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In Brief

Biochemical fractionation
followed by proteomics and
fluorescent imaging approaches
revealed the RNA helicase
MTR4-modulated nucleolar
proteome. The depletion of
MTR4 or inhibiting transcription
both redistributed the RNA
exosome complex from the
nucleolus to the nucleoplasm.
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Quantitative nucleolar proteomics reveals that MTR4 modulates the nucleolar proteome.
The depletion of MTR4 reduces the nucleolar enrichment of the RNA exosome.

The transcription process promotes the nucleolar accumulation of the RNA exosome.
The integrity of the RNA exosome is essential for its nucleolar localization.
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Nucleolar Proteomics Revealed the Regulation
of RNA Exosome Localization by MTR4

Yagian Zhang', Guangzhen Jlang1 2, Ke Wang', Minjie Hong , Xinya Huang'"

Xiangyang Chen', Xuezhu Feng®

The nucleolus is the largest membrane-less organelle
within the nucleus and plays critical roles in regulating the
cell cycle, senescence, and stress responses. The RNA
exosome is a multiprotein ribonucleolytic complex
involved in RNA processing and degradation in the cyto-
plasm, the nucleus, and the nucleolus. Previous studies
have shown that the subcellular localization of the RNA
exosome is crucial for its function. However, the mecha-
nism that regulates its spatial distribution remains largely
unexplored. In this study, we identified the nuclear RNA
helicase MTR4 as a regulator of the RNA exosome
localization through nucleolar quantitative proteomics
technology. Immunostaining and fluorescence tagging
confirmed that the depletion of MTR4 resulted in the
translocation of the RNA exosome subunits from the
nucleolus to the nucleoplasm. Notably, the translocation
is specifically regulated by MTR4 and does not depend on
other cofactors of the MTR4-containing Trf4/5-Air1/2-
Mtr4 polyadenylation, poly(A) exosome-targeting, and
nuclear exosome targeting complexes. The nucleolar
accumulation of exosome subunits mutually depends on
other exosome subunits. Additionally, actinomycin D
treatment, which inhibits transcription, induced the RNA
exosome to translocate from the nucleolus to the nucle-
oplasm, likely through the regulation of nucleolar MTR4
levels. These findings uncover a regulatory mechanism
that modulates the localization of the RNA exosome
within the nucleolus.

The nucleolus is a central organelle responsible for coordi-
nating the synthesis and assembly of ribosomal subunits,
forming around clusters of repeated ribosomal genes (1).
Previous reports have suggested that the nucleolus of
mammalian cells consists of four internally phase-separated
subcompartments: the fibrillar center (FC), the dense fibrillar
component (DFC), the granular component (GC), and a newly
identified periphery of the dense fibrillar component (PDFC) (2).
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The FC is the subcellular compartment where ribosomal
transcription occurs. Each FC contains two to three tran-
scriptionally active ribosomal DNA (rDNA) units and is encir-
cled by pre-rRNA processing factors, which are then
assembled into the DFC (3). Nascent rRNA transcripts un-
dergo sequential processing steps by enzymes that localize
to distinct intranucleolar subcompartments. Rapid rRNA
transcription occurs at the boundary between the FC and the
DFC, and pre-rBNA processing takes place within the DFC.
The PDFC, located on the outermost side of the DFC, con-
tains some proteins that facilitate the removal of the 3’
external transcribed spacer (3’ ETS) (4). Each nucleolus
houses multiple FC/DFC units within a single GC region,
where the final stages of pre-rRNA processing and the as-
sembly of rRNA ribonucleoproteins take place (5).

In addition to mediating rRNA transcription and processing,
the nucleolus functions as a non-membrane-bound nuclear
organelle that controls protein quality. The nucleolar prote-
ome is rich in stress-sensitive proteins, such as the RNA
exosome and the heat shock proteins (HSPs). The nucleolus
temporarily stores misfolded proteins to prevent their irre-
versible aggregation, facilitates Hsp70-assisted refolding,
and promotes nuclear protein homeostasis under stress (6).

The nucleolar proteome is dynamic, characterized by
disassembly and reassembly under various cellular condi-
tions and throughout different phases of the cell cycle,
reflecting its intrinsic mobility (1, 7, 8). Previous analyses
identified over 4500 proteins in the nucleolus across various
cell lines, most of which are involved in ribosome biogenesis,
including rRNA transcription, processing, and ribosome as-
sembly (9-11). Proteomic studies have revealed complex re-
organizations of the nucleolar proteome during stress
responses, such as the inhibition of transcription, viral infec-
tion, heat shock, and DNA damage (1, 12-15). Furthermore,
spatial proteomics facilitates proteome-wide comparisons of
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proteins’ subcellular localization changes in response to
various perturbations (13).

The RNA exosome is an evolutionarily conserved ribonu-
cleolytic complex composed of ten or eleven subunits. It
plays a central role in the processing and maturation of
various RNAs, as well as in the degradation and surveillance
of aberrant RNAs, thereby maintaining RNA homeostasis
(16-19). In budding yeast, the nine-subunit exosome core
(Ex09) exhibits distinct subcellular localization patterns: it
associates with Rrp44 to form the cytoplasmic Exo10 com-
plex, while combining with Rrp6 to constitute the nuclear
Exo11 complex. These differentially localized complexes
interact with a conserved eukaryotic RNA processing com-
plex containing specific cofactors and RNA substrates ac-
cording to their cellular compartmentalization (17, 20, 21).
Notably, all exosome subunits show predominant nucleolar
localization, consistent with their essential roles in nuclear
RNA processing (21, 22). In human cells, six RNA exosome
subunits (EXOSC4-EXOSC9) form a barrel-like hexameric PH
ring that serves as a scaffold for RNA substrates. Three
subunits EXOSC1-EXOSCS3 constitute an S1-KH cap, while
EXOSC10 and DIS3 function as the two catalytic subunits (23,
24). EXOSC1, also known as Rrp41 or Csl4, is one of the core
components of the RNA exosome complex. EXOSC5, also
known as Rrp46, is a non-catalytic subunit that helps recruit
the RNA exosome complex to target RNAs, facilitating their
degradation. The coordinated activities of EXOSC1 and
EXOSCS5 are essential for maintaining the functional integrity
of the RNA exosome, enabling efficient RNA metabolism and
quality control (25). EXOSC10, also known as Rrp6, is pre-
dominantly enriched in the nucleolus and serves as the crucial
catalytic subunit of the RNA exosome (26).

