the training label, we use a random select algorithm to

make sure that all the classes have been selected, but the

labeled number may be different for each class. We test

the classification accuracy for different labeled percentage,

and compare 8 different methods with 5 different algorithms

where k=3 or 5 and ε =0.2 or 0.3. For �1-graph and

lle-graph, the graph adjacency matrix W is asymmetric

and a symmetrization process is used as to mean value

of its transpose and itself. Focusing on low-labeled rate,

we randomly choose the i percentage of the total training

samples where i = 5%, 8%, 10% and 20%. Then we use

the Semi-supervised Discriminant Analysis (SDA) is used

to evaluate the performances of different graphs. And we

use the nearest neighbor for the classification.

The classification error rates for semi-supervised learning

based on different graphs generated subspace is shown in

Figure 2, form which we can have a set of observation.

1) The �2,1 graph generally achieves a highest recognition

accuracy compared to those graphs, followed by �1
graph.

2) In our experiment, the ε graph is highly changed by

the number of ε. You may get a good performance by

change it, but when the data changed, it should change

too. The k-NN graph is more robust than it.

3) Lle-graph is also stable for the classification, but

the performance is not as good as �1 graph and our

method.

4) For the low-labeled rate semi-supervised rejection

matrix generation, �2,1 graph can get a more suitable

low-dimension space for classification.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we use a new way to construct graph

for semi-supervised learning problems, and give our opti-

mization algorithm for the graph construct. Different from

the traditional graph construct method, the graph adjacency

structure and the graph weights are derived together. We

consider the human vision system in the representation of
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Figure 2. Classification error rate in PIE data

natural scenes by sparse coding, and consider the relation-

ship between the training samples and their coefficient. We

find a more precise method to constrain the graph weight

in their own class. And the experiment shows it is truly

effective for semi-supervised learning. In the further, we

want to find a more precise method to construct the graph.

And we want to find a more efficiency frame for the semi-

supervised learning problem.
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