Accessory factors of the RNA exosome complex determine
its RNA substrate specificity (27). The nuclear exosome tar-
geting (NEXT) complex consists of MTR4 (a helicase of the
SKI2-like family), the zinc-finger-containing protein ZCCHCS,
and the RNA-binding protein RBM7. This complex primarily
targets short, mono-exonic RNAs, including promoter up-
stream transcripts/upstream antisense RNAs, enhancer
RNAs, and long noncoding RNAs (28). The poly(A) exosome-
targeting (PAXT) complex, composed of MTR4 and the
zinc-finger protein ZFC3H1, directs nuclear noncoding tran-
scripts with longer poly(A) tails to the RNA exosome for
degradation (29). The Trf4/5-Air1/2-Mtr4 polyadenylation
(TRAMP) complex consists of MTR4, a poly(A) polymerase
(PAPDS), and a zinc knuckle protein (ZCCHC7). It mediates
the degradation of aberrant pre-rRNA intermediates, defec-
tive pre-rRNAs, and the 5 ETS (30-32). MTR4, a conserved
3’-5' DExH-box RNA helicase, plays a key role in unwinding
and degrading structured RNA substrates (33). All these
complexes include MTR4, which also participates in RNA
export from the nucleus to the cytoplasm (34). Moreover,
MTR4 monitors the quality of nuclear RNA before export,
ensuring that only properly processed RNAs are transported

to the cytoplasm (35, 36). MTR4-dependent RNA surveillance
serves as a critical checkpoint for oocyte growth (37).

Our previous work revealed that the RNA exosome can
translocate from the nucleolus to the nucleoplasm upon cold-
warm exposure and subsequently restores its nucleolar
accumulation during recovery in Caenorhabditis elegans.
Additionally, in suppressor of siRNA (susi) mutants, where
erroneous rRNAs accumulate, the RNA exosome mislocalizes
from the nucleolus to the nucleoplasm (38, 39). Notably,
EXOSC10 can relocate from the nucleolus to DNA damage
sites to facilitate efficient homologous recombination (40-42).
These findings collectively suggest that distinct subcellular
localizations may provide specialized environments and
interaction partners for the RNA exosome to perform its
functions (19, 43). Understanding the regulatory mechanisms
of RNA exosome subcellular localization is essential for
elucidating its functions.

Here, by isolating nucleoli followed by mass spectrometry
analysis, we showed that the knockdown of MTR4 induced
the translocation of the RNA exosome from the nucleolus to
the nucleoplasm. MTR4 specifically regulates the nucleolar
localization of the RNA exosome, without disrupting nucle-
olar integrity. Additionally, knocking down subunits of the
RNA exosome complex mutually affected the localization of
other subunits. Treatment with a series of chemicals,
including actinomycin D (Act.D), MG-132, and leptomycin B
(LMB), altered the nucleolar localization of EXOSC10. In
addition, Act.D treatment decreased the nucleolar accumu-
lation of the RNA exosome by regulating nucleolar MTR4
levels. Our work revealed that the subcellular localization of
the RNA exosome complex within the nucleolus can be
regulated by MTRA4.

EXPERIMENTAL PROCEDURES
Cell Culture

Hela cells and 293T cells were cultured in Dulbecco's modified
Eagle medium supplemented with 10% fetal bovine serum (FBS), 1%
penicillin/streptomycin, 1% non-essential amino acids, and 1% so-
dium pyruvate. All cells were maintained in a humidified incubator at
37 °C with 5% CO».

Plasmid Transfection

One day before transfection, approximately 75,000 cells in 500 pl
of growth medium without antibiotics were seeded into each well of
24-well plates to achieve 90 to 95% confluency at the time of
transfection. Transfection was conducted using the DNA-
Lipofectamine 2000 reagent following the vendor’s protocols. Cells
were then incubated in a CO, incubator for another 24 to 48 h. The
plasmids used are listed in Supplemental Table S3.

Small-Interfering RNA

siRNAs were purchased from Horizon (Lafayette, CO). The trans-
fection of siRNAs in mammalian cells was performed using Dhar-
maFECT 1 Transfection Reagent (Horizon, T-2001-03) according to
the manufacturer recommended procedure. The knockdown
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efficiency was analyzed by reverse transcription quantitative poly-
merase chain reaction (RT-gPCR) at 48 and 72 h posttransfection.
Western blotting was performed to analyze the protein levels
following siRNA treatments. The siRNA target sequences are listed in
Supplemental Table S4.

RNA Isolation and RT-gPCR

Total RNAs were extracted using TRizol Reagent (Invitrogen) ac-
cording to the manufacturer's protocol. For RT-gPCR,
complementary DNAs were synthesized from RNA using HiScript Il
RT SuperMix for gPCR (Vazyme), which includes a random primer/
oligo(dT)20VN primer mix for reverse transcription. g°PCR was per-
formed using a MylQ2 real-time PCR system (Bio-Rad) with AceQ
SYBR Green Master Mix (Vazyme). The primers used in gRT-PCR are
listed in Supplemental Table S5.

Western Blotting

Cells were harvested and washed twice with PBS and then lysed in
RadiolmmunoPrecipitation assay lysis buffer. The samples were
frozen at —80 °C and subsequently lysed at 95 °C for 10 min in
1 x protein dye (62.5 mM Tris, pH 6.8; 10% glycerol; 2% SDS; 5%
B-mercaptoethanol; 0.2% bromophenol blue). Proteins were resolved
by SDS-PAGE on gradient gels (10% separation gel, 5% spacer gel)
and transferred to a nitrocellulose blotting membrane. After washing
with 1 x tris buffered saline with tween-20 (TBST) buffer and blocking
with 5% milk TBST, the membrane was incubated overnight at 4 °C
with primary antibodies. The membrane was washed three times for
10 min each with 1x TBST buffer and then incubated with secondary
antibodies at room temperature for 2 h. The membrane was washed
three times for 10 min with 1 x TBST buffer and then visualized. The
primary and secondary antibodies used are listed in Supplemental
Table S6.

Chemical Treatment

For Act.D treatment, HelLa cells were exposed to 40 nM Act.D
(MCE, HY-17559) for 1 h. Control cells received an equivalent con-
centration of DMSO. For MG-132 treatment, HelLa cells were incu-
bated for 24 h in medium containing 100 nM MG-132 (MCE, HY-
13259). Hela cells were also treated with 80 nM LMB (Beyotime,
S1726) for 24 h, while control cells were treated with ethanol. For
carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) treat-
ment, Hela cells were incubated for 24 h in medium containing 20 pM
FCCP (MCE, HY-100410). For cycloheximide (CHX) treatment, HelLa
cells were incubated for 48 h in medium containing 2.8 pM CHX
(MCE, HY-12320).

Fluorescence Recovery After Photobleaching

Fluorescence recovery after photobleaching experiments were
conducted using a Zeiss LSM980 laser scanning confocal micro-
scope at room temperature as described previously (44). A region of
interest was bleached using 100% laser power for 3 to 4 s, and
fluorescence intensities in these regions were collected every 5 s and
normalized to the initial intensity before bleaching. For analysis, im-
age intensity was measured by mean values and further analyzed
using Origin software (https://www.originlab.com/).

Immunofluorescence and Confocal Microscopy

Cells seeded on coverslips were fixed with 4% paraformaldehyde
for 15 min at room temperature and then washed three times with 1x
PBS. The cells were subsequently incubated for 15 min in per-
meabilization buffer (0.2% Triton X-100 and 2% FBS in FACS buffer).
The proteins of interest were labeled with primary antibodies at a

1:500 dilution in permeabilization buffer at 4 °C overnight, followed by
three washes with washing buffer. The coverslips were then incu-
bated with secondary antibodies at a 1:1000 dilution in per-
meabilization buffer for 1 h at room temperature in dark. Finally, the
coverslips were washed with washing buffer and counterstained with
Hoechst 33342 for 10 min at room temperature in the dark. After
washing with washing buffer, images were acquired using a Zeiss
LSM980 laser scanning confocal microscope with a 100x oil-
immersion objective and a 1024 x 1024 image size.

Nucleolar Fractionation

Nucleolar fraction preparation was performed as previously
described (1).

All solutions were supplemented with a complete protease inhibitor
tablet at a final concentration of one tablet per 50 ml. The composi-
tions of the buffers were as follows:

Buffer A: 10 mM Hepes (pH 7.9), 10 mM KCI, 1.5 mM MgCl,,
0.5 mM DTT.

S1 solution: 0.25 M sucrose, 10 mM MgCl,.

S2 solution: 0.35 M sucrose, 0.5 mM MgCl,.

S3 solution: 0.88 M sucrose, 0.5 mM MgCl,.

Freshly harvested cells were washed twice with PBS, resuspended
in 5 ml of hypotonic buffer A, and incubated on ice for 10 min. The cell
suspension was transferred to a pre-cooled 7-ml Dounce homoge-
nizer and dounced 35 times on ice. The homogenized cells were
centrifuged at 1000 rpm for 5 min at 4 °C to pellet the nuclei, which
were enriched but not yet highly pure.

The nuclear pellet was resuspended in 5 ml of hypotonic buffer A,
homogenized with 25 strokes in the Dounce homogenizer, and
centrifuged again at 1000 rpm for 5 min at 4 °C. The resulting pellet
was resuspended in 3 ml of S1 solution and carefully layered over
3 ml of S2 solution, ensuring the two layers remained cleanly sepa-
rated. This mixture was centrifuged at 2500xg for 5 min at 4 °C,
yielding a cleaner nuclear pellet.

The nuclear pellet was resuspended in 3 ml of S2 solution by
pipetting up and down, then sonicated using eight 10-s bursts at
40% power, with 10-s intervals between bursts. The sonicated
sample was layered over 3 ml of S3 solution and centrifuged at
3500xg for 10 min at 4 °C. The supernatant was gently removed, and
the nucleoli were resuspended in 0.5 ml of S2 solution, followed by
centrifugation at 2500 xg for 5 min at 4 °C. The final pellet, containing
highly purified nucleoli, was resuspended in 0.5 ml of S2 solution and
stored at -80 °C.

LC-MS/MS Analysis

Peptide samples were analyzed using a timsTOF Pro mass spec-
trometer (Bruker Daltonics) coupled online to an Evosep One liquid
chromatography system (Evosep). The peptides were loaded onto a
C18-reversed phase analytical column (15 cm long, 150 pm inner
diameter, 1.9 pm resin) in buffer A (0.1% formic acid in water) and
separated with a linear gradient of buffer B (99.9% acetonitrile and
0.1% formic acid) at a flow rate of 220 nl/min.

The timsTOF Pro was operated in positive ion mode using the
parallel accumulation—serial fragmentation acquisition method. The
electrospray voltage was set to 1.6 kV. The ion mobility separation
range was set from 0.75 to 1.35 V s/cm?. Each acquisition cycle
consisted of 1 mass spectrometry (MS) scan followed by eight par-
allel accumulation—serial fragmentation tandem mass spectrometry
scans. Active exclusion of previously sequenced precursors was
enabled with a release time of 24 s. Precursors and fragments were
acquired over a mass range of m/z 100 to 1700 using the TOF
detector.
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Database Search and Protein Quantification

Raw MS data were processed and searched using MaxQuant
software (version 1.6.14; https://www.maxquant.org/). Tandem mass
spectra were queried against the UniProt protein database (Swis-
sProt_Homo_sapiens_20395_20210106.fasta), which contains
20,370 protein entries. Database searches were performed using the
built-in Andromeda search engine with the following parameters:
Trypsin was used as the digestion enzyme, allowing up to two missed
cleavages. The first search mass tolerance for precursor ions was set
at 20 ppm, followed by a main search tolerance of 6 ppm. The mass
tolerance for fragment ions was set at 20 ppm.

Carbamidomethylation of cysteine was set as a fixed modification,
while oxidation of methionine was considered a variable modification.
The false discovery rate was controlled at 1% at both the peptide and
protein levels. For protein quantification, label-free quantification
(LFQ) was performed using the MaxLFQ algorithm with razor and
unique peptides included. The minimum LFQ ratio count was set to 1,
and the “match between runs” function was enabled with a match
time window of 2 min to transfer identifications across adjacent runs.

Experimental Design and Statistical Rationale

A total of 10 biological samples were analyzed in this label-free
quantitative proteomic study, including three biological replicates
for MTR4 RNAi and two biological replicates for Act.D-treated sam-
ples. Each biological replicate represented an independently
collected sample, encompassing both cell collection and nucleoli
extraction.

For the MTR4 RNAi experiment, three biological replicates per
condition were used for identifying differentially expressed proteins.
For Act.D-treated experiments, two biological replicates were
assayed and then were compared with the data reported in the
previous research (1). Data normalization and statistical analyses
were performed using MaxQuant and Perseus software platforms
(https://maxquant.net/perseus/). Only proteins that have a fold
change of less than 0.7 or greater than 1.43 among all replicates were
retained for downstream analysis.

RESULTS
Knockdown of MTR4 Affects the Nucleolar Proteome

The nuclear RNA helicase MTR4 has been reported to
interact with early ribosome biogenesis factors involved in
ITS1 processing (45). Additionally, MTR4 plays a crucial role
in rRNA processing within the nucleolus, further highlighting
its importance in ribosome biogenesis and RNA metabolism.
Therefore, MTRA4 is critical for the maintenance and regulation
of nucleolar functions. The nucleolar proteome, including
MTR4, is highly dynamic and undergoes substantial changes
in response to cellular stresses. These dynamics are closely
linked to the regulation of ribosome biogenesis and RNA
metabolism, processes in which MTR4 is deeply involved.
Combining nucleolar isolation with advanced quantitative
proteomics provides a robust platform for uncovering the
molecular events underlying nucleolar dynamics (8, 11, 13).
To better understand the nucleolar proteome dictated by
MTR4, we conducted quantitative proteomics of Hela cell
nucleoli using mass spectrometry.

Nucleoli were isolated by sucrose density gradient centri-
fugation following a previously established procedure (1, 46)

(Fig. 1A). The purity of the isolated nucleoli was verified by
Western blotting (Fig. 1B, Supplemental Fig. S1, A and B). In
each nucleolar proteomics experiment, fibrillarin (FBL), NPM1
(B23), UBTF (UBF), and DDX21 were consistently identified by
mass spectrometry. Mitochondrial proteins were used as
controls, which are barely detected (Supplemental Fig. S1C).
Across three independent experiments, approximately 1763
nucleolar proteins were consistently detected (Fig. 1C). A
comparison with previously reported datasets (1) identified
432 overlapping proteins in the nucleolar proteome
(Supplemental Fig. S1D) (Supplemental Table S1). These data
indicated that this method was a reproducible and robust way
to quantify the nucleolar proteome.

To explore the role of MTR4 in regulating the nucleolar
proteome, we conducted proteomic experiments using puri-
fied nucleoli isolated from both control and MTR4 knockdown
Hela cells. Using fold-change thresholds of <0.7 or >1.43, we
identified differentially accumulated nucleolar proteins in
MTR4 knockdown versus control samples. While this strin-
gent criterion improves the robustness and reproducibility of
the analysis, it may also exclude some true-positive candi-
dates with moderate changes, potentially leading to false
negatives. M-versus-A plot analysis demonstrated consistent
trends across three biological replicates (Fig. 1D,
Supplemental Fig. S1E). Gene ontology analysis revealed that
MTR4-regulated nucleolar proteins predominantly participate
in rRNA processing, RNA splicing, and translation
(Supplemental Fig. S2A). In total, we identified 57 proteins
enriched and 32 proteins depleted in the nucleolar proteome
following MTR4 RNAi across three biological replicates
(Fig. 1E, Supplemental Fig. S2B).

Specifically, 9 of the 11 RNA exosome complex subunits
exhibited reduced nucleolar accumulation (Fig. 1F). Each
subunit of the RNA exosome complex showed approximately
a 50% reduction in nucleolar protein levels, further under-
scoring the role of MTR4 in regulating the RNA exosome
localization (Fig. 1G). Our stringent threshold excluded
EXOSC1 and EXOSCS5 in proteome analysis. While EXOSCH1
and EXOSCS5 fell below this threshold in two of the three
replicates (0.29 and 0.33 for EXOSC1, 0.45 and 0.26 for
EXOSC5), their fold changes in the third replicate were
marginally above the cutoff (0.77 and 0.74, respectively)
(Supplemental Fig. S2C). The immunofluorescence staining
experiment further validated that the knockdown of MTR4
depleted EXOSC1 and EXOSC5 from the nucleoli (see below).
In contrast, certain proteins, such as PTBP2 and CELF1, were
enriched in the nucleolar proteome dataset following MTR4
RNAi (Supplemental Fig. S2B). PTBP2 and CELF1 are RNA-
binding proteins essential for RNA processing and regula-
tion (47-49). Consistent with these findings, immunofluores-
cence staining in Hela cells also revealed significant
enrichment of PTBP2 and CELF1 in the nucleolus following
MTR4 RNAI (Supplemental Fig. S3, A and D), which was
further confirmed by Western blotting (Supplemental Fig. S3,
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B and E). PTBP2 and CELF1 protein levels remained largely
unchanged in whole-cell lysates (Supplemental Fig. S3, C and
F).
Together, these data revealed that MTR4 plays a critical
role in modulating the nucleolar proteome, particularly
regarding the RNA exosome complex in the nucleolus.

EXOSC10 is Enriched in the GC Region of the Nucleolus

To further validate the regulation of MTR4 on the subcel-
lular localization of the RNA exosome complex, we estab-
lished stable cell lines expressing an enhanced green
fluorescent protein (EGFP)-EXOSC10 fusion in HelLa and
293T cells, referred to as HelLa(EGFP-EXOSC10) and 293T
(EGFP-EXOSC10), respectively. To label nucleolar sub-
regions, we constructed plasmids expressing mCherry-
tagged nucleolar markers: UBF for FC, FBL for DFC, DDX21
for PDFC, and B23 for GC (Fig. 2A). Subsequently, HelLa
(EGFP-EXOSC10) cells were transfected with these
mCherry-tagged nucleolar markers to examine the colocali-
zation of EGFP-EXOSC10 with these markers using confocal
microscopy. EXOSC10 was highly enriched in the nucleolus,
displaying strong colocalization with B23 and partial coloc-
alization with FBL, UBF, and DDX21 (Fig. 2, B-E). B23-
marked GC region is implicated in late-stage pre-rRNA
processing and rRNA ribonucleoprotein assembly, consistent
with the role of EXOSC10 in pre-rRNA processing.

The Knockdown of MTR4 Depletes EXOSC10 from the
Nucleolus

To confirm the proteomic results, we transfected MTR4-
targeting siRNA into HelLa(EGFP-EXOSC10) cells. As ex-
pected, the knockdown of MTR4 specifically led to the
depletion of EGFP-EXOSC10 from the nucleolus (Fig. 3, A-C).
We quantified the relative enrichment of EGFP-EXOSC10 in
the nucleolus in control and MTR4 RNAi-treated cells,
revealing a marked reduction in the nucleolar enrichment of
EXOSC10 following MTR4 knockdown (Fig. 3D). Similarly, the
knockdown of MTR4 by RNAI in 293T(EGFP-EXOSC10) cells
resulted in the translocation of EGFP-EXOSC10 from the
nucleolus to the nucleoplasm (Fig. 3E). We performed
immunofluorescence staining with the anti-EXOSC10 anti-
body in MTR4-depleted HelLa cells and found that endoge-
nous EXOSC10 proteins were also depleted from the
nucleolus (Supplemental Fig. S4A). The expression levels of
both EXOSC10 and EGFP-EXOSC10 were not significantly
affected by MTR4 RNAi treatment (Fig. 3F, Supplemental
Fig. S4B). Notably, MTR4 depletion did not noticeably alter

nucleolar morphology and integrity, as shown by immuno-
staining with anti-FBL, anti-B23, anti-UBF, and anti-DDX21
antibodies (Fig. 3, G-J). Knockdown of EXOSC10 by RNAi
in HeLa(EGFP-MTR4) cells did not affect MTR4 localization
(Supplemental Fig. S4, C and D).

To assess whether the alteration in EXOSC10 localization
affects the mobility of nucleolar proteins, we performed a
fluorescence recovery after photobleaching assay. The
depletion of MTR4 by RNAI did not significantly change the
mobility of mCherry-B23 and FBL-mCherry (Supplemental
Fig. S4, E and F). Collectively, the knockdown of MTR4 in-
duces the relocalization of EXOSC10 to the nucleoplasm
without compromising nucleolar integrity.

MTR4 Specifically Regulates the Nucleolar Accumulation
of the RNA Exosome

Similar to EXOSC10, immunofluorescence staining also
revealed that both EXOSC1 and EXOSC5 were dispersed from
the nucleolus to the nucleoplasm in MTR4-depleted Hela cells
(Fig. 4, A and B, Supplemental Fig. S5, A and B). Western blot
analysis indicated that MTR4 depletion resulted in approxi-
mately 60% reduction in the nucleolar levels of EXOSC1 and
EXOSCS5 (Fig. 4C). Previously isolated mutations in the RNA
exosome core subunit Rrp43p have been shown to negatively
affect the function of the complex in yeast (50, 51). To further
investigate whether the nucleolar localization of RNA exosome
subunits is mutually dependent on other exosome compo-
nents in HelLa cells, we examined the effects of RNAi-mediated
knockdown of the exosome subunits. EXOSC5, which is pri-
marily enriched in the nucleolus, was depleted from the
nucleolus upon knockdown of EXOSC1 or EXOSC10 (Fig. 4D,
Supplemental Fig. S5C). Similarly, RNAi targeting EXOSC1 or
EXOSC5 resulted in the depletion of EXOSC10 from the
nucleolus (Fig. 4E, Supplemental Fig. S5D). Notably, neither
MTR4 depletion nor the depletion of RNA exosome subunits
led to a gross decrease in EXOSC1 or EXOSCS5 levels in the
whole-cell lysate (Supplemental Fig. S5E).

MTR4 is involved in the composition and function of several
complexes, including TRAMP, PAXT, and NEXT complexes.
We examined whether the localization of the RNA exosome is
dependent on these three complexes. RNAi knockdown of
the TRAMP, PAXT, and NEXT complexes did not significantly
affect the levels of nucleolar EXOSC10. Additionally, knock-
down of C1D, an RNA exosome-associated factor, did not
disturb the nucleolar localization of EXOSC10 either (Fig. 4, F—
H, Supplemental Fig. S6, A-C). Additionally, to investigate
whether the translocation of the RNA exosome was caused

diagram showed 1763 overlapping genes identified across the three replicates involving control cell nucleoli. D, nucleolar proteome obtained
from HelLa cells following 72 h RNAI targeting MTR4 was analyzed using the M-versus-A plot. E, the Venn diagrams showed 57 proteins that
are upregulated (left) and 32 proteins (right) that are downregulated across all three samples. Fold changes higher than 1.43-fold are
considered upregulated, and less than 0.7-fold are considered downregulated. F, list of downregulated nucleolar proteins after MTR4 RNAI
across three independent experiments. Green indicates the components of the RNA exosome. G, relative protein levels of the RNA exosome
subunits in control and MTR4-depleted cells within the nucleolar proteome dataset.
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Fic. 2. EXOSC10 is enriched in the GC region in the nucleolus. A, the schematic depicts the different subregions of the nucleolus. A
mammalian nucleolus comprises four subregions: FC, DFC, PDFC, and GC. FC refers to the fibrillar center, DFC to the dense fibrillar
component, PDFC to the periphery of the dense fibrillar component, GC to the granular component, and NR to the nucleolar rim. B-E,
representative images show the localization of B23, UBF, FBL, or DDX21 (red) and EXOSC10 (green). EXOSC10 colocalized with B23. A
fluorescent density scan of nucleolar proteins and EXOSC10 staining was performed using ImagedJ (https://imagej.net/ij/). The white lines
indicate the areas where fluorescence quantification was conducted. FBL, fibrillarin.
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by mRNA accumulation in the nucleus due to MTR4 deple-
tion, we utilized RNAI to knock down several components of
the TREX complex, including ALYREF, UAP56, and THOC2,
in HeLa(EGFP-EXOSC10) cells. However, no apparent effect
on the levels of nucleolar EXOSC10 was observed
(Supplemental Fig. S6, D-F). In summary, these data suggest
that the enrichment of the nucleolar RNA exosome is spe-
cifically modulated by MTR4.

Identification of Chemicals that Modulate the RNA
Exosome Nucleolar Accumulation

To identify additional factors governing the RNA exosome
localization, we performed a candidate-based RNAi screen in
HelLa(EGFP-EXOSC10) cells, targeting approximately 60
genes involved in RNA processing and ribosome biogenesis
(Supplemental Table S2). Interestingly, only MTR4 knock-
down specifically caused the depletion of EGFP-EXOSC10
from the nucleolus.

To explore whether other cellular processes also affect
the localization of the RNA exosome, we treated HelLa
(EGFP-EXOSC10) cells with several chemicals and exam-
ined the nucleolar structure as well as the distribution of
the RNA exosome. We observed that treatment with Act.D,
MG-132, and LMB induced the depletion of EXOSC10 from
the nucleolus. Act.D inhibits RNA polymerase | transcrip-
tion elongation and induces nucleolar segregation (40, 52).
We found that Act.D treatment led to the disintegration of
the nucleolus and the depletion of EXOSC10 within the
nucleolus (Fig. 5A). MG-132 blocks the proteolytic activity
of the 26S proteasome complex and triggers apoptosis
(53). Treatment with MG-132 resulted in the dispersal of
EXOSC10 throughout the nucleus but did not affect the
shape or integrity of the nucleolus (Fig. 5B). LMB, an in-
hibitor of nuclear export, induces the nuclear accumulation
of proteins that shuttle between the cytoplasm and nucleus
(54). LMB treatment resulted in nucleolar disintegration
and also the dispersion of EXOSC10 within the nucleus
(Fig. 5C).

However, FCCP (an oxidative phosphorylation uncoupler),
or CHX (a protein synthesis inhibitor) did not affect the
nucleolar localization of EXOSC10 (Supplemental Fig. S7, A
and B) (55). To investigate whether culturing condition in-
fluences the localization of the RNA exosome in Hela cells,
we removed FBS from the culture medium and found that
serum starvation did not affect the nucleolar enrichment of
EXOSC10 (Supplemental Fig. S7C).

Proteomic Analysis of Act.D-Treated Nucleoli Revealed
that RNA Exosome Distribution Depends on the Nucleolar
Localization Sequence (NoLS) of MTR4

To compare the nucleolar proteome alterations induced by
Act.D treatment with MTR4 knockdown, we isolated the Act.
D-treated nucleoli from Hela cells and performed proteomic
analysis. In Act.D-treated nucleoli, 1777 proteins were
identified across two replicates (Fig. 6A). M-versus-A plot
analysis identified differentially expressed proteins between
the Act.D-treated and control samples (Fig. 6B, Supplemental
Fig. S8A) (Supplemental Table S1). A total of 506 differential
proteins were identified in two biological replicates, including
151 downregulated and 220 upregulated proteins, using
thresholds of <0.7-fold for downregulation and >1.43-fold for
upregulation, respectively (Supplemental Fig. S8B). Factors
that were depleted from nucleolus after Act.D treatment
included ribosomal proteins, RNA processing factors, and
small subunit processome components (Supplemental
Fig. S8C). Although the nucleolar proteomes differed be-
tween MTR4-knockdown and Act.D-treated nucleoli, the RNA
exosome displayed similar reduction in both treatments
(Fig. 6C, Supplemental Fig. S8D).

We observed that Act.D treatment reduced nucleolar MTR4
levels (Fig. 6D, Supplemental Fig. S8E) without affecting
gross cellular MTR4 levels (Fig. 6E), suggesting a potential
link between MTR4 nucleolar levels and the RNA exosome
distribution. To test whether the Act.D-induced localization
change of the RNA exosome is at least partially due to its
effect on the nucleolar accumulation of MTR4, we disrupted
the nucleolar localization sequence (NoLS) of MTR4 using
CRISPR/Cas9 technology. As expected, the loss of the NoLS
disrupted the nucleolar accumulation of MTR4 (Fig. 6F).
Consistently, the disruption of the MTR4 NoLS also led to a
reduced nucleolar EGFP-EXOSC10 level (Fig. 6G), revealing a
critical role of the nucleolar localization sequence (NoLS) of
MTR4 in regulating the nucleolar accumulation of the RNA
exosome. Taken together, these results suggest that Act.D
may influence the nucleolar accumulation of the RNA exo-
some by regulating nucleolar MTR4 levels.

DISCUSSION

In this study, we analyzed nucleolar proteomes by isolating
nucleoli from MTR4-knockdown Hela cells followed by mass
spectrometry. We found that MTR4 knockdown reshaped the
nucleolar proteomes and regulated the nucleolar localization

E, images show that MTR4 depletion results in EGFP-EXOSC10 translocation from the nucleolus to the nucleoplasm in 293T(EGFP-EXOSC10)
cells. The white arrows indicate EXOSC10. The white lines indicate the area where fluorescence quantification was performed. The scale bar
represents 20 pm. F, Western blot analysis revealed that the expression of endogenous EXOSC10 was not noticeably affected following MTR4
knockdown via siRNA transfection for 72 h. A non-targeting siRNA was used as a control. G-J, immunofluorescence staining of MTR4-KD
Hela cells with antibodies against FBL (G), B23 (H), UBF (/), DDX21 (J), and EXOSC10 was performed 72 h later after transfection with
MTR4 siRNA. The scale bar represents 20 pm. FBL, fibrillarin; MTR4 KD, MTR4 knockdown.
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Fic. 4. The RNA exosome mislocalization is specifically regulated by MTR4. A and B, Hel a cells were immunostained with EXOSC1 and
EXOSC5 antibodies following 72 h of RNAI targeting MTR4. The white arrows indicate the nucleolus. C, Western blot analysis of EXOSC1 and
EXOSCS5 in nucleolar fractions after MTR4 knockdown (KD). The expression levels of these proteins in the nucleolus are quantified by ImageJ.
D, immunostaining of EXOSC5 in Hela cells after transfection with EXOSC1 or EXOSC10 siRNAs for 72 h. E, immunostaining of EXOSC10 in
Hela cells after transfection with EXOSC1 or EXOSCS5 siRNAs for 72 h. F, images of HeLa(EGFP-EXOSC10) cells showed that the depletion of
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Fic. 5. Identification of chemicals modulating EXOSC10 nucleolar accumulation. A, Act. D, (B) MG-132, and (C) LMB treatments
induced the depletion of EGFP-EXOSC10 from the nucleolus. The scale bar represents 20 pm. Act.D, actinomycin D; EGFP, enhanced green

fluorescent protein; LMB, leptomycin B.

of the RNA exosome complex, which also depends on the
integrity of its components. Additionally, we identified several
chemicals, including Act.D, which regulate the subcellular
localization of the RNA exosome. Both MTR4 knockdown and

Act.D treatment differentially reshaped the nucleolar pro-
teomes but similarly reduced the nucleolar accumulation of
the RNA exosome complex. Act.D treatment also reduced the
level of MTR4 within the nucleolus. Knocking out the NoLS of

TRAMP component by RNAI did not affect the enrichment of EXOSC10 in the nucleolus. G, RT-gPCR analysis was performed to assess the
knockdown efficiency of TRAMP complex components in siRNA-treated cells. Mean + SD; n = 3. H, the efficiency of TRAMP complex
components depletion was analyzed using Western blotting with the indicated antibodies. EGFP, enhanced green fluorescent protein; TRAMP,

Trf4/5-Air1/2-Mtr4 polyadenylation.
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Fic. 6. Act.D treatment depletes the RNA exosome components from the nucleolus through modulating nucleolar MTR4. A, the Venn
diagram showed 1777 overlapping genes identified across the two replicates involving nucleoli isolated from HelLa cells treated with 40 nM
Act.D for 1 h. B, M-versus-A plot identified differential proteins in nucleolar proteome following Act.D treatment. C, the overlapping analysis
identified downregulated nucleolar proteins both in MTR4 knockdown (KD) and Act.D-treated cells. D, EGFP-MTR4 dispersed to the nucle-
oplasm in HeLa(EGFP-MTR4) cells treated with 40 nM or 80 nM Act.D. E, Western blot analysis showed the protein levels of MTR4 in whole-cell
lysate after Act.D treatment in Hela cells. The levels of these proteins in the nucleolus were quantified by Imaged. F, Top: schematic rep-
resentation of the gene structure of MTR4. Sequence predictions suggest that the nucleolar localization sequence of MTR4 is located in the
first exon. Bottom: deletion of the NoLS from MTR4 using CRISPR/Cas9 technology in HeLa(EGFP-MTRA4) cells led to impaired nucleolar
localization of EGFP-MTR4. The red lines indicate the targeted regions of sgRNA1 and sgRNA2. G, the nucleolar localization of MTR4 was
required for the nucleolar accumulation of EXOSC10. A double fluorescence tagged cell line, HeLa(EGFP-EXOSC10; mCherry-B23), was
constructed, and the nucleolar localization sequence (NoLS) of MTR4 was then disrupted by CRISPR/Cas9 technology. Act.D, actinomycin D.

MTR4 impaired the RNA exosome localization. These findings
suggest that the nucleolar localization of MTR4 contributes to
the subcellular localization of the RNA exosome. Overall, our
work demonstrates that both MTR4 and rRNA transcription

are crucial for maintaining nucleolar proteomes and the
nucleolar localization of the RNA exosome complex.

The RNA exosome interacts with compartment-specific
cofactors and substrates, consistent with their nuclear RNA
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processing roles (21, 22). In yeast, all RNA exosome subunits
predominantly localize to the nucleolus. Notably, in agree-
ment with findings in yeast (22), we found that the catalytic
subunit EXOSC10 is enriched in the GC region in Hela cells,
where intermediate rRNA processing occurs. Moreover, our
results raise intriguing questions regarding the molecular
mechanisms that determine the precise subnucleolar locali-
zation of EXOSC10. In Saccharomyces cerevisiae, the kar-
yopherins Srp1, Kap95, and Sxm1 have been shown to
mediate the nuclear import of Rrp6 by recognizing distinct
nuclear localization signals (56). These findings suggest that
specific nuclear transport receptors, together with defined
sequence elements in EXOSC10, may coordinate its nuclear
import and subnucleolar targeting in cells. Future in-
vestigations into these pathways will provide valuable insights
into the regulatory network governing the RNA exosome
compartmentalization and function in higher eukaryotes.

Dynamic changes in subcellular localization enable cells to
respond efficiently to intracellular and environmental stimuli.
For example, nucleolin is a multifunctional protein primarily
localized in the nucleolus but is also found in the nucleo-
plasm, cytoplasm, and cell membrane (57, 58). The mobili-
zation of nucleolin from the nucleolus to the perinuclear
region may enhance viral mRNA translation (59). Moreover,
among the large family of HSPs, HSP70s translocate into the
nucleus during cellular stress and return to the cytoplasm
after several hours of recovery (60). This process is essential
for disassembling stress granules in both the cytoplasm and
the nucleus. It also facilitates anisosomes formation and
helps transport aggregation-prone proteins to the nucleolus
for proteasomal degradation during heat shock (6, 61-63).
Similarly, EXOSC10 can relocate from the nucleolus to DNA
damage sites to recruit RAD51 and facilitate homologous
recombination (41), suggesting that specific protein trans-
location is related to protecting cells from environmental
stress and contributes to cellular homeostasis.

The RNA exosome plays a key role in regulating essential
cellular functions by catabolizing various RNA species in
different subcellular compartments (64, 65). Upon exposure to
multiple stressors, EXOSC10 can relocate to specific subcel-
lular compartments. For instance, treatment with Act.D leads
to the dispersal of EXOSC10 and the disassembly of the
nucleolus. After the removal of Act.D from the culture medium,
EXOSC10 relocalized to the nucleolus. Act.D inhibits Pol |
transcription elongation, resulting in the inactivation of rRNA
processing and maturation, which ultimately leads to nucleolar
segregation (52, 66, 67). Additionally, Act.D disrupts nucleolar
structure, causing the nucleolar proteins, including FBL,
NPM1, and the RNA exosome subunit EXOSC10, to passively
diffuse into the cytoplasm. After the removal of Act.D, the
nucleolar structure is restored, and EXOSC10, along with other
proteins, is transported back to the nucleolus.

The localization of the RNA exosome depends on the
presence of MTR4 in the nucleolus. However, the knockdown

of EXOSC10 does not affect the localization of MTR4. The
unidirectional regulation of EXOSC10 by MTR4 suggests that
MTR4 functions upstream of the RNA exosome complex.
MTR4 is a shared subunit of the TRAMP, NEXT, and PAXT
complexes, but no other subunits of these complexes appear
to affect RNA exosome enrichment in the nucleolus, implying
a specific role for MTR4.

Errors in ribosome biogenesis are detected in the nucle-
olus, leading to global changes in nucleolar function and
morphology (68). The nucleolar RNA exosome is essential for
ribosome biogenesis, including rRNA synthesis, processing,
and ribosome assembly (69). The primary roles of MTR4 and
the RNA exosome involve the 3’ processing of rRNA and the
regulation of RNA stability (70). We hypothesize that
the depletion of MTR4 may impair rRNA maturation, hinder
the degradation of erroneous rRNAs, and disrupt ribosome
assembly. Defects in rRNA degradation result in the exces-
sive accumulation of erroneous rRNAs in the nucleolus. This
overload prevents the nucleolus from efficiently managing the
erroneous rRNAs, leading to their translocation to the nucle-
oplasm. In response, the RNA exosome complex relocates
from the nucleolus to the nucleoplasm, accompanied by
these defective rRNAs. Further investigations are needed to
determine whether forced mislocalization of the RNA exo-
some components could provoke distinct biological
responses.

Recently, mutations in genes encoding both structural and
catalytic subunits of the RNA exosome have been linked to
human diseases (71). The RNA exosome complex can
degrade expanded hexanucleotide repeat RNA in C9orf72
frontotemporal lobar degeneration (FTLD)/amyotrophic lateral
sclerosis (ALS) patients. Frequent mislocalization of
EXOSC10 has been observed in cells expressing arginine-rich
dipeptide repeat protein in a RAN translation-dependent
manner, suggesting that the mislocalization of EXOSC10
may disrupt its functionality (72). Additionally, nucleolar
dipeptide repeat protein may disrupt nucleolar quality control,
contributing to cellular pathology in ALS and FTLD patients
(6). It is worth exploring whether the localization of the RNA
exosome can serve as a marker for early detection of ALS and
FTLD in patients in the future.

Dynamic alterations in subcellular localization enable cells
to swiftly respond to diverse stimuli. Therefore, the subcellular
fractionation technique, combined with confocal microscopy
and molecular studies, provides a powerful tool for under-
standing how the nucleolus regulates protein function by
controlling protein entry and exit under different growth
conditions. It also marks a significant advancement in
studying the coordinated roles of various complexes. Mean-
while, we employed a proteomic approach and identified that
the depletion of MTR4 induced the nucleolar accumulation of
certain RNA processing-related proteins, such as PTBP2 and
CELF1. Furthermore, combining mass spectrometry with
nucleolar fractionation will provide important new insights into
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how and why the nucleolar proteome is altered in response to
different environmental stimuli and developmental conditions.

Statistics

The means and SDs of the results are presented in bar
graphs with error bars. Statistical analysis was performed
using two-tailed Student’s t-tests.

DATA AVAILABILITY

The data that support this study are available from the
corresponding author upon request. The mass spectrometry
proteomics data have been deposited to the Proteo-
meXchange Consortium (https://proteomecentral.proteomex
change.org) via the iProX partner repository with the dataset
identifier PXD060006.

All annotated mass spectrometry data from this study have
been deposited in MS-Viewer for public access. The anno-
tated spectra can be accessed via the following URLs:

Rep#1 Control and MTR4 KD:

Search key: bntkldrt38

URL: https://msviewer.ucsf.edu/prospector/cgi-bin/
mssearch.cgi?report_title=MS-Viewer&search_key=bntkldrt38
&search_name=msviewer

Rep#2 Control and MTR4 KD:

Search key: t4utnkpmmo

URL: https://msviewer.ucsf.edu/prospector/cgi-bin/
mssearch.cgi?report_title=MS-Viewer&search_key=t4utnk
pmmod&search_name=msviewer

Rep#3 Control and MTR4 KD:

Search key: mv9tfhtueb

URL: https://msviewer.ucsf.edu/prospector/cgi-bin/
mssearch.cgi?report_title=MS-Viewer&search_key=mv9tfhtu
eb&search_name=msviewer

Rep#1 Control and Act.D:

Search key: wwngemsn2o

URL: https://msviewer.ucsf.edu/prospector/cgi-bin/
mssearch.cgi?report_title=MS-Viewer&search_key=wwngem
sn2o&search_name=msviewer

Rep#2 Control and Act.D:

Search key: gcxbwzuOes

URL: https://msviewer.ucsf.edu/prospector/cgi-bin/
mssearch.cgi?report_title=MS-Viewer&search_key=qcxbwzu
Oes&search_name=msviewer.
